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The quantitative characterization of surface structures captured in scanning
electron microscopy (SEM) images has proven to be effective for discerning
provenance of an unknown nuclear material. Recently, many works have taken
advantage of the powerful performance of convolutional neural networks (CNNs)
to provide faster and more consistent characterization of surface structures.
However, one inherent limitation of CNNs is their degradation in performance
when encountering discrepancy between training and test datasets, which limits
their usewidely. The common discrepancy in an SEM image dataset occurs at low-
level image information due to user-bias in selecting acquisition parameters and
microscopes from different manufacturers. Therefore, in this study, we present a
domain adaptation framework to improve robustness of CNNs against the
discrepancy in low-level image information. Furthermore, our proposed
approach makes use of only unlabeled test samples to adapt a pretrained
model, which is more suitable for nuclear forensics application for which
obtaining both training and test datasets simultaneously is a challenge due to
data sensitivity. Through extensive experiments, we demonstrate that our
proposed approach effectively improves the performance of a model by at
least 18% when encountering domain discrepancy, and can be deployed in
many CNN architectures.
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1 Introduction

In a nuclear forensics investigation, the inherent characteristics, or signatures, are
determined to provide insights into the provenance and processing history of an
unknown intercepted nuclear material. Discovering the processing history of an
unknown nuclear material reveals crucial information about how and where it was
made; consequently, this allows the authority to mitigate the illicit trafficking and
prevents future recurrence of the same incident. During this process, various analytical
tools are available to the investigators. For instance, Keegan et al. utilized tools, such as
scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray fluorescene (XRF),
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inductively coupled plasma-mass spectrometry (ICP-MS), and
others to examine an unknown material seized in a raid in
Australia (Keegan et al., 2014).

Keegan et al. (2014) used SEM only for qualitative
characterization of surface structures of an unknown sample.
Recently, many works (Olsen et al., 2017; Hanson et al., 2019;
Hanson et al., 2021; Heffernan et al., 2019; Schwerdt et al., 2019)
have demonstrated that quantitative characterization of surface
structures captured in SEM images can be used as meaningful
signatures for determining the processing history of an unknown
nuclear material. The quantitative characterization of surface
structures has been used to discern calcination conditions (Olsen
et al., 2017), impurities (Hanson et al., 2019), mixtures of uranium
ore concentrates (UOCs) (Heffernan et al., 2019), and storage
conditions (Hanson et al., 2021). Moreover, in recent years,
convolutional neural networks (CNNs) have been the main
workhorse behind many image analysis applications due to their
powerful, fast, and consistent performance. Similarly, we have
witnessed a vast amount of works, (Abbott et al., 2019; Hanson
et al., 2019; Schwerdt et al., 2019; Ly et al., 2020; Nizinski et al., 2020;
Girard et al., 2021), incorporating CNNs to provide better
quantitative characterization of surface structures, in turn
improving processing history discernment.

Despite a remarkable performance, one major inherent
limitation of CNNs is their performance degradation when
encountering discrepancy between training and test data (also
referred to as source domain, SD, and target domain data, TD,
respectively), which limits their use in practice. Nizinski et al. (2022)
demonstrated that CNNs performed poorly on a classification task
when encountering SEM images captured with microscopes from
different manufacturers. Thus, the overarching goal of this research
study is to address the robustness of CNNs against different
microscopes or acquisition parameters between SD and TD. The
proposed solution strengthens the practicality of CNNs for large
scale deployment.

Improving the robustness of CNNs against domain discrepancy is
formally known as domain adaptation. Previous works on domain
adaptation have proposed to learn domain-invariant features through
adversarial learning (Ganin and Lempitsky, 2015; Tzeng et al., 2017),
maximum mean discrepancy (Motiian et al., 2017; Li et al., 2018), and
multidomain reconstruction (Ghifary et al., 2015). One shortcoming in
these studies is the requirement of access to both SD and TD data
concurrently, which proves to be difficult in many applications,
including nuclear forensics, due to data sensitivity. A domain
adaptation framework, called source-free domain adaptation
(SFDA), has recently been proposed to overcome the difficulty in
data sharing. The SFDA framework consists of two phases: initial
training and model adaptation. In the initial training phase, a model of
interest is trained on the SD dataset. Then, the unlabeled TD dataset is
used to update the pretrained model using various strategies, such as
updating only the last few layers of the model (Liang et al., 2020),
normalizing the appearance of the TD dataset (Karani et al., 2021;
Valvano et al., 2021), updating using the TD dataset pseudo-labels
generated from the pretrained model (Chen et al., 2021), developing a
multitask model (Bateson et al., 2020), or updating only batch
normalization (BN) layers (Wang et al., 2021).

The domain-dependent characteristics of BN drive the decision
to update only BN layers. Specifically, in a CNN, each BN layer

normalizes a given input by the mean and variance, and rescales
using the corresponding scaling parameters. During the training
process, the mean and variance are computed based on the current
input, whereas the scaling parameters are trainable parameters.
Then, the estimated population mean, variance, and optimized
scaling parameters are used during inference. Therefore, BN
layers need to be updated to better reflect the statistics of the test
dataset when they are different from the training dataset.

Despite the effectiveness of updating only BN layers, a large
discrepancy between the SD and TD datasets can pose a challenge to
adequately update a pretrained model. Specifically, the variation in
acquisition parameters or microscopes from different
manufacturers commonly causes the discrepancy in low-level
image information or the appearance (both terms will be used
interchangeably), e.g., brightness, contrast, and texture. Hence, in
the present study, we propose an SFDA framework in which the
adaptation phase involves transforming the appearance of the TD
dataset before using it for updating BN layers. The motivation for
this proposed approach is that the domain discrepancy problem in
this work occurs in low-level image information. Mapping the low-
level image information of test samples to be similar to those of the
SD dataset alleviates the discrepancy gap between training and test
samples. Thus, using the transformed TD dataset to update BN
layers allows for better convergence. Through extensive
experiments, we show that our proposed SFDA effectively
improves the robustness of CNNs when encountering data from
a domain with discrepant low-level image information. In addition,
we validate our proposed SFDA on two CNNs in two learning
paradigms, supervised and unsupervised, to further demonstrate the
generalization of the proposed approach.

2 Materials and methods

2.1 Uranium oxides SEM dataset

We used a dataset comprised of SEM images collected with three
scanning electron microscopes: an FEI Teneo with Trinity Detection
System, an FEI Helios Nanolab 650, and an FEI Nova NanoSEM
630. We refer to them as Teneo, Helios, and Nova for brevity for the
rest of this work. Three experimenters collected images on the Nova
with Immersion Mode using the secondary electron (SE) signal and
the through-lens detector (TLD). Two experimenters were allocated
to use the Helios for imaging the backscattered electron (BSE) signal
with TLD. Two experimenters were assigned to use T1 and
T2 detectors of the Teneo for collecting images with BSE and SE,
respectively.

These SEM images characterize the surface structures of
uranium oxides, triuranium octoxide (U3O8) and uranium
dioxide (UO2), synthesized via eight processing routes.
Specifically, four processing routes from the precipitation of
ammonium diuranate (ADU), ammonium uranyl carbonate
(AUC), uranyl hydroxide (UO2(OH)2), and sodium diuranate
(SDU) were synthesized to U3O8 and UO2. The details of these
synthesis processes can be found in Schwerdt et al. (2019).
Meanwhile, two other precipitation routes, washed and unwashed
uranyl peroxide (UO4-2H2O), were used only to make UO2, which
were previously described in Abbott et al. (2019). The last two
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processing routes in this study were synthesized to U3O8 by
calcinating UO4-2H2O precipitated from either uranyl nitrate
(UO2(NO3)2) or uranyl chloride (UO2Cl2) aqueous starting
solutions; the process is reported in detail in Abbott et al. (2022).
We refer to the processing route in this study by the precipitation
process or by the uranyl solution if the processing routes have the
same precipitation process.

2.2 Source-free domain adaptation

Figure 1 illustrates an overview of the proposed approach with
the top and bottom portions showing the initial training phase and
the adaptation phase, respectively. The initial training phase
involves training a downstream task model, H, on the SD dataset
in addition to training the appearance transformation model, which
then iteratively transforms the low-level image information of the
TD dataset in the adaptation phase. Subsequently, we use the
transformed TD dataset to update BN layers of the pretrained
downstream task model.

2.2.1 The appearance transformation model
We exploited an image-to-image (I2I) translation model for

transforming the appearance of the TD dataset. An I2I translation

model is employed to transform the appearance characteristic of a
domain to another while retaining the semantic content
information. For example, an I2I translation model is used to
transform a given image captured during the daytime to look as
if it was captured in the nighttime or vice versa.

In this study, we utilized an I2I translation framework used in
Huang et al. (2018). This I2I translation framework is comprised of
two modules in which each module is for a domain, and contains
two encoders and a decoder. The encoders are tasked with encoding
the content and appearance representations separately. Meanwhile,
the decoder is assigned with generating the corresponding image
from the given content and appearance representations. Thus,
transforming the appearance of a domain to another can be done
by combining the corresponding content representation with the
appearance representation from the other domain as input to the
decoder. Formally, to transform the appearance of a given image
xa ∈ XA to be similar to others in domain B, the content and
appearance are first encoded, i.e., EC

a (xa) and ES
a(xa) where EC

a and
ES
a represent the content and appearance encoders of domain A,

respectively. Then, an appearance representation from domain B is
randomly sampled from a pre-defined prior distribution
zb ~ N (0, I), and combined with EC

a (xa) to generate a
transformed appearance image, i.e., xa→b � Gb(EC

a (xa), zb) where
Gb is the decoder of domain B.

FIGURE 1
An overview of the proposed SFDA framework. The top portion details the training process, which involves training a downstream task model
(highlighted by the orange dashed rectangle) and the appearance transformation model (highlighted by the purple dashed rectangle) using a SD dataset.
Meanwhile, the bottom portion demonstrates the adaption phase in which the appearance representation is updated accordingly, and then used to
update BN layers to adapt the pretrained downstream task model for the TD dataset. (Please refer to the web version for the interpretation of the
references to color).
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In the SFDA setting, we have access to only a single domain.
Thus, we considered only a single module from the I2I translation
framework in Huang et al. (2018). The translation problem in I2I is
now reduced to modulating the appearance of a given input with a
new appearance representation sampled from a prior. Formally, for
a given input xi, the appearance transformation model learns to
reconstruct that image, x̂i � G(EC(xi), ES(xi)), and generate the
same image but with a new appearance specified by the randomly
sampled representation from a prior, ~xi � G(EC(xi), z) where
z ~ N (0, I) at each iteration during the training process. This
process is illustrated inside the purple dashed rectangle in
Figure 1. The objective function and detail of the training process
for this appearance transformation model can be found in the
Supplementary Material.

2.2.2 Updating BN layers
The BN layer is found in manymodern CNNs architectures. The

BN layer is designed to improve the stability and speed of
convergence during the training process in a large CNN. In each
BN layer, the input is normalized by its mean and variance, and
rescaled by two learnable parameters, γ and β. During the training
process, the mean and variance are the statistics from the current
input batch. Then, the exponential moving mean and variance
estimated throughout the training process along with the learned
γ and β are used during inference. Thus, updating BN layers allows
the model to adequately adjust to the different statistics of the TD
dataset. Wang et al. (2021) were the first group to propose updating
BN layers via minimizing the entropy of model prediction because
the entropy generally correlates with prediction error and can be
used as supervision signal when the label is unavailable. Concretely,
the BN layers are updated proportionally to the gradient of the
entropy of the last layer in the network, which represents the
probability of a class a given input belongs to.

We adopted the updating BN layers from Wang et al. (2021) in
this study. Different from Wang et al. (2021), we used the
transformed TD dataset as input for updating BN layers instead
of the original TD dataset. By using the transformed TD dataset that
is similar to the SD dataset, the statistics of the TD dataset is much
closer to that of the SD dataset, thereby allowing better convergence.
Eq. 1 depicts the objective function used to update BN layers.

L � −E~xi∈X ∑K
k�1

ρk
~xi
log ρk

~xi
⎡⎣ ⎤⎦ (1)

where ~xi is the transformed input, and ρk
~xi
represents the last layer of

the pretrained model at index k, which corresponds to the
probability of ~xi belonging to the kth class.

2.2.3 Model adaptation and inference
Here, we detail the process of combining the TD dataset

transformation with updating BN layers to adapt a pretrained
downstream task model, which is exhibited in the bottom
portion of Figure 1. At the start of this process, we utilized the
appearance transformation model to iteratively transform the
appearance of the TD dataset to be similar to the SD dataset.
Concisely, we first encoded an input image into the appearance
and content representations, and used the decoder to reconstruct
that image from the given representations. Next, the reconstructed

image was used as input to the pretrained downstream task model.
We made use of Eq. 1 to iteratively alter the appearance
representation to generate an image with the low-level image
information similar to that of the SD dataset. After the
appearance transformation, we updated the BN layers as
described in the previous section with the transformed TD
dataset. This adaptation phase needs to be carried out only once
for each new TD dataset. After the adaptation phase, only the
appearance transformation of test samples is performed to obtain
the final result in the inference.

3 Results

3.1 Discrepancy between imaging modes

In the present study, we investigated the effectiveness of the
proposed SFDA approach against the discrepancy in low-level image
information induced by acquisition parameters and microscopes
from different manufacturers. We separated the uranium oxides
dataset into groups defined by the acquisition parameters and
microscope used to collect the images, and referred to a group as
an imaging mode. The acquisition signal is the acquisition
parameter that differentiates these groups. Hence, we named
these groups: Teneo-BSE, Teneo-SE, Helios-BSE, and Nova-SE.
Figure 2 demonstrates the discrepancy between these imaging
modes in this dataset with a few representative samples. As seen
in the figure, the discrepancy between the imaging modes is
apparent. Moreover, this dataset also contains the discrepancy
induced by user-bias in other acquisition parameters. This
discrepancy can be clearly seen in the Helios-BSE imaging mode.
The assigned experimenters for that imaging mode did not select the
optimal contrast setting; hence, the images in that imaging mode
contain a haze-like artifact.

To further explore the discrepancy in low-level image
information between imaging modes in this dataset we first
present the difference in the distribution of the mean image
intensity between imaging modes across all the processing routes
in Figure 3. Each violin plot in that figure represents the distribution
of the mean image intensity of SEM images in an imaging mode with
the corresponding marker indicating the median value. As seen in
Figure 3, the distributions between imaging modes vary significantly
in each processing routes. Generally, the micrographs in Teneo-SE
imaging mode had the lowest intensities and the micrographs in
Teneo-BSE imaging mode had the highest intensities.

We also show the discrepancy in low-level image information
between imaging modes with feature maps from a CNN model
trained on object recognition task. The feature maps in a trained
CNN model contain expressive representations. The first few layers
in a model associate with the low-level information whereas the
deeper layers in the network contain abstract and semantic
information of an input image. Thus, we examined the
discrepancy between imaging modes using the early layers of a
pretrained CNN model. We made use of UMAP (McInnes and
Healy, 2018), which is a dimension reduction technique, to show the
ad hoc relationship in feature space between imaging modes.
Concretely, we used UMAP (McInnes and Healy, 2018) to
reduce the dimension of the first convolutional layer in the

Frontiers in Nuclear Engineering frontiersin.org04

Ly et al. 10.3389/fnuen.2023.1230052

https://www.frontiersin.org/journals/nuclear-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fnuen.2023.1230052


VGG-16 (Simonyan and Zisserman, 2015) model trained on
ImageNet (Russakovsky et al., 2015) dataset and visualized the
relationship between imaging modes in the reduced embedding
space.

We chose the first convolutional layer in the network to illustrate
the low-level image information discrepancy beyond the image

intensity level. Figure 4 shows the UMAP embedding space of a
few processing routes. The embedding space of the samples from the
same imaging mode is labeled with the same color, and the opacity
represents the density of samples in a region. From that figure, we
see that the samples from the same imaging mode cluster together,
and different imaging modes distinguishably separate themselves

FIGURE 2
A few representative samples of SEM images captured in four imaging modes. Each imaging mode in this study is defined by the acquisition signal
and themanufacturer of themicroscope used to acquire the images. To clearly show the discrepancy between imagingmodes, we selected these images
from the same processing route, i.e., U3O8 synthesized via UO4-2H2O precipitated from uranyl nitrate aqueous starting solution.

FIGURE 3
A side-by-side comparison between four acquisition modes used in this study across different processing routes. Each violin plot represents the
distribution of the mean image intensity of the corresponding imaging mode. (Please refer to the web version for the interpretation of the references to
color).
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from the others. For instance, in the AUC processing routes, we can
easily distinguish different clusters formed by the Teneo-BSE,
Teneo-SE, and Nova-SE imaging modes. A fairly similar pattern
can also be observed in the uranyl chloride processing route.
Moreover, the Helios-BSE imaging mode contains artifact
induced by user-bias in selecting acquisition parameters; hence,
that cluster is more separated than the other clusters.

3.2 The effectiveness of the proposed SFDA

For the experiments shown in this section and the subsequent
section, we alternated each imaging mode as the SD dataset and the
others as the TD dataset. We performed experiments using only
Teneo-BSE, Teneo-SE, or Nova-SE as the SD dataset. We did not
run the experiments with Helios-BSE as the SD dataset because the
data for that imaging mode do not capture the complete label set of
eight processing routes.

Since the dataset used in this study is designed for determining
the processing routes of uranium oxides, we utilized two CNNs
proposed in Ly et al. (2020) and Girard et al. (2021) as the
downstream task model. Ly et al. (2020) proposed a multi-input
single-output (MISO) supervised learning model that takes input
captured at multiple magnifications to provide a more accurate
prediction by leveraging the complementary information captured
at different magnifications. On the other hand, Girard et al. (2021)
designed an unsupervised learning framework that leverages the
latent representation of an auto-encoder for discerning the
processing routes. We modified the framework proposed in
Girard et al. (2021) slightly to make it compatible with the
proposed approach, and referred to as MLP-VQVAE for the rest
of this study. We refer the readers to the Supplementary Material for
more details on this modification.

Table 1 presents the performance comparison across different
SFDA frameworks: only updating BN layers (BN), which
corresponds to the method proposed in Wang et al. (2021), and
ours, i.e., combining the appearance transformation model and
updating BN layers (App.+BN). Each value in the table
represents the mean of 10 repetitions in which each repetition
has a different subset of images in an imaging mode used for
training and testing. We also included the Baseline and

Benchmark performances in both classification models. The
Baseline performance is the result when a classification model
was trained and tested with SD dataset whereas Benchmark
denotes the result when using an imaging mode in the TD set
for both training and testing. As seen in the table, the performance of
both classification models is drastically lower when encountering a
test imaging mode that is different from the training imaging mode.
This result shows the importance of providing robustness to CNNs
against domain discrepancy.

We see that employing different SFDA approaches improve the
overall performance over the baseline, i.e., No Adaptation, in both
MISO and MLP-VQVAE. More importantly, our proposed
approach achieved a better performance across the majority of
the scenarios. The MISO model benefits more from our proposed
approach compared to the MLP-VQVAE model. We hypothesize
the slightly worse performance of App.+BN compared to BN in
MLP-VQVAE case is caused by poorly transformed images. In other
words, the appearance transformation model relies on Eq. 1 to
iteratively update the appearance representation of an input image.
The MLP-VQVAE model might not provide adequate information
using Eq. 1 for the appearance transformation. We illustrate this
hypothesis in the next section. Overall, the experiments in this
section show the effectiveness of our proposed approach in
improving the robustness of CNNs against domain discrepancy
in low-level image information, and the benefit of using the
transformed TD dataset to update BN layers to achieve a better
performance.

4 Discussion

In this section, we explore the significant of using the proposed
appearance transformation model to achieve better results
compared to other appearance transformation methods.
Specifically, we compared the proposed appearance
transformation model to histogram matching (HM) and
whitening and color transformation (WCT). The WCT is a data
transformation technique that normalizes a given input to have an
identity covariance matrix and then rescales it to a new space. Eq. 2
formally defines the WCT transformation for changing a desired
image’s appearance to be similar to a reference image r:

FIGURE 4
The visualization of the UMAP embedding space for different imaging modes of the uranium oxides SEM dataset used in the present study. Different
colors represent different imaging modes whereas the opacity represents the density of samples in a region. Each subplot in the figure represents a
processing route, which is indicated at the top of the subplot. (Please refer to the web version for the interpretation of the references to color).
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TABLE 1 The performance of MISO and MLP-VQVAE when applying different adaption methods: only updating BN layers (BN) and combining both appearance transformation and updating BN layers (App.+BN). Each row
shows the performance of a specific adaptation method when it was trained on a specified SD dataset and tested on images from the other imaging modes, and the improvement over the No Adaptation in parentheses.

Classification
model

Method SD TD SD TD SD TD Average

Teneo-
BSE

Teneo-
SE

Helios-
BSE

Nova-
SE

Teneo-
SE

Teneo-
BSE

Helios-
BSE

Nova-
SE

Nova-
SE

Teneo-
BSE

Teneo-
SE

Helios-
BSE

MISO Baseline 76.7 - - - 79.3 - - - 83.4 - - - -

Benchmark - 79.3 80.5 83.4 - 76.7 80.5 83.4 - 76.7 79.3 80.5 -

Adaptation Methods

No Adaptation - 30.2 32.3 37.4 - 55.8 22.5 53.3 - 33.8 47.2 29.3 38.0

BN - 56.8 47.0 57.1 - 75.6 50.5 70.8 - 59.9 57.7 34.5 56.7

(+22.6) (+14.7) (+19.7) (+19.8) (+28.0) (+17.5) (+26.1) (+10.5) (+5.20) (+18.7)

App.+BN
(Ours)

- 60.8 49.0 57.7 - 77.3 50.7 74.1 - 60.6 60.0 40.5 59.0

(+30.6) (+16.7) (+20.3) (+21.5) (+28.2) (+20.8) (+26.8) (+12.8) (+11.2) (+21.0)

MLP-VQVAE Baseline 63.2 - - - 51.4 - - - 61.9 - - - -

Benchmark - 51.4 74.9 61.9 - 63.2 74.9 61.9 - 63.2 51.4 74.9 -

Adaptation Methods

No Adaptation - 19.1 0.000 14.0 - 22.8 0.900 28.4 - 22.8 25.2 18.6 16.9

BN - 21.7 5.40 18.2 - 35.6 5.40 38.3 - 25.0 31.8 9.30 21.2

(+2.6) (+5.40) (+4.2) (+12.8) (+4.5) (+9.9) (+2.2) (+6.6) (-9.3) (+4.3)

App.+BN
(Ours)

- 22.6 6.40 20.5 - 36.0 3.10 36.9 - 23.5 31.2 4.20 20.5

(+3.5) (+6.40) (+6.5) (+13.2) (+2.20) (+8.5) (+0.7) (+6.0) (-14.4) (+3.6)

The bold value represents the best result in a category.

Fro
n
tie

rs
in

N
u
c
le
ar

E
n
g
in
e
e
rin

g
fro

n
tie

rsin
.o
rg

0
7

Ly
e
t
al.

10
.3
3
8
9
/fn

u
e
n
.2
0
2
3
.12

3
0
0
5
2

https://www.frontiersin.org/journals/nuclear-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fnuen.2023.1230052


~x � x − μx( )
σx

σr + μr. (2)
Since we do not have access to the SD dataset in the SFDA

setting, we computed the average cumulative distribution function
(CDF) of the image intensity of the SD dataset and used it during the
adaptation for the HM approach. Similarly, we replaced μr and σr
with the μ and σ of the entire SD dataset for the WCT approach.

Figure 5 shows the qualitative comparison between different
appearance transformation approaches. In this figure, the original test
images (top row) were images captured in the Helios-BSE imaging
mode, whereas the SD dataset used to train the classificationmodels and
the appearance transformation model consists of images from the
Teneo-BSE imaging mode (bottom row). The left and right portions
represent the transformation with MISO and MLP-VQVAE as the
classification model, respectively. For the MISO model, we show four
different images since the MISO model takes multiple images
simultaneously at different magnifications as input. As seen in
Figure 5, the HM approach creates unwanted artifacts. Meanwhile,
the WCT approach provides a slightly better transformation. However,
the WCT did not completely remove the haze-like artifact observed in
the Helios-BSE dataset. On the other hand, the appearance
transformation model produced more perceptually realistic images
and was much more similar to the SD dataset (bottom row).

We further examined the advantage of using the appearance
transformation model compared to others by visualizing the UMAP
embedding space of an imaging mode before and after appearance
transformation. We followed the same process mentioned above to
visualize the UMAP embedding space. Figure 6 maps the embedding
space of the SD dataset and TD dataset, which correspond to Teneo-
BSE and Helios-BSE respectively, as well as the embedding space of
the transformed TD dataset using HM, WCT, and the proposed
appearance transformation model. The result from the proposed
appearance transformation model is obtained by using the MISO
model as the classification model in this experiment. As clearly seen
from the figure, the transformed TD dataset using the proposed
appearance transformation model are positioned much closer to the
SD dataset clusters compared to the original TD dataset or other
appearance transformation approaches. This result again shows the
effectiveness of the proposed appearance transformation model to
adequately transform complex appearance between imaging modes.

Lastly, we show the quantitative comparison of these appearance
transformation approaches when combining with updating BN
layers in Table 2. From Table 2, we see that the proposed
appearance transformation model provides the largest
improvement across many settings. The proposed appearance
transformation model does not achieve the best overall

FIGURE 5
The qualitative assessment of various appearance transformation approaches. The left portion represents the result using the MISO model, and the
right most column shows the transformation when using the MLP-VQVAE as the classification model.
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performance when using MLP-VQVAE as the classification model;
the WCT transformation achieved a slightly better overall
performance when MLP-VQVAE was used as the classification
model. Furthermore, the performance of combining WCT
transformation and updating BN layers exceeds that of updating
only BN. This provides additional evidence that using the
transformed TD dataset to update BN layers achieves a better
performance.

5 Conclusion

In this work, we witnessed the susceptibility of CNNs to domain
discrepancy in low-level image information induced bymicroscopes from
differentmanufacturers and user-bias in selecting acquisition parameters.
We then presented an SFDA framework to improve the robustness of

CNNs against domain discrepancy in low-level image information.
Through extensive experiments, we demonstrated that our proposed
framework successfully improves the overall performance.Moreover, our
proposed approach ismodel-agnostic, whichmakes it easily adoptable for
many other applications with minimal modifications.

Despite the effectiveness of the proposed SFDA framework,
there are a few shortcomings that should be addressed in future
work. Specifically, from the experiments in this study, we saw that
the proposed approach did not provide much improvement when
using MLP-VQVAEmodel as the downstream task model. Thus, for
the intermediate future work, we would like to explore alternative
SFDA approaches that can provide a consistent improvement across
many models. In addition, we also want to explore an approach that
can lessen the additional overhead cost of training the appearance
transformation model. Improving robustness of CNNs when
encountering misrepresented and poor quality micrographs

FIGURE 6
The visualization of UMAP embedding space before and after appearance transformation using HM, WCT, and the proposed appearance
transformationmodel. In this example, the Teneo-BSE imagingmode is the SD dataset whereas the Helios-BSE is the TD dataset. TheHM,WCT, and App.
Labels represent the transformed Helios-BSE samples using the corresponding appearance transformation approach. (Please refer to the web version for
the interpretation of the references to color).

TABLE 2 The performance of MISO and MLP-VQVAE when applying different appearance transformation methods. The best performance across different
adaptation methods is highlighted in bold.

Classification
model

Adaptation Teneo-BSE Teneo-SE Nova-SE Average

Method Teneo-
SE

Helios-
BSE

Nova-
SE

Teneo-
BSE

Helios-
BSE

Nova-
SE

Teneo-
BSE

Teneo-
SE

Helios-
BSE

MISO No Adaptation 30.2 32.3 37.4 55.8 22.5 53.3 33.8 47.2 29.3 38.0

HM + BN 57.8 50.2 58.8 68.9 39.7 68.1 51.7 52.5 44.0 54.6

WCT + BN 58.0 43.2 56.4 75.1 37.8 72.6 57.5 61.9 43.8 56.3

App.+BN
(Ours)

60.8 49.3 57.7 77.3 50.7 74.1 60.6 60.0 40.5 59.0

MLP-VQVAE No Adaptation 19.1 0.000 14.0 22.8 0.900 28.4 22.8 25.2 18.6 16.9

HM + BN 26.3 5.90 21.9 29.3 2.40 39.4 28.2 31.9 2.10 20.8

WCT + BN 27.1 5.70 22.3 38.7 3.20 44.2 26.3 35.6 1.30 22.7

App.+BN
(Ours)

22.6 6.40 20.5 36.0 3.10 36.9 23.5 31.2 4.20 20.5
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caused by uncalibrated microscope, the drift of the stage during an
acquisition, electron beam-induced contamination, and others
(Postek et al., 2013; Postek and Vladár, 2013; Postek et al., 2014;
Postek and Vladár, 2015) is another directly related follow-up work
that also needs to be addressed. These pitfalls present a much more
challenging problem, and are also commonly encountered in real-
world scenarios.
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