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The charged mineral/electrolyte interfaces are ubiquitous in the surface and

subsurface–including the surroundings of the geological disposal sites for

radioactive waste. Therefore, understanding how ions interact with charged

surfaces is critically important for predicting radionuclide mobility in the case of

waste leakage. At present, the Surface Complexation Models (SCMs) are the

most successful thermodynamic frameworks to describe ion retention by

mineral surfaces. SCMs are interfacial speciation models that account for the

effect of the electric field generated by charged surfaces on sorption equilibria.

These models have been successfully used to analyze and interpret a broad

range of experimental observations including potentiometric and electrokinetic

titrations or spectroscopy. Unfortunately, many of the current procedures to

solve and fit SCM to experimental data are not optimal, which leads to a non-

transferable or non-unique description of interfacial electrostatics and

consequently of the strength and extent of ion retention by mineral

surfaces. Recent developments in Artificial Intelligence (AI) offer a new

avenue to replace SCM solvers and fitting algorithms with trained AI

surrogates. Unfortunately, there is a lack of a standardized dataset covering

a wide range of SCM parameter values available for AI exploration and

training–a gap filled by this study. Here, we described the computational

pipeline to generate synthetic SCM data and discussed approaches to

transform this dataset into AI-learnable input. First, we used this pipeline to

generate a synthetic dataset of electrostatic properties for a broad range of the

prototypical oxide/electrolyte interfaces. The next step is to extend this dataset

to include complex radionuclide sorption and complexation, and finally, to

provide trained AI architectures able to infer SCMs parameter values rapidly

from experimental data. Here, we illustrated the AI-surrogate development

using the ensemble learning algorithms, such as Random Forest and Gradient

Boosting. These surrogate models allow a rapid prediction of the SCM model

parameters, do not rely on an initial guess, and guarantee convergence in all

cases.
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1 Introduction

The charged mineral/electrolyte interfaces are ubiquitous in

the surface and subsurface. Therefore, being able to estimate ion

sorption by these interfaces is critically important in safety

assessments of the geological disposal sites for the spent

nuclear fuel. Surface Complexation Models (SCMs) are the

most successful thermodynamic frameworks for describing ion

retention by mineral surfaces (Dzombak and Morel, 1990;

Lyklema, 1991; Lyklema, 1995; Lützenkirchen, 2006;

Karamalidis and Dzombak, 2010). These models consist of the

equilibrium reactions describing the surface and bulk ion

speciation and account for the effect of the surface charge/

field on the interfacial chemistry. The distribution of charges

at the mineral/electrolyte interface is described using the

electrical double layer (EDL) models that are based on the

Poisson differential equation to connect the interfacial charge

accumulation with the spatial distribution of the electrostatic

field and potential (Lyklema, 1991; Lyklema, 1995).

Recent developments in Artificial Intelligence (AI) offer a

new avenue to replace SCM solvers and fitting protocols with

trained AI surrogates if only sufficient datasets are available. AI

methods can identify and extract patterns in a large dataset and

learn a mapping from a complex input to output if only they are

exposed to a sufficiently large number of examples.

Unfortunately, existing datasets are limited because SCMs

are typically used to interpret sparse experimental data.

Moreover, there is a lack of consistent SCMs evaluation and

fitting protocols and reported parameter values often vary among

research teams even if the same experimental data were

considered (Lützenkirchen, 2006). The experimental protocols

are also not standardized, which leads to scattered values of the

most basic quantitative descriptors of electrical double layer, such

as Point of Zero Charge or Isoelectric Point for the sameminerals

(Kosmulski, 2001; Kosmulski, 2002; Kosmulski, 2009a;

Kosmulski, 2009b; Kosmulski, 2011; Kosmulski, 2016;

Kosmulski, 2018; Kosmulski, 2020).

Therefore, to use AI for data exploration and reveal hidden

patterns, correlations, and features in the ion retention

thermodynamics, we need an extensive SCM dataset covering

a wide range of possible mineral surfaces and experimental

conditions. This study fills that gap by describing a

computational protocol to generate a SCM dataset and

translating it to AI-learnable inputs. Here, using our protocol,

we generated an extensive SCM dataset for the prototypical

oxide/electrolyte interface (see Section Data Availability

Statement).

We illustrated the AI surrogate development for the SCM of

oxide/electrolyte interface using ensemble learning algorithms.

In the following study, we will compare these surrogates with the

Deep Neural Networks and discuss AI-models interpretability

and possible protocols to incorporate physics and chemistry as

constraints into the learning process. Our preliminary results

presented in this study show that surrogate models allow a rapid

prediction of the SCMmodel parameters, do not rely on an initial

guess, and guarantee convergence in all cases.

In the following study, we will extend our dataset by

including radionuclide sorption, speciation, and the effect of

the radiation and heat on sorption equilibria.

The ultimate goal of our research is to generate AI-surrogates

for many SCMs and reactive transport models that become

standardized and computationally inexpensive alternatives to

the analytical/numerical models. One of AI surrogates’

primary goals is to rapidly predict the physicochemical

properties from the experimental data without involving a

fitting of analytical models.

2 Theory and computation

2.1 Surface complexation model

All mineral surfaces in contact with aqueous solution acquire

charged, but the charging mechanisms vary among minerals

(Dzombak and Morel, 1990; Lyklema, 1991; Lyklema, 1995;

Lützenkirchen, 2006; Karamalidis and Dzombak, 2010). In the

case of oxides, the surface charge is due to H+/OH− uptake or

release by the surface exposed oxygen atoms or dissociative water

sorption on the surface exposed metal sites (Yates et al., 1974;

Hohl and Stumm, 1976; Schindler et al., 1976; Davis et al., 1978).

The surface oxygen atoms show amphoteric behavior, being able

to accept H+ and act as a base or donate H+ and thus act as an

acid. One or two proton binding reactions typically capture this

acid-base behavior of oxide surface (Yates et al., 1974; Davis et al.,

1978; Van Riemsdijk et al., 1991). One of the most popular

protonation schemes, 2-pK (Yates et al., 1974; Davis et al., 1978),

assumes the presence of a charge-neutral surface site, denoted as

≡SOH0, where S stands for surface metal/metalloid site, which

can either accept or donate protons according to the following

reactions:

≡SOH0 +H+% ≡SOH+
2 , K1 � ≡SOH+

2{ }
≡SOH0{ } H+{ } (1)

≡SO− +H+ % ≡SOH0, K2 � ≡SOH0{ }
≡SO−{ } H+{ } (2)

where K1,K2 stand for two equilibrium constants (hence the

name 2-pK, pK= − log10K). The brackets {} in the above reactions

represent the surface concentration.

In reality, the charge assigned to the surface site is rarely an

integer. The fractional values reflect the actual bonding

environment of the surface exposed atoms and the specificity

of a given mineral surface. These partial charges can be assigned

using Pauling bond valence rules (Hiemstra et al., 1989a;

Hiemstra et al., 1989b; Hiemstra et al., 1996; Hiemstra and

Van Riemsdijk, 1996) or the first principle quantum-chemical

calculations (Zarzycki, 2007a; Zarzycki, 2007b).
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The charged surfaces attract electrolyte ions, which

accumulate near the surface and form a spatial charge

distribution known as the electrical double layer. In many

cases, the co- and counter-ion adsorb non-specifically and

remain fully hydrated. In these cases, they form the outer-

sphere surface complexes, which are assumed to be located in

the layer parallel to the surface, β-plane (see Figure 1). The β-

plane is separated from the surface by at least one layer of

interfacial water. The ions complexation reactions and

corresponding equilibrium constants are given by:

≡SO− + C+ % ≡SOC+, KC � ≡SOC+{ }
≡SO−{ } C+{ } (3)

≡SOH+
2 + A− % ≡SOH2A

−, KA � ≡SOH2A−{ }
≡SOH+

2{ } A−{ } (4)

The concentration of protons at the surface and ions in the β-

plane are not the same as in the bulk solution. The ion

concentration in the EDL is affected by the presence of the

electric field gradient, which is usually accounted by using the

Boltzmann weight, that is (Yates et al., 1974; Davis et al., 1978):

Xzi{ } � Xzi[ ]bulk exp −zieψ x( )
kBT

( ) (5)

where kB is the Boltzmann constant, T is the temperature, i stands

for ion type, zi is its formal charge, and ψ(x) is the potential at the

surface (x = 0, ψ0) in the case of proton sorption or potential in

the β-plane (x = β, ψβ) in the case of electrolyte ions.

The electrostatic Boltzmann weights were introduced into

SCM reactions to account for the variation in chemical potential

FIGURE 1
Schematic illustration of the electrical double layer developed at the oxide/electrolyte interface according to 2-pK Triple Layer Model (TLM) for
pH < PZC (left-hand-side) and pH > PZC (right-hand-side). The Helmholtz part of the Stern model is modeled as two parallel-plate capacitors
connected in series, and it consists of two localized layers 0, β representing the surface and a rigid layer of non-specifically accumulated electrolyte
ions, respectively. The diffuse part of the EDL ismodeled using the Poisson-Boltzmann equation. The charge and potential are discretized in the
EDL’s rigid part and smeared in the diffuse part. The surface protonation is described using the 2-pKmodel, and electrolyte ions are non-specifically
adsorbed in the β-sheet, and spread in the diffuse component. In panel (A)we show surface complexes, in panel (B) the electrostatic potential profile
as a function of distance from the surface, and in panel (C) the electrolyte ions concentration profiles. Note that surface concentrations are described
by the discretized adsorption/complexation model representing the rigid part of the EDL as parallel-plate capacitors connected in series. The
capacitances c1, c2 and equilibrium constants for complexation reactions are considered the best-fit parameters. The Poisson-Boltzmann model
governs ion distributions starting at the slip-plane. The diffuse layer potential is often assumed to be equal to electrokinetic potential, ζ ~ ψd. The EDL
thickness is quantified by the Debye length κ−1.
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caused by the variable surface charge (Yates et al., 1974; Hohl and

Stumm, 1976; Schindler et al., 1976; Davis et al., 1978).

Consequently, the surface reactions are expressed using the

law of mass action subjected to the electric field (Brown et al.,

1999). For example, eq. (Dzombak and Morel, 1990). can be

rewritten as:

K1 � Kint
1 exp

eψ0

kBT
( ) (6)

where Kint
1 is the intrinsic constant, which is independent of the

protonation state of other surface sites. The separation of the

equilibrium constant into an intrinsic (chemical) part and

electrostatic interaction part was inspired in the earliest SCM

studies (Yates et al., 1974; Hohl and Stumm, 1976; Schindler

et al., 1976; Davis et al., 1978) by a similar treatment of the

ionization constant of the polyprotic acids (King, 1965).

The activities should replace the bulk concentration. Here,

the activity coefficients γi are calculated using the Davies

equation (Davies, 1962):

logγi � − 1.825 × 106( )z2i
ϵrT( )3/2

�
I

√
1 + �

I
√ + 0.3I[ ] (7)

where I is the ionic strength of the electrolyte solution and ϵr is
the relative dielectric constant of the solution.

The surface complexation reactions, eqs. (Dzombak and

Morel, 1990; Lyklema, 1991; Lützenkirchen, 2006; Karamalidis

and Dzombak, 2010). have been frequently rephrased as

multicomponent Langmuir-type isotherms to emphasize that

surface charging and ions complexation are treated as

localized (chemi)sorption of ions at the specified lattice sites

in the presence of the mean-field type electric field (Dzombak

and Morel, 1990; Lyklema, 1995). Consequently, the surface

concentrations can be replaced by the fractional coverages, θi
(Yates et al., 1974; Charmas et al., 1995; Rudzinski et al., 1999;

Prélot et al., 2002; Zarzycki et al., 2004a; Zarzycki et al., 2004b;

Zarzycki et al., 2005a; Zarzycki et al., 2005b; Piasecki, 2006;

Zarzycki, 2006; Zarzycki, 2007a; Zarzycki, 2007c; Piasecki et al.,

2007; Piasecki et al., 2010):

θi � i{ }
Ns

, and ∑
i

θi � 1 (8)

where i =SO−, SOH, SOH+
2 , SOC

+, SOH2A
− and Ns is the surface

site density in sites/nm2.

Note that the assumption that protons are located, or

chemisorbed, in the 0-plane and electrolyte ions are localized

in the β-plane are consistent with the requirement that the charge

distribution in the rigid part of EDLs is governed by the Laplace

equation (d2ψ/dx2 = 0, constant capacitor models).

By using θ-notation, the surface charge is defined as a sum of

positive and negative charges at the surface:

σ0 � Bs θSOH+
2
+ θSOH2A− − θSO− − θSOC+[ ] (9)

where Bs = eNs. Similarly, the charge in the β-plane is defined as

the average of the charges accumulated in β-plane (Yates et al.,

1974; Davis et al., 1978):

σβ � Bs θSOC+ − θSOH2A−[ ] (10)
The charge neutrality condition allows us to define the diffuse

charge as:

σ0 + σβ � −σd (11)

The surface complexation reactions eqs. (Dzombak and Morel,

1990; Lyklema, 1991; Lützenkirchen, 2006; Karamalidis and

Dzombak, 2010), along with the mass balance eq. (Kosmulski,

2002) and charge neutrality eq. (Kosmulski, 2018) form a set of

six nonlinear equations with seven unknown variables: ψ0, ψβ and

θi. In order to solve these equations, one needs to reduce the

number of unknowns to become equal to the number of

equations. The reduction is accomplished by assuming that i)
the EDL can be considered as the parallel-plate capacitors

connected in series, and ii) using the Gouy-Chapman theory

that gives the charge-potential relationship for the diffuse part of

the EDL.

The first assumption allows us to connect surface, β-plane,

and diffuse potentials using the integral capacitances c1 and c2
and surface and diffuse layer charge densities (Figure 1):

c1 � σ0
ψβ − ψ0

and c2 � −σd
ψβ − ψd

(12)

Now, the surface and β-layer potentials can be rewritten as

functions of charges and ψd (Yates et al., 1974):

ψ0 � ψβ +
σ0
c1

� ψd −
σd
c2

+ σ0
c1

(13)

The second assumption provides a link between the diffuse layer

potential and diffuse charge density, and is known as the

Grahame relationship (Lyklema, 1991; Lyklema, 1995):

σd � −fGC sinh
eψd

2kBT
(14)

The proportionally coefficient fGC is given by:

fGC � 2ϵrϵ0kBT
e

κ � �������
8ϵϵ0kTI

√
(15)

where ϵ0 is the vacuum permittivity, and κ is a measure of the

EDL thickness and is defined through the inverse of the Debye

length (λd) as (Lyklema, 1991; Lyklema, 1995):

λd � κ−1 �
�������
ϵrϵ0kBT
2Ie2

√
(16)

Note that eq. (Yates et al., 1974) is back-propagated to the surface

and β-plane through capacitances via eq. (Kosmulski, 2001).

The diffuse charge can also be defined as the sum of all charges

accumulated between the slip plane and the bulk solution phase

(Verwey and Overbeek, 1948; Lyklema, 1991; Lyklema, 1995):
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σd � ∫∞
s

ρ x( )dx where ρ x( ) � −ϵ0ϵrd
2ψ x( )
dx2

(17)

where ψ(x), ρ(x) are the electrostatic potential and charge density

at a distance x from the surface, respectively. By integrating eq.

(Davis et al., 1978) with assumptions that electric field E = −∇ψ

and potential ψ disappear in the bulk electrolyte yields eq. (Yates

et al., 1974).

Summing up, the SCM is a combination of the chemisorption

models for the Helmholtz part of the EDL, and the physisorption

model for the diffuse part. From the mathematical point of view,

such division is consistent with applying the Laplace and Poisson

differential equation for the charge distribution in the rigid and

diffuse parts of the EDL, respectively. Note that the sorption

model improves the Poisson-Boltzmann model of the EDL by

imposing a limit on surface charge and β-layer charge because

protonation occurs at specific coordination sites with known

surface site density (Dzombak and Morel, 1990), see eqs.

(Kosmulski, 2002; Kosmulski, 2011; Kosmulski, 2020).

2.2 Numerical methods

The governing equations in the SCMs are not only nonlinear

due to the exponential dependence of ions activities on the

surface potential, eq. (Lyklema, 1995), but they are also

convoluted due to the assumption of the parallel-plate

capacitor, eq. (Kosmulski, 2001). The complexity of the

equations is not immediately apparent. Here, we rewrote the

governing equations to show the convoluted character explicitly.

Let’s start by presenting the complexation reactions, eqs.

(Dzombak and Morel, 1990; Lyklema, 1991; Lützenkirchen,

2006; Karamalidis and Dzombak, 2010). in terms of the

fractional coverages:

θSOH+
2

θSOH0
� ≡SOH+

2{ }
≡SOH0{ } � K1 H+[ ]exp − eψ0

kBT
( ) (18)

θSOH0

θSO−
� ≡SOH0{ }

≡SO−{ } � K2 H+[ ]exp − eψ0

kBT
( ) (19)

θSOC+

θSO−
� ≡SOC+{ }

≡SO−{ } � KCaC exp −eψβ

kBT
( ) (20)

θSOH2A−

θSOH+
2

� ≡SOH2A
−{ }

≡SOH+
2{ } � KAaA exp

eψβ

kBT
( ) (21)

where aC, aA stand for the activity of cations and anions

(e.g., aC � γC[C+]bulk).
Solving equations (Hiemstra et al., 1989a; Hiemstra et al.,

1989b; Van Riemsdijk et al., 1991; Hiemstra et al., 1996),

supplemented with conservation of the surface site density, eq.

(Kosmulski, 2002), gives:

θSOH+
2
� K1K2 H+[ ]2e−2eψ0

kBT

Θ , θSOH � K2 H+[ ]e− eψ0
kBT

Θ ,

θSO− � 1
Θ (22)

θSOC+ � KCaCe
− eψβ
kBT

Θ , θSOH2A− � K1K2KAaA H+[ ]2e−2eψ0
kBT

+ eψβ
kBT

Θ
(23)

where the denominator, Θ, is given by:

Θ � 1 +KCaCe
− eψβ
kBT

+ K2 H+[ ]e− eψ0
kBT 1 +K1 H+[ ]e− eψ0

kBT 1 +KAaAe
eψβ
kBT( )[ ] (24)

Finally, we can rewrite the eq. (Kosmulski, 2001). into two

master equations that connect surface and β-layer potentials with

the surface charge and diffuse layer potential:

ψ0 ψ0,ψd( ) � ψd +
fGC

c2
sinh

eψd

2kBT
+ σ0 ψ0,ψd( )

c1
(25)

and

ψβ ψd( ) � ψd +
fGC

c2
sinh

eψd

2kBT
(26)

The convolution is given through the surface charge dependence

on the surface and diffuse layer potentials

σ0 ψ0,ψd( ) � Bs
Q
Θ (27)

where

Q � K1K2 H+[ ]2e−2eψ0
kBT +K1K2KAaA H+[ ]2e−2eψ0

kBT
+ eψβ
kBT −K2 H+[ ]e− eψ0

kBT

−KCaCe
− eψβ
kBT

(28)
Even in a simple 2-pK TLMmodel, the nonlinear and convoluted

character of the governing equations makes the numerical

solution challenging.

2.2.1 Newton-Raphson iterative procedure
There is a lack of a general method of solving a set of

nonlinear equations directly (Press et al., 2007; Bethke, 2022).

However, there are many indirect, iterative procedures that have

been successfully applied (Bethke, 2022). The most common

algorithm is the Newton-Raphson iterative procedure, which

tries to improve the initial guess incrementally until the closest

multidimensional minimum is found. If the numerical problem

can be wrapped into a single master equation, here eq. (Brown

et al., 1999), then nonlinear/multidimensional minimization

procedures can also be used. In this study, we used a

computational protocol that starts with the Newton-Raphson

minimization and then validates the solution using the simplex

optimization.
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Any of the SCMs equations can be rewritten to a general form

that attempts to minimize the residual Ri that is defined as a

difference between the left- and right-hand side of the equation:

y � f x, y( ) → Ry � y − f x, y( ) (29)
Specifically, for the 2-pK TLM model, one can write the residual

difference for the master equation as follows:

Rψ0
ψ0,ψd( ) � ψ0 − ψd −

fGC

c2
sinh

eψd

2kBT
− σ0 ψ0,ψd( )

c1
(30)

The charge neutrality condition gives a complementary equation:

Rψd
ψ0,ψd( ) � σ0 ψ0,ψd( ) + Bs θSOC+ − θSOH2A−[ ] − fGC

c2
sinh

eψd

2kBT
(31)

Note, that θSOC+ and θSOH2A− are functions of ψ0 and ψd (eq.

(Zarzycki, 2007a)).

Now, we are faced with the problem of finding a common

minimum of two non-linear and convoluted functions (Rψ0
, Rψd

)

with two unknown (ψd, ψ0). The exact solution is a vector of

surface and diffuse layer potentials that produce the residual

differences Ri equal to zero. In practice, the solver is iteratively

updating the values of unknown variables until the residuals

become lower than a predefined threshold or the predefined

maximum number of iterations is reached. In each Newton-

Raphson loop, we adjust the values of ψ0 and ψd by small

increments that project Ri to zero along the tangent planes in

a multidimensional space. For example, in (i)-iteration, we

update the ψ0, ψd values from the previous (i − 1)-iteration:

ψ i( )
0 � ψ i−1( )

0 + δψ0, ψ i( )
d � ψ i−1( )

d + δψd, (32)

with the incremental adjustments (δψ0 and δψd) that are obtained

by solving the following equation:

zRψ0
/zψ0 zRψd

/zψ0

zRψd
/zψ0 zRψd

/zψd

⎡⎣ ⎤⎦ δψ0

δψd
[ ] � −Rψ0−Rψd

[ ] (33)

Many nonlinear functions have more than one root, and the

choice of the initial guess determines which local minima are

localized. In many cases, the iterative procedure can diverge or

cycle indefinitely if a poor initial guess is provided. We alleviate

this problem by allowing automatic restart of the minimizer with

a new random initial guess if convergence becomes stagnant or a

maximum number of iterations is reached without a sufficient

reduction of Ri.

The variations of the electrostatic potentials (ψ0, ψd) are

expected not to exceed water oxidation and reduction potentials.

Specifically, the electrostatic potentials remain within the

millivolt range for most environmentally relevant conditions

(Lützenkirchen, 2006; Kosmulski, 2009a). The sign of the

potential varies with the pH, and changes on both sides of the

point of zero charge (ψ0) or isoelectric point (ψd).

The thresholds for the variations in electrostatic potentials

are set to 10–6 mV. If the optimization does not converge within

2000 iterations, the optimization is restarted with a new initial

guess. If the convergence is not reached after 50 restarts,

multidimensional minimization is used instead of Newton-

Raphson.

2.2.2 Multidimensional minimization
As described above, the task of solving the SCMs equation

can be cast as the task of minimizing residual differences Ri. The

Newton-Raphson procedure is a fast and robust algorithm that

can rapidly converge to a multidimensional root, providing the

initial guess is sufficiently close to the root.

We implemented the simplex minimization procedure as an

alternative route to the Newton-Raphson algorithm (from (Press

et al., 2007)). Although the downhill simplex method, as

described by Nelder and Mead (Nelder and Mead, 1965), is

one of the slowest minimization algorithms, it has several

advantages. First, it does not require derivative evaluation, a

step that often poses a challenge for convoluted functions.

Second, it is expected to always converge to an approximate

solution, even in the cases when the Newton-Raphson procedure

becomes stagnant (e.g., vanishing or diverging gradient) (Brandt,

2014). We have also used the simplex method to validate the

Newton-Raphson numerical solution.

2.2.3 Local vs. global minima
The numerical solvers described above always converge to

the local minima on the solution space. Many local minima are

revealed as solution clusters if the parameter space is densely

sampled. What is more, if the AI is exposed to the large dataset

covering the parameter space, the topology of the

multidimensional solution space can be inferred by AI

methods, and the global minimum and local minima can be

identified as divergence regions for the solvers (metastable

regions). By identifying the metastable regions, we can learn

which combinations of the parameter values are responsible for

the solvers’ divergence and how these values translate to the

chemistry/physics of the mineral/electrolyte interface.

2.3 Dataset preprocessing for AI/ML
exploration

The performance of machine learning (ML) models relies on

the quantity and representation quality of the data on which

these models are trained. In the case of the mineral/electrolyte

interface, the available experimental observations are limited,

sparse, and often obtained in a non-consistent fashion

(Kosmulski, 2001; Lützenkirchen, 2006; Kosmulski, 2009a).

On the other hand, the existing analytical surface

complexation models (SCMs) can be conveniently used to

generate sufficient data to successfully train ML models. To

allow ML-models to be applicable for a wide range of the

oxide/electrolyte interfaces, the dataset needs to cover wide
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range of the possible values of the SCM model parameters and

environmental conditions–in other words explore the SCMs

parameter and conditions space. Figure 2 illustrates the

workflow of constructing an AI surrogate for predicting the

SCM model parameters values from the input (e.g.,

experimental datapoints).

Here, we used the 2-pK Triple Layer model of the oxide/

electrolyte interface because it an archetypal and the most generic

FIGURE 2
A general workflow for developing machine learning surrogate models for the Surface Complexation Models (SCM) can infer the analytical
model parameter values.

FIGURE 3
Data extraction and machine learning training process: an example of showing five unique surface charge/surface potential vs. pH curves
generated by a 2-pK TLM (A) and an illustration of the application of feeding data extracted from (A) to the Random Forest algorithm (B). All decision
trees take the same input. We obtain the final prediction by averaging n individual tree predictions.
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model among all SCMs. We used this analytical model to

generate a large dataset of titration curves by randomly

sampling the parameter space. We focused on the surface

charge/electrokinetic potential as a function of pH, because

they are the most commonly reported experimental

observations (Figure 3A). We sampled the parameter space

composed of the model parameters (ion affinities,

capacitances) and environmental conditions (pH, electrolyte

concentration, surface site density).

Figure 3 illustrates our approach of data extraction from

synthetic dataset to create the AI-learnable dataset. Next, this

dataset is normalized and split into training, validation, and test

subsets. The dataset generated in this study and preprocesses AI-

learnable inputs are available in our GitHub repositories (see

Section Data Availability Statement).

3 Developing radionuclide sorption
dataset

Here, we presented the generic computational framework for

generating synthetic titration datasets for the oxide mineral/

electrolyte interfaces. The dataset accompanying this study

covers the physicochemical range of the SCM model

parameters expected for oxides (see (Kosmulski, 2001;

Sverjensky, 2005; Kosmulski, 2009a)). The next step in our

research is to extend our computational framework to include

bulk and interfacial chemistries of radionuclides, along with

more challenging interfaces.

To model the radionuclide sorption, we need to address

several challenges related to the polydentate and multinuclear

sorption of polyvalent ions. In addition, the complex electrolyte

solution requires the general Gouy-Champan charge-potential

relationship. Finally, to model the radionuclides migration in a

geological repository scenario, we also include the mineral

surfaces with ion-exchange sites (e.g., clays with permanent

charge) or soluble/evolving surfaces (e.g., carbonates).

Below we discuss the recommended strategy to address some

of these challenges. An extended synthetic dataset describing

radionuclide sorption will be made available after finishing

ongoing validation and testing.

3.1 Extension to radionuclide sorption

3.1.1 Multi-dentate and multi-nuclear surface
complexes

The correct treatment of radionuclide speciation by

mineral surfaces is challenging due to the many possible

surfaces and aqueous complexation reactions. For example,

the polyvalent/multinuclear species are expected to form

multi-dentate surface species, but the equilibrium reactions

and constants are differently defined by various research

teams (Benjamin, 2002; LaViolette and Redden, 2002;

Wang and Giammar, 2013; Lutzenkirchen et al., 2015). For

example, the bidentate uranium UO2+
2 sorption to two generic

oxide surface sites ≡SOHz can be described as:

2 ≡SOHz( ) + UO2+
2 % ≡SO( )2 UO2( )2−2 z−1( ) (34)

KUO_2 (1) �
( ≡SO)2 UO2( )2−2 z−1( ){ }
{ ≡SOHz}2 {UO2+

2 } (35)

Alternatively, one can consider a binary-binding surface site

that is composed of two primary surface hydroxyl groups as

follows:

( ≡SOHz)2 + UO2+
2 % ( ≡SO)2(UO2)2−2(z−1) (36)

KUO_2 (2) �
( ≡SO)2(UO2)2−2(z−1)

≡SOHz( )2UO2+
2

(37)

The mass balance equations are identical for both reactions,

but the mass law action equations are different, with a

quadratic dependence on the ≡ SOHz sites density in eq.

(Zarzycki et al., 2004b) and linear dependence in eq.

(Zarzycki et al., 2005b). Consequently, the value of the

intrinsic equilibrium constant depends on the formulation

of the surface reaction and, in general, is not transferable

between these two treatments. In the case of significant ion

retention by the mineral surfaces, the possible mix-states of

surface complexes with varying denticity for the same ion are

possible, and the analytical treatment of such sorption via the

SCMs approach is deemed to fail. One could consider an

average denticity as a weighted sum of formed polydentate

surface complexes, but it will be impossible to introduce the

fractional stoichiometric coefficient that varies with the

electrolyte and radionuclide concentration and still use

mass law action to describe sorption equilibrium. Here, we

define all multidentate surface complexation reactions using

the second approach, which is considering a more complex

generic surface site in the case of the polydentate sorption of

polyvalent/multinuclear radionuclide sorption. Our

equilibrium constants are transferable to the models that

are consistently using only single sorption sites via the

correction factors as described by Lutzenkirchen et al.

(Lutzenkirchen et al., 2015).

3.1.2 Gouy-Champan charge-potential
relationship for non-symmetric electrolytes

In the case of polyvalent ions sorption modeling, the Gouy-

Champan equation that relates the diffuse layer potential with

the diffuse layer charge (eq. 2) is no longer valid. Eq. (Yates

et al., 1974). is only applicable if the electrolyte is symmetric,

that is 1:1 or 2:2. In the case of non-symmetric electrolytes (e.g.,

CaCl2, UCl4), and polyvalent ions (e.g., U4+, UO2+
2 ) the

relationship between diffuse layer potential and the charge is

given by (Lutzenkirchen et al., 2015):
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FIGURE 4
Random forest prediction vs. numerical method calculation on the training set for five SCM’smodel parameter values: (A) capacitancesC1, (B,C)
equilibrium constants logK1 and logK2, (C,D) binding constants logKc and logKa.

FIGURE 5
Random forest prediction vs. numerical method calculation on the test set for five SCM’s model parameter values: (A) capacitances C1, (B,C)
equilibrium constants logK1 and logK2, (C,D) binding constants logKc and logKa.
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σd � ±
�������������������������
2ϵ0ϵrkBT∑

i

ci e−zieψd/kBT − 1( )[ ]√
(38)

In the case of dilute electrolyte solution, the magnitudes of the

diffuse potential and charge are small, and the relative error

caused by using a simplified Grahame equation, (Yates et al.,

1974), instead of eq. (Zarzycki, 2006) is negligible. However, in

the case of the larger electrolyte concentration, the double layer

thickness decreases, and both the diffuse potential and charge

need to be linked through the full equation. The correct

relationship between the diffuse charge and potential is also

needed in the case of the overlapping or confined electrical

double layers due to increased ionic strength between the

charged surfaces. We used eq. (Zarzycki, 2006) to generate a

synthetic dataset of radionuclides sorption to mineral surfaces.

This dataset will be used to generate new types of AI/ML

surrogates that can handle multidentate/multinuclear

radionuclide surface complexes.

4 Illustration of AI-surrogate
development: Ensemble methods

This section presents two illustrative examples of training

Machine Learning Ensemble Learning models on the synthetic

dataset generated by the analytical 2-pK TLM model. Ensemble

learning refers to a class of algorithms combining the predictions

from simple (weak) models to obtain a better predictive

performance than each of the constituent models. Here, we

implemented the most successful ensemble learning models,

namely the Random Forest (RF) and Extreme Gradient

Boosting (XGBoost), to build a robust supervised regression

model.

4.1 Random forest

The random forest (RF) algorithm consists of several

decision tree regressors whose predictions are combined

together in an averaging scheme to improve the overall

predictive power of the weak learners–decision trees (Géron,

2019).

4.2 Gradient boosting

At the moment, the gradient boosting algorithms are one of the

most successful classes of regression algorithms. Similar to the

Random Forest, the gradient boosting relies on an ensemble of

weak learners (decision trees), but here they are not independently

trained on the subset of data with averaged predictions but build

sequentially on top of each other to reduce progressively the errors of

each weak learner (Géron, 2019).

FIGURE 6
Gradient boosting prediction vs. numerical method calculation on the training set for five SCM’s model parameter values: (A) capacitances C1,
(B,C) equilibrium constants logK1 and logK2, (C,D) binding constants logKc and logKa.
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4.3 Performance and analysis

The RF and XGBoost methods described above were trained

using a set of vectors, each consisting of the seven titration points

(pH,σ0 (pH), ζ) and the global system descriptors (Point of Zero

Charge, surface site density, and electrolyte concentration)–see

Figure 3B. We used the XGBoost and RF algorithms as

implemented in the scikit-learn package (Pedregosa et al., 2011).

Figure 4 shows the model performance on the training set,

using five model parameters as the output (target). Figure 5

shows the model performance on the test dataset. The overall

accuracy of the both models is incredible with R2 score

around 0.993.

The high value of the R2 score indicates that RF has

successfully learned the underlying relationship between the

input information and the corresponding SCM model

parameters during the training. The correlation between RF

prediction and the ground truth is about 0.95 on the test set

(see Figure 5). Concluding, RF-based surrogate can predict

accurately the SCM model parameters.

The comparison of the performance of XGBoost on training

and test sets are shown in Figures 6, 7. Surprisingly, the XGBoost

method was less accurate than RF, even though it is usually

outperforming RF algorithms (Géron, 2019). Specifically, RF

achieved higher prediction accuracy for all model parameters

on training set. XGBoost was the least accurate in predicting

logK1 parameter value (see Table 1). Although XGBoost-based

SCM surrogate is inferior to RF-based surrogate in terms of the

predictive power, it learn the mapping from input to output

about 100 times faster than RF (Table 1).

5 Conclusion and summary

Here, we presented the generic computational framework for

generating synthetic titration datasets for oxide mineral/

TABLE 1 Comparison of the ML-based SCM surrogate performance
Random Forest (RF) and Extreme Gradient Boosting (XGBoost).
MSE stands for the mean squared error between prediction and
ground truth. R2 refers to the average score in the training or test set.
Time refers to the computational time used for training or testing
the model.

Model Metric Training Test

Random forest MSE 0.00047 0.0034

R2 0.993 0.95

Time (sec) 566.91 1.735

XGBoost MSE 0.003078 0.00403

R2 0.951 0.938

Time (sec) 3.825 0.0182

FIGURE 7
Gradient boosting prediction vs. numerical method calculation on the test set for five SCM’s model parameter values: (A) capacitancesC1, (B,C)
equilibrium constants logK1 and logK2, (C,D) binding constants logKc and logKa.
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electrolyte interfaces using the 2-pK Triple Layer Model–one of

the most frequently used Surface Complexation Models. We

showed construction of the mathematical model, derivation of

the nonlinear and convoluted master equations, and

computational approaches to solve the governing equations.

Finally, we provided a dataset for the surface charge and ζ-

potential titration curves covering a wide range of

physicochemical parameters, such as acid-base oxide

properties, electrolyte concentration, surface site density,

capacitances, and ion binding constants. We also made

available AI-readable datasets by preprocessing raw

titration data (see repositories in Section Data Availability

Statement).

The following steps in our research include the

development of the synthetic radionuclide sorption dataset,

synthetic titration curves for oxides in the presence of

multivalent, multi-centered radionuclide surface complexes,

and complex electrolyte solutions. Specifically, we are

developing a synthetic dataset that incorporates

radionuclide complexation reactions in the bulk solution

and near the mineral surfaces in reducing and oxidizing

conditions and varying temperatures to mimic the

conditions expected in the nuclear waste geological

repositories.
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