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Safety is a mandatory requirement for nuclear engineering applications in any industrial
and medical fields, i.e., for the operation of nuclear power plants, nuclear medical and
industrial devices, radioactive waste repositories, nuclear propellers, etc. Then, it is strategic
for the development of nuclear engineering.

With a specific focus on nuclear facilities related to energy production, the present paper
aims at providing perspectives on a number of issues and topics of safety, which are receiving
attention from the researchers and practitioners.

Nuclear safety comprises all measures needed for nuclear facilities to be operated in
normal conditions. Such measures aim at preventing accidents of technical, external and
human (including malicious) origin, and mitigating the effects that any released radiation
may have on the workers, the general public and the environment. For this, technical and
organizational measures are put in place for all phases of the lifecycle of a nuclear facility,
from design to manufacturing and construction, to operation and decommissioning.

In the current era of strong technological evolution and transition (e.g., energetic and
digital), partly motivated by the concerns of climate change, new designs of fission-based
nuclear power plants (Small Modular Reactors, SMRs, and Micro Reactors, MRs), and
prototype fusion-based facilities for energy production are being put forward. Their licensing
for deployment requires verification of the design objectives for operation and safety (Pioro,
2023). With regards to the latter, any new design for safety is expected to conform to the
principles of defense in depth, which means it should contain: inherent safety features,
passive safety features, specified procedural actions, actions of control systems, actions of
safety systems, actions of complementary design features. In particular, passive safety
systems are extensively used in most SMRs and MRs because of their simplicity and
reliability. However, passive safety systems present some challenges with regards to the
assessment of their reliability itself (Di Maio et al., 2021), like lack of data related to relevant
functional phenomena, need to know performance under a wide range of conditions and
difficult testability to verify the intended function that they must provide. This leads to a
significant use of expert judgement and subjective assumptions in the reliability assessment
of passive systems and the consequent need of identifying, modeling and propagating the
associated uncertainties. This can be done by simulating numerous realizations of the system
response under different operating conditions, within a functional failure-based approach
based on the integration of Monte Carlo sampling and the mechanistic code of the system
physical process, which however requires significant computational efforts. Thus, advanced
sampling, empirical metamodelling (e.g., by Artificial Intelligence, AI), advanced sensitivity
and uncertainty analyses need to be developed and validated, including efficient and sound
Inverse Uncertainty Quantification (IUQ) analyses to find a characterization of the input
parameters uncertainty that is consistent with the experimental data, while limiting the
associated computational burden (Roma et al., 2022). Clearly, resorting to empirical, fast-
computing metamodels for estimating passive systems failure probabilities and for carrying
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out uncertainty and sensitivity analyses can be very efficient
computationally but requires that the regression error be
carefully quantified (and possibly controlled), in order to reduce
its impact on the quality of the final reliability assessment.
Furthermore, the higher the input dimensionality (e.g., when
dealing with time series data), the higher the size of the training
dataset needed for accuracy, so that approaches to reduce the input
dimensionality (e.g., Principal Component Analysis, PCA, or
Stacked Sparse Autoencoders) should be applied.

Within the current scenario of nuclear power development,
some practical and research issues arise as relevant opportunities
and challenges for safety. From the point of view of classical safety
assessment, areas of attention are.

• Active and Passive Safety Systems
• Deterministic Safety Assessment (DSA)
• Probabilistic Safety Assessment (PSA)
• Integrated Deterministic and Probabilistic Safety
Assessment (IDPSA)

• Dynamic Probabilistic Safety Assessment (DPSA)
• Multi-Unit Risk Assessment and Risk Aggregation
• Multi-Hazard Risk Assessment and Risk Aggregation
• External Events Risk Assessment in the realm of
Climate Change

For what concerns active and passive safety systems, it is
important that their design and testing be advanced in a way to
address hazards and vulnerabilities characteristic of the new reactors
technological solutions, in terms of materials, components and
systems therein adopted. For the passive systems (IAEA, 2009),
in particular, also the effects of climate change on their functionality
need to be considered in the expected time frame of operation
(Sahlin et al., 2015; Vagnoli et al., 2018; https://utilitiesone.com/the-
impact-of-climate-change-on-nuclear-power-plant-safety).

This requires also the advancement of deterministic and
probabilistic safety assessment capabilities, to allow relaxing excessive
conservatism for more realistic analysis (e.g., by Best Estimate Plus
Uncertainty, BEPU methods; D’Auria, 2019; Sun et al., 2020), on one
side, and verifying and validating (V&V) the quality of the methods
used for the assessment, on the other side (Paul et al., 2016). These
advancements should regard also the confirmation of the added value of
integrated deterministic and probabilistic safety assessment (IDPSA,
Zio, 2014; Di Maio et al., 2015; Heo et al., 2021) and dynamic
probabilistic safety assessment (DPSA, Wiltbank and Palmer, 2021;
Parhizkar et al., 2022), in certain cases and for certain scenarios to be
definitely identified, and their final deployment based on the power of
computational risk assessment (CRA, Sezen et al., 2019). Indeed, BEPU,
IDPSA, DPSA and CRA are expected to contribute significantly to
robust risk-informed decision making for nuclear safety in practice, by
enabling the integrated consideration and treatment of the time-
dependent interactions of the stochastic processes of hardware
component failures, the deterministic responses of the system
process, the effects of the control and operator actions, software and
firmware. Yet, to bring these computational frameworks to industrial
use requires further efforts to increase their efficiency for the generation
ofmultiple scenarios of system behavior by combining advancedMonte
Carlo simulation with AI metamodelling for guided design of
experiment (DoE) and system response simulation. Also, transparent

post-processing by clustering (e.g., by AI) of the multiple scenarios
output is necessary for classification (e.g., by Machine Learning, ML) so
as to render the results treatable and useable for risk-informed decision
making. Finally, in very practical terms it is needed that the
computational codes be user-friendly and easy to link with existing
PSA/DSA codes.

Within the safety assessment of existing multi-units and future
modular nuclear installations, two issues that are still open and, thus,
deserving attention aremulti-hazard andmulti-unit risk assessment, for
achieving a scientifically solid evaluation of the aggregated site risk (Yoo
et al., 2021; Ming et al., 2022; Hochrainer-Stigler et al., 2023). This puts
under the spotlight also the assessment of the risk contribution from
external events, e.g., earthquakes and extreme meteorological events
(also in relation to the climate change that is being experienced and
which increases the relevance of the latter), and the resilience of nuclear
power plants (Di Maio et al., 2022; 2023).

From another perspective, there are continuous advancements in
sensor electronics for component and process state monitoring, AI
analytics and machine learning ML algorithms for elaborating the
monitored data, and computational power availability to fuel these
elaborations (Zio, 2018). This exciting combination offers a stream of
opportunities for advanced solutions of operation and maintenance of
nuclear facilities, e.g., autonomous operation supported by digital twins
(DTs) and data-driven condition-based or predictive maintenance
(Coble et al., 2012; Hu et al., 2022; Zio, 2022; Kim et al., 2023;
Kropaczek et al., 2023). Yet, the issues of the qualification and V&V
of AI models and ML algorithms, which are typically black boxes, for
their safe use is still very much open even if they were used “only” to
assist the operators and decision makers, and not for autonomous
operation (Huang et al., 2023). On one side, this calls for a proper
treatment of the uncertainty in the predictions used in the decision
making, e.g., by Bayesian neural networks and deep gaussian processes.
On another side, the safety criticality of the application of AI models
and ML algorithms in the nuclear field motivates research for
improving the transparency and interpretability of the predictions so
as to build trust on their use.Methods for injecting physical information
in learning models and algorithms, post hoc sensitivity approaches and
visualization techniques need to be further developed and used to
provide interpretability from different perspectives, including
explaining the learned input-output relation representations,
explaining the individual outputs, explaining the way the output is
obtained. Regarding digital twins, one challenge is the seamless
integration of DTs with existing systems and processes. Ensuring
that DTs can communicate and share data with existing systems
and methods can be a complex task, as it may require the
development of new interfaces and protocols. On the other hand,
interoperability is one of themost promising features that DTs can offer.
It is crucial to ensure that data is being shared effectively so that it can be
used to support decision-making and control tasks to fully exploit this
technology. Also, the role of operators and users in using and
implementing DTs must be carefully considered.

Also, clearly the ongoing digitalization of the industry increases the
attention to cybersecurity of nuclear installations (Kim et al., 2020).
Indeed, cyber risk analysis of digitalized assets is still an immature field
with unproven techniques due, in part, to the continuously changing
threat environment. On the other hand, nuclear installations continue
to digitalize and, thus, it becomes increasingly important to have
techniques of analysis whose outcomes can support risk
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management decisions for implementation of prioritized security
controls to prevent and mitigate cyber risk within the unique
constraints of the nuclear industry (Ayodeji et al., 2023).

Given the critical role that safety plays for the development of
nuclear power to the benefit of sustainable progress, the expectation
is to develop significant advances, both in theory and in practice, in
the areas discussed above.
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