AUTHOR=Szabo P. G. , Tasi A. G. , Gaona X. , Maier A. C. , Hedström S. , Altmaier M. , Geckeis H. TITLE=Uptake of Ni(II), Eu(III) and Pu(III/IV) by Hardened Cement Paste in the Presence of Proxy Ligands for the Degradation of Polyacrylonitrile JOURNAL=Frontiers in Nuclear Engineering VOLUME=2 YEAR=2023 URL=https://www.frontiersin.org/journals/nuclear-engineering/articles/10.3389/fnuen.2023.1117413 DOI=10.3389/fnuen.2023.1117413 ISSN=2813-3412 ABSTRACT=
The uptake of 63Ni(II), 152Eu(III) and 242Pu(III/IV) by hardened cement paste (HCP, CEM I) in the degradation stage II (pH ≈ 12.5 [Ca] ≈ 0.02 M) was investigated in the absence and presence of α-hydroxyisobutyric, 3-hydroxybutyric and glutaric acids. These organic ligands were previously identified as proxies for the degradation products of UP2W (a polyacrylonitrile-based material used as filter aid in nuclear power plants) under repository conditions. Sorption experiments were conducted with various ligand concentrations (10−4 M ≤ [L]tot ≤ 0.1 M) and solid-to-liquid ratios (0.5 g⋅dm–3 ≤ S:L ≤ 20 g⋅dm–3). Redox conditions in the Pu systems were buffered with either hydroquinone (HQ, pe + pH ≈ 10) or Sn(II) (pe + pH ≈ 2). Strong sorption is observed for 152Eu(III) and 242Pu(III/IV) in the absence of proxy ligands, with distribution coefficients (log Rd ≈ 2.2–4, with Rd in m3⋅kg–1) in line with data reported in the literature. No differences are observed for sorption experiments with Pu in HQ and Sn(II) systems. Lower Rd values are determined for 63Ni(II) (log