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Obtaining reliable thermodynamic sorption data is essential for establishing

databases that can be used for the numerical safety evaluations of radioactive

waste storage and disposal facilities. For this purpose, new experimental data on

the sorption of U(VI), Np(V), and Eu(III) onto synthesized goethite in a wide range

of experimental conditions were collected. Thermodynamic surface

complexation models based on different approaches were developed and

parametrized to fit a large dataset, including experimental data from the

current work as well as available literature data. The proposed heuristic

optimization procedure allowed identifying and comparing different

parametrization variants and their uncertainties for considered models. The

developed models pass the test on additional Cd(II) and Zn(II) data,

simultaneously providing a reliable description of the sorption process for

five cations and could probably be extended using the obtained linear free

energy relationship.
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1 Introduction

Various approaches to describe the sorption of radionuclides onto minerals have been

discussed for a long time. The interest in this matter never ceased because sorption on

environmental minerals is one of the main processes affecting radionuclides and heavy

metals transport in the environment (Schindler and Stumm, 1987; Dzombak and Morel,

1990; Hochella and White, 1990; Appelo and Postma, 1993; OECD/NEA, 2012; Geckeis
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et al., 2013; Kersting, 2013; Payne et al., 2013; Romanchuk and

Kalmykov, 2020). Therefore, understanding and numerical

description of these processes are essential in the context of

radioecology, remediation of contaminated areas, and safety

assessment of radioactive waste storage and disposal facilities

of different types. The predicted safety of a repository (or

predicted risk from a contaminated site) will depend on the

quality of the thermodynamic database used during calculations.

Descriptions of sorption reactions are highly relevant in the

context of the current trends of reactive transport modeling, and

computational tools for the analysis of fluid flow in the geological

environment at kilometer scales coupled with chemical

processes.

In the late 1970s, the surface complexation modeling (SCM)

approach was introduced as a replacement for empirical methods

to describe sorption reactions. SCM describes sorption in terms

of chemical reactions between surface functional groups and

dissolved chemical species (Stumm et al., 1970; Huang and

Stumm, 1976; Davis and Kent, 1990). This powerful approach

became widespread due to its high forecasting ability. Compared

to the distribution coefficient (Kd) or empirical isotherm models

(e.g., Langmuir and Freundlich), SCM can predict the impact of

solution chemistry on sorption with various parameters over a

broad range of pH values and other conditions.

However, SCM has several shortcomings. First, there is a

problem with the determination of chemical reactions occurring

at the surface during solute uptake and the resulting surface

species. Various spectroscopic methods, such as extended X-ray

absorption fine structure (EXAFS), time-resolved laser

fluorescence spectroscopy (TRLFS), Raman or infrared

spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray

reflectivity techniques and others, can help to determine to

some extent the species of radionuclide at the surface of a

material (Geckeis et al., 2013; Rihs et al., 2014). However,

these methods require a sufficiently high concentration of

sorbate (usually more than 10−6 M) and are strongly limited

by specific conditions. Since strong sorption sites dominate

interaction at low radionuclide surface saturation and

spectroscopic methods require high surface saturation, this it

is hardly possible to confidently determine speciation during

interaction with strong sorption centers. The only example is Cm

TRLFS which is able to detect speciation of Cm at trace

concentrations well below one monolayer on a surface

(Geckeis et al., 2013).

It is even more challenging to establish the nature of sorption

sites on the surface of minerals, in particular their chemical

activity towards cations and their concentration. There are no

direct methods that are simple to perform and easy to interpret

for such characterization. Potentiometric titration is often used

for surface site concentration determination previously.

However, there are many artifacts including slow kinetics,

surface contamination, dissolution or precipitation during the

titration, carbonate influences, and others that make this method

poorly reproducible from lab to lab and unreliable. Different

microscopic techniques such as TEM, cryo-TEM, electron

tomography, and so on have recently been used to determine

surface site density, for example for goethite as well (Livi et al.,

2017). However, these techniques are time-consuming and

expensive and by design limited to the investigations on small

amounts of particles. Therefore, such results may not be

representative even for the sample as a whole, not to mention

the reliability of the obtained parameters for the simulations of

batch experiments or environments. This lack of a simple and

direct technique makes model fitting of experimental data a

primary tool for SCM parametrization.

All of the abovementioned factors have led to a variety of

papers on the sorption of radionuclides and heavy metals on the

surface of abundant minerals with very different ways to describe

these sorption reactions. Even for the same chemical system, the

approaches, constant values, site concentration, etc. are different.

For example, RES3T thermodynamic sorption database contains

more than 1700 sorption constants onto goethite from published

literature sources (Brendler et al., 2003). And, unfortunately, the

situation in 2022 has not significantly changed compared to that

in 1990. Despite exhaustive guidelines (Payne et al., 2013),

thermodynamic modeling of sorption is still challenging and

controversial. Some of the most recent works offer applying

different approaches to the modeling of large experimental

datasets taken from literature for U(VI) sorption onto goethite

(Satpathy et al., 2021) and quartz (Zavarin et al., 2022)

correspondingly. The proposed approaches make it possible to

obtain amore robust model. However, it is still the case of a single

radionuclide. It is also worth adding that, for several reasons,

there are much more data on U(VI) sorption compared to other

radionuclides.

The focus of the current paper is an experimental and

numerical study of the sorption of radionuclides that differ

considerably in their chemical characteristics (U(VI), Np(V),

and Eu(III)) onto synthesized goethite. Goethite is an abundant

mineral in the environment. Because it is a product of oxidative

iron corrosion it may be observed in nuclear waste disposal

conditions. Goethite also demonstrates a high sorption affinity

for most cations, including radionuclides. In this work, we aimed

to develop a robust model that describes the sorption of several

radionuclides under a wide range of experimental conditions.

And particularly for this purpose new experimental dataset over a

wide range of pH values and concentrations was obtained and

combined with previously published data.

For the fitting SCM to the collected dataset and dealing with

the corresponding parametrization uncertainties, the

optimization workflow was built on the basis of a well-proven

particle swarm optimization (PSO) algorithm (Shi and Eberhart,

1998) with multiple starts, and also subsequent filtering and

clustering steps. By the use of this workflow, several models based

on alternative conceptualizations (particularly, alternative

hypotheses of surface speciation) were optimized and compared.
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There were several overlapping goals of this exercise. Firstly,

understandably, we wanted to acquire a robust set of SCM

reaction constants for radionuclides onto goethite based on an

extensive dataset. In the next place, there was an intention to

refine and adjust a general approach to the model fitting to the

specific needs of simultaneous modeling of sorption processes for

different radionuclides based on the data from multiple sources.

And last but not least we wanted to explicitly list the conceptual

uncertainties and corresponding expert choices during the SCM

development and parametrization process.

2 Materials and methods

2.1 Laboratory experiments

2.1.1 Synthesis and characterization of goethite
Two different goethite samples were studied in this work. The

first goethite sample was synthesized by the method described in

Cornell and Schwertmann, 2003. Briefly, ferrihydrite that was

made by adding NaOH solution to concentrated Fe(NO3)3 was

converted to goethite by thermal treatment at 70°C for 60 h. The

crystalline structure and phase purity of the goethite was

confirmed by X-ray diffraction (Supplementary Figure S1)

using Rigaku D/Max-2500 diffractometer with a graphite

monochromator using Cu Kα radiation (λ = 0.15418 nm). The

specific surface area was determined by the

Brunauer–Emmett–Teller (BET) technique and was equal to

105 m2/g. The morphology of the particles was defined using

high-resolution transmission electron microscopy (HRTEM)

(Supplementary Figure S2). The HRTEM images were

obtained with an aberration-corrected JEOL 2100F instrument

operated at 200 kV.

The acidity constants of the surface hydroxyl groups of

goethite were determined by potentiometric titration. All

titrations were performed under a nitrogen atmosphere at

25°C using an automatic potentiometric titrator (848 Titrino

Plus) equipped with a 5-ml autoburette and Metrohm combined

pH glass electrode (model 60262100). A constant temperature of

25.0 ± 0.1°C was maintained in the cell using a water-jacketed

titration vessel with a circulating bath. The ionic strength was

maintained by KCl in the range of 0.02–0.07 M. The titrations

were performed in a pH range of 4–10. For the titrations, the

following adding procedure was used: a new portion of titrant

was added after constant pH (within 0.02 pH units) was

established.

Another goethite sample was synthesized by a different

method (Atkinson, 1967). For this sample, 200 ml of 2.5 M

KOH was added to 50 g of Fe(NO3)3·9H20 in 825 ml of water

in a Teflon vessel, which was then aged for 24 h in an oven at

60°C. The crystalline structure of the goethite was also confirmed

by X-ray diffraction (Supplementary Figure S1). The specific

surface area was determined by the BET technique and was equal

to 35.5 m2/g. The corresponding HRTEM images are presented

in Supplementary Figure S3.

2.1.2 Sorption experiments
For sorption experiments, 238,233,232U, 152Eu, and 237,239Np

were used, and the radiochemical purity of the stock solutions

was checked by γ-spectrometry and α-spectrometry (ORTEC

DSPec50 radiometric complex with a coaxial gamma detector

and semiconductor alpha detectors; Ametek, United States). The

experiments were done at pH below 6 to eliminate the influence

of carbonate on the experimental system. Sorption experiments

were performed in plastic vials (HDPE) to avoid radionuclide

sorption onto the vial walls. For the studied elements, sorption

onto vial walls was negligible throughout the entire pH range. In

all cases, 0.1 M NaClO4 (A.G.) was used as a background

electrolyte. Experiments on Np(V) sorption were carried out

under an N2 atmosphere to eliminate the influence of carbonate

on the experimental system.

The initial total concentration of radionuclides in the

experiments was kept below the solubility limit for hydroxides

of these elements. The concentration of goethite used for the

experiment ranged from 0.1 to 0.6 g/L. After adding

radionuclides, the pH was measured and adjusted by the

addition of small amounts of diluted HClO4 or NaOH. After

equilibration, the solid phase was separated by centrifugation at

40000 g for 20 min. To ensure that steady-state conditions were

reached, aliquots of solutions were taken periodically to

determine the uptake. The radionuclide uptake was calculated

from the difference between the initial radioactivity and that

measured after equilibration. The radioactivity of the solutions

was measured using liquid scintillation spectrometry using a

Quantulus 1,220 liquid scintillation spectrometer (Perkin Elmer,

United States).

2.2 Set of literature data

Goethite is one of the most widely researched minerals in the

context of radionuclide or heavy metal sorption. Goethite is the

end-point of transformations of various iron hydroxides and is

widely present in the environment. The interactions of U(VI)

with goethite are the most extensively studied interactions in the

context of radionuclide sorption due to the following factors:

first, the importance of research related to uranium behavior in

the environment, and second, the relative simplicity of working

with these materials in the laboratory. Experimental data on

U(VI) sorption onto goethite are presented in quite a few works

(Hsi and Langmuir, 1985; Jung et al., 1999; Villalobos et al., 2001;

Missana et al., 2003; Sherman et al., 2008; Guo et al., 2009; Yusan

and Erenturk, 2011; Coutelot et al., 2018). In most of these

studies, thermodynamic modeling of uranium sorption is

performed by applying different models and concepts,

consequently resulting in quite different sorption constants.
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The most significant drawback of most of these works is a

severely limited range of experimental conditions that does

not allow the determination of universal constants. In the

present work, we have made an effort to collect the bulk of

the experimental data sets from different papers for model

application purposes.

The comparison of different experimental data is sometimes

nontrivial, and discrepancies between experimental data

from different papers are likely to occur. The reason for

these variations may lie in differences in experimental

conditions. First, even fine differences in the origin of

goethite samples and the characterization procedure used

may affect the sorption process. Different solid-liquid

separation techniques may be another important source of

variation in sorption values. The filtration procedure may

induce the underestimation of sorption values if particles

with sorbed radionuclides pass through the filter, for

example (Honeyman and Santschi, 1991). Furthermore, in

some cases, filtration may lead to the overestimation of the

sorption value if radionuclides are partly sorbed onto the

filter material. Centrifugation with insufficient speed may

also result in incomplete solid-liquid separation. The most

challenging factor is that all these effects are highly

dependent on the pH value.

Another issue of high concern in the case of uranium is that

at a relatively high total concentration (more than 10−4 M), it may

form poorly soluble intrinsic phases. The formation of these

phases during sorption experiments mimics the main sorption

process, which complicates the determination of the primary

chemical process controlling the behavior.

Eu(III) sorption onto goethite is less studied than U(VI)

sorption onto goethite. Only a few papers present experimental

data of good quality (Ledin et al., 1994; Fujita and Tsukamoto,

1997; Fairhurst and Warwick, 1998; Naveau et al., 2005) and the

examined experimental conditions are quite limited.

Np(V) sorption has been researched in several works (Fujita

et al., 1995; Kohler et al., 1999; Khasanova et al., 2007; Kalmykov

et al., 2008; Snow et al., 2013). Again, the experimental conditions

in most of the works were not very diverse, in particular

regarding the solid/liquid ratio range. The results from Fujita

et al., 1995 were excluded from the dataset for the optimizations

because naturally occurring goethite was used. The impurities

that may be present in natural minerals may confuse sorption

processes.

The sorption data from all of the papers discussed above were

used in the parameter optimization procedure in addition to the

experimental data obtained in the current work.

Data on cadmium and zinc (Balistrieri and Murray, 1982;

Hoins et al., 1993; Spathariotis and Kallianou, 2007; Swedlund

et al., 2009; Komárek et al., 2018) sorption onto goethite were

added to verify the obtained models, as well as to expand the

range of LFER.

2.3 Modeling approach

2.3.1 Surface complexation modeling
Surface complexation modeling is based on a mechanistic

description of interfacial processes. It is assumed that the

adsorption process is similar to aqueous complexation, where

surface functional groups are defined as surface ligands that

interact with cations to form surface complexes by the following

general reaction:

≡ SOH + Catn+% ≡ SOCat(n−1)+ +Η+ (1)

where ≡SOH represents functional groups on the surface.

The usual mass law equation and mole balance formalism

can be applied. Different approaches for taking account of

cations’ or anions’ electrostatic interactions with the surface

have been described comprehensively in (Goldberg et al.,

2007; Geckeis et al., 2013). The most popular approaches are

the use of a nonelectrostatic model (NEM) which does not

account for electrostatic effects or the diffuse-double layer

model (DDL) (Dzombak and Morel, 1990) which takes into

consideration a “diffuse” layer where sorbate ions are attracted to

the charged surface.

An important part of modeling is to determine the sorption

reaction of particular surface species: mono- or polydentate

(multidentate) species or ternary complexes containing

ligands, such as hydroxyl and carbonate groups.

The most common and simple modeling approach is to

represent sorption with the formation of monodentate

complexes, such as in equation 1 (Mathur and Dzombak,

2006; Wang and Giammar, 2013). However, some of the data

from spectroscopic studies or detailed atomistic (mechanistic)

models give reasons to assume polydentate complexes as well. It

is highly challenging to determine the exact species of

radionuclides on a mineral surface. A common technique

being used for this purpose is EXAFS. This method gives

information on the local surroundings of the atoms,

particularly those sorbed onto the mineral surface. The main

disadvantage of this technique in the context of sorption studies

is that it needs a relatively high concentration of the element of

interest, which may affect the element’s speciation, and analyses

of some elements may not be possible at all because of their low

solubility. Another complication is that EXAFS spectra from

sorbed species are usually relatively low in quality because surface

species do not have a regular structure, in contrast to crystalline

compounds. Moreover, if several surface species of the element of

interest are present on the sample EXAFS spectra will give

averages. These issues make the analysis of EXAFS spectra,

which is already complex enough, difficult and controversial

even more.

As in the case of batch sorption studies, uranium speciation

on the surface of iron-containing minerals is relatively well

studied by the EXAFS technique (Bargar et al., 1999, 2000;
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Moyes et al., 2000; Ulrich et al., 2006; Sherman et al., 2008). In

most cases, the formation of bidentate uranium species on

mineral surfaces was assumed. The EXAFS spectra of Eu(III)

sorbed onto different minerals are evenmore complicated and do

not provide clear evidence for the analysis of surface complexes’

structure (Tan et al., 2009; Bouby et al., 2010). There are several

examples of EXAFS spectra of Am(III) sorbed onto magnetite

that confirm the formation of tridentate complexes on the surface

(Finck et al., 2016; Morelová et al., 2020). Similarly, it was

assumed from EXAFS results that Pu(III) also formed

tridentate complexes on magnetite (Kirsch et al., 2011).

Studies of EXAFS spectra of Np(V) sorbed onto iron oxide

gave controversial results. Bidentate complex formation was

mentioned in some works (Amayri et al., 2007; Müller et al.,

2015), while (Combes et al., 1992) provided another explanation.

Therefore, spectroscopic techniques provide a basis for

describing sorption processes involving the formation of

polydentate complexes on the surface. However, precise

determination of the stoichiometry for all cases is complicated

due to experimental limitations. Computer simulations of surface

speciation may help address this issue, but there are still many

open questions in this area. Importantly, accounting for

polydentate complexes using geochemical codes requires

careful treatment (Lützenkirchen et al., 2015).

The parameters for modeling aqueous speciation of the

Eu(III), Np(V), U(VI) are presented in Supplementary Table

S1. The parameters for the Cd(II) and Zn(II) was taken from

(Puigdomenech, 2006).

2.3.2 Parameter optimization
A central part of the surface complexation modeling

is the fitting of the model to the experimental sorption

data by adjusting the model’s parameters (Payne et al.,

2013). This model fitting process also could be referred

to as model calibration, parameter optimization, or inverse

modeling.

The model fitting process requires two computational tools: a

geochemical speciation code for implementing the relevant

model and software providing parameter optimization

procedure. In this paper, we used PHREEQC (Parkhurst and

Appelo, 1999) and MOUSE (Linge et al., 2020) codes

correspondingly for these purposes. We have also written

several scripts in Python language for data transformation and

visualization.

In general, the parameter optimization procedure is pretty

straightforward (Figure 1A). The key concepts of this process are

the following:

• The numerical model itself. During the optimization it is

treated as a “black box”: it means that we iteratively change

inputs and analyze corresponding outputs of the model,

but don’t use any information about what is going on

inside it.

• Candidate parameter combination which could be also

represented as a point in the multidimensional parametric

space.

• The objective function which measures the fitness of the

model by defining the distance between experimental data

and modeled outputs.

• Optimization algorithm which is a strategy to search

effectively through candidate parameter sets (to move

through parametric space) based on the dynamic of the

objective function in the previous steps

• Criteria for the optimization to stop.

In this paper, we use the well-proven Particle swarm

optimization (PSO) algorithm that mimics the swarm

behavior of flocking birds searching for food (Kennedy and

Eberhart, 1995), in particular its inertia-weight modification

(Shi and Eberhart, 1998), but we address method choice issues

in the Discussion section.

As the objective function in the optimization, we used the

squared differences of experimental and simulated values

weighted by the number of points (sometimes referred to as

FIGURE 1
Parameter optimization procedure: (A) in general and (B)
multi-start modification with clustering used in the current work.
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the multivariate mean squared error, MMSE). Weights Nq were

introduced to prioritize curves with more points.

MMSE � ∑n
q�1

⎡⎢⎣ 1
Nq

∑Nq

i�1
(Yexp

q,i − Ysim
q,i )2⎤⎥⎦ (2)

where q is a data component (curve),Nq is the number of points

on the qth curve, n is the number of curves, and Yexp
q,i ,Y

sim
q,i are the

observed and simulated values, respectively, at the ith point of the

qth curve. The limit on optimization steps without improving the

objective function was set as stopping criteria.

Unfortunately, several overlapping and interdependent

factors complicate the practical application of the described

optimization procedure as is. The first of them is the existence

of multiple equally acceptable solutions. Particularly, for the

SCM there are always at least several possible ways to fit the

model output by varying the parameters to the experimental

dataset (OECD/NEA, 2012).

Secondly, in the general case, there are no guarantees of

convergence to the global minima for any optimization

algorithm. But, finally, even if some optimization

method could find the global minima, this solution would

not be undoubtedly the best choice due to the possibility of

overfitting. Overfitting in this context means that the

best solution (model parameter combination) found by

minimization of the distance between model outputs and a

particular (even wide-ranging) dataset could be

conditioned both by the data of interest itself and by the

associated “noise” such as experimental uncertainty and

outliers.

In this work in an attempt to overcome these issues, we

configured (Figure 1B) a more elaborate parameter optimization

procedure by:

• Employing multiple starts of the optimization algorithm to

obtain more than one realization of the stochastic behavior

of the algorithm and reduce the possibility that the

particular realization used for further analysis was

coincidentally inefficient.

• Analyzing not the single “best” optimization outcome but

the whole history of parametric space exploration with

posterior thresholding and filtering to cover the variety of

satisfactory parameter combinations.

• Clustering remaining solutions to aggregate similar model

parameter combinations and distinguish between different

variants of parametrization and spread within the limits of

one particular variant.

Specifically, the threshold for the objective function was set as

1.1·MMSEibest for each start of the optimization procedure and

2·MMSEbest for combining the solutions from all multiple starts,

where MMSEibest is the best objective function for the ith

optimization, and MMSEbest is the overall best obtained

objective function value for the particular model and dataset.

As an additional condition for filtering out unsatisfactory

solutions were relations between the logarithms of sorption

constants and the logarithm of the corresponding aqueous

hydrolysis stability constants, so-called linear free energy

relationships (LFER).

As a clustering method, we used the DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) method

(Ester et al., 1996). It is an unsupervised method that given a set

of points in multidimensional space, groups together the points

in the dense regions (points with many nearby neighbors),

marking points that lie alone in low-density regions (whose

nearest neighbors are relatively far) as outliers.

3 Results and discussion

3.1 Experimental sorption data

To determine the acidity constants of the goethite sample

with SSA = 105 m2/g, potentiometric titration was performed

(Supplementary Figure S4). Using these experimental data, as a

result of the optimization procedure, acidity constants were

found to be logKa1 = 6.7 and logKa2 = −10.7. During the

optimization total surface site concentration was fixed at

2.31 sites/nm2. The DDL model was used to account for

electrostatic effects. The result is in agreement with the

literature data (Cornell and Schwertmann, 2003).

In this work, sorption data for Eu(III), Np(V), and U(VI) in a

wide range of cation/goethite ratios were obtained (Figure 2). The

limits of the radionuclide concentration and pH for sorption

were determined by considering competing reactions such as

precipitation and complexation with carbonate. In the case of

Np(V), experiments were performed under an N2 atmosphere,

while for other radionuclides pH during the sorption

experiments was kept below 6 to exclude CO2 dissolution. For

all studied cations, partial surface saturation conditions were

reached when sorption values decreased with increasing cation

concentration in solution. Surface saturation is a prerequisite for

determining the concentration of sorption sites. Notably, surface

saturation was observed in the concentration range of

approximately 10−6 mol/g (goethite). It is a common approach

to fix the concentration of sorption sites onto oxide mineral

surface to 2.31 sites/nm2 (Davis and Kent, 1990; Dzombak and

Morel, 1990). For the studied goethite with a specific surface area

of 105 m2/g, this value is equivalent to 4·10−4 mol (sorption site)/

g (goethite). Thus, if all sorption sites on the goethite surface had

the same strength towards the sorption reaction, saturation

would not be reached in the entire studied concentration

range. Therefore, the experimental data show the necessity of

applying the model with two types of sorption sites which

assumes the presence of a small amount of relatively “strong”

sites on the goethite surface that have a higher affinity towards
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sorbed cations, while the remaining sites are “weak” sorption

sites.

It is well known that differences in the sorption affinities of

surface sites may be explained by the crystallographic structure.

Different crystal facets contain different amounts of sorption

sites with various chemical reactivities. For polycrystalline

samples usually present in the environment, it is difficult to

quantitatively account for sorption sites on the basis of structural

considerations. Therefore, in most cases, sorption site

concentrations are derived from sorption data. However, even

for the same mineral, different samples may differ significantly in

terms of not only SSA but also crystal facet relations and point

defects that may influence sorption. Therefore, in this work, we

also performed experiments with two different synthesized

goethite samples with quite different SSAs: 105 and 35.5 m2/

g. The sorption of Eu(III) was examined in this case

(Figure 3). Surface saturation was clearly reached at a

lower concentration of Eu(III) in the case of the sample

with SSA 35.5 m2/g. The shape of the isotherms indicates

that the concentration of both strong and weak sites is lower

for the goethite sample with a lower SSA. The lower level of

sorption at trace concentrations is the result of a lower

strong site concentration, while a steeper decline in

sorption on the isotherm is an indicator of a lower

concentration of weak sites. These results were used in

the modeling procedure.

FIGURE 2
Data on (A,B) Eu(III), (C,D) Np(V) and (E,F) U(VI) sorption onto goethite (SSA = 105 m2/g) (I = 0.1 M, (A) [Eu]/[FeOOH] = 10−10 mol/g—[Eu] =
3·10−11 M, [α-FeOOH] = 0.3 g/L; [Eu]/[FeOOH] = 10−6 mol/g—[Eu] = 1·10−6 M, [α-FeOOH] = 0.3 g/L; [Eu]/[FeOOH] = 10−4 mol/g—[Eu] = 2·10−5 M, [α-
FeOOH] = 0.1 g/L; (B) [α-FeOOH] = 0.3 g/L; (C) [Np]/[FeOOH] = 10−14 mol/g—[Np] = 1·10−14 M, [α-FeOOH] = 0.3 g/L; [Np]/[FeOOH] = 10−6 mol/g—
[Np] = 8·10−7 M, [α-FeOOH] = 0.1 g/L; (D) [α-FeOOH] = 0.3 g/L; (E) [U]/[FeOOH] = 10−8 mol/g—[U] = 8·10−8 M, [α-FeOOH] = 0.3 g/L; [U]/
[FeOOH] = 10−7 mol/g—[U] = 5·10−7 M, [α-FeOOH] = 0.3 g/L; [U]/[FeOOH] = 10−6 mol/g—[U] = 1·10−6 M, [α-FeOOH] = 0.1 g/L; (F) [α-FeOOH] =
0.6 g/L).
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3.2 Different conceptual models and
different modeling units

For the description of the obtained experimental data, we

tested both monodentate and polydentate assumptions of

complex formation during radionuclide sorption onto

goethite. The DDL model was used for account electrostatic

effects during sorption. We hypothesized the formation of

polydentate complexes during sorption with the formation of

uncharged surface species: Eu(III) is assumed to form tridentate,

U(VI) bidentate, and Np(V) monodentate complexes

correspondingly.

In addition to the monodentate and polydentate modeling

conceptions, in this work, we proposed and tested a hybrid

conceptual model. This model is based on the assumption

that strong sites form monodentate complexes with

radionuclides, while weak sites form polydentate. In fact, if

the amount of strong sites is quite low it would be difficult to

reach the polydentate interaction with them. At the same time,

spectroscopic techniques in view of the requirement for relatively

high sorbate concentrations which was explained above,

probably give the possibility to see the interaction with the

weak sites. The parameter optimization results were compared

for all three alternative models.

Another essential step during model development is the

choice of sorption units. In this work during the parameter

optimization procedure, the sorption data were treated in

sorption percentage (%) and concentration of cations in

solution (mol/L) on the Y-axis. In the published guideline

(Payne et al., 2013), it was recommended to make the fitting

procedure of Kd data. The reason is that the Kd values are often

used in performance assessment calculations. However, during

the laboratory sorption experiments, the uncertainty of Kd

determination in the case of close to 0 and 100% sorption is

very high, significantly affecting the optimization in these units.

Most of the optimization in the recent work has been done in

percent (%) units. However, it should be noted that for reliable

performance assessment, it is crucial to estimate the difference

between the model values of Kd and the real data.

Underestimation of Kd may be caused by different reasons,

such as the complexation of radionuclides with anions or

competition with cations that are present in the solution. This

fact requires consideration in the conceptual model.

The general scheme of the evolution of the conceptual model

in the present work is presented in Supplementary Figure S5.

3.3 Evolution ofmodeling of U(VI) sorption

As discussed above, experimental data on U(VI) sorption

onto goethite are widely available in the literature. In the present

work, firstly, we tested different approaches to modeling U(VI)

sorption. Three datasets were used during the optimization: a

new experimental dataset (Section 3.1), literature data, and their

combination. During the first stage, we avoided addressing the

effect of carbonate-ion complexation on sorption. The effect of

carbonates is significant in the case of U(VI) sorption at

pH values higher than 5 where CO2 may dissolve in water

which makes the chemical system more complex. Therefore,

only the results of sorption experiments that were performed in

an inert atmosphere or at pH values lower than 5 were included

in the dataset.

Various sorption reactions assuming that monodentate

species are formed on the surface have been tested

(Supplementary Table S2). First, simple reactions of U(VI)

sorption onto strong (KmU1) and weak sites (KmU2) were

used during modeling. The constant values for both reactions

are quite similar for all studied datasets, while sorption site

concentrations fluctuate slightly. Differences in the shape and

size of goethite particles in different papers may be the source of

the variety of sorption site concentrations in themodeling results.

This variability confirms the difficulty of unambiguous

FIGURE 3
Eu(III) sorption onto different goethite samples with different SSAs (I = 0.1M, [α-FeOOH] = 0.3 g/L, (A): [Eu] = 3·10−11 M).
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determination of the concentration of sorption sites. The

obtained parameters give an adequate description of the

experimental data. Only sorption at pH values higher than

9 cannot be described given these parameters (see

example in Figure 4A). To take into account sorption at

higher pH values, reactions with the formation of ternary

surface species should be included in the model (KmU3,

KmU4). The addition of these reactions to the model

improves the convergence, it can be seen by the decrease

in the objective function value and on the plot in Figure 4B.

In the case of the current experimental dataset, the reliable

determination of KmU3, and KmU4 is not possible because

of the absence of experimental data at high pH values where

these reactions are significant.

Sorption reactions without proton removal (KmU5,

KmU6) were also added to the model. Such types of

surface species have been reported in the literature

(Girvin et al., 1991; Marmier et al., 1997; Cromieres et al.,

1998; Naveau et al., 2005; Powell et al., 2018). At the same

time, the formation of ≡FeOHCatn+ probably fails to account

for the chemical properties of most cations. Actinides and

lanthanides are cations that are highly charged and can

therefore undergo hydrolysis and sorption with the

formation of inner-sphere complexes. The pH dependence

of sorption proves this mechanism. However, it is

noteworthy that the test addition of these reactions

improved the model fit to the experimental data; they

were excluded only by chemical reasoning.

Parameter optimization for the model assuming the

formation of polydentate complexes (in particular bidentate

complexes) of U(VI) onto the goethite surface gives slightly

better convergence, especially in the case of the literature

dataset using lower numbers of parameters (Supplementary

Table S3). Again, the values of the reaction constants (KpU1,

KpU2) vary less than the concentration of sorption sites. In this

case, the sorption of U(VI) at high pH values can be described

using only two reactions: sorption on strong and weak sites

(Figure 4C).

A similar outcome was observed for the hybrid approach:

monodentate complexes with strong sites and polydentate

with weak sites (Supplementary Table S4). A good

convergence with experimental and literature data was

observed for the model with 3 parameters (site

concentration and two constants values KhU1, KhU2)

(Figure 4D). We can see, as has been observed in many

past modeling efforts, that batch sorption data modeling is

inherently an underconstrained problem which leads to a

non-unique solution to the SCM, and, consequently,

additional considerations are required to justify the choice

of the SCM parameters.

FIGURE 4
Application of the obtained parameters (see Supplementary Table S2) to the modeling of experimental data from the paper of Missana et al.,
2003: (A)—logKmU1 = 4.6, logKmU2 = 1.7, [≡FesOH] = 0.033; (B)—logKmU1 = 4.0, logKmU2 = 1.6, logKmU3 = -3.4, logKmU4 = -7.3, [≡FesOH] = 0.052;
(C)—logKpU1 = -1.9, logKpU2 = -4.4, [≡FesOH] = 0.079; (D)—logKhU1 = 4.3, logKhU2 = -4.2, [≡FesOH] = 0.034.
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3.4 Evolution of modeling of the whole
dataset

A similar approach was used to describe the sorption of Eu(III),

Np(V), andU(VI) separately and all at once. The assumption of only

one type of sorption site on the goethite surface with a concentration

of 2.31 sites/nm2 did not give good simulation results because surface

saturation for all the studied radionuclides manifests at much lower

concentrations as discussed above. Assuming only one type of

sorption site with varying concentrations may result in an

adequate fit of the sorption of Eu(III), Np(V), and U(VI)

separately; however, the resulting concentration of sorption sites

is very different for each radionuclide. Fitting of the whole dataset

using one type of sorption site did not give good convergence using

either monodentate, polydentate, or hybrid approaches. Therefore,

the assumption of two sorption site types on the goethite surface was

further used. Using this assumption, three approaches

(monodentate, polydentate, and hybrid) were applied to a wider

dataset (experimental and literature data) and experimental data

alone. The two units of sorption data (% and mol/L) were used

as well.

At first, the optimization procedure for each model variant

(i.e.combination of a conceptual model, sorption units, and

dataset) was performed 10 times. The purpose of these

repeated optimizations was mainly to test the stability of the

obtained parameter set and ensure that we do not rely on the

outcome of some accidentally inefficient optimization. However,

we noticed that sometimes solutions with equally good (relatively

low) objective functions could differ significantly (see example in

Supplementary Figure S6A–S11A).

It brought us to the idea of the explicit exploration of the

variety of possible solutions. To do this, 100 runs of the

optimization procedure were made for each model variant

and then obtained histories of parametric space exploration

(sets of parameters and corresponding objective functions)

were analyzed.

This analysis consisted of multiple stages. First, we had the

whole optimization history, e.g., the progression of the parameter

combinations from random ones to the best ones, and we needed

to set a threshold for near-best solutions. This step is motivated

by the possibility of overfitting and resulting from it chance to

cast away solutions equally as acceptable as the technically best

one just because of a slightly worse objective function. In this

exercise, for simplicity and after confirming that these solutions

were still satisfactory from the expert’s point of view we set the

threshold as follows: at best solution increased by 10% for each

optimization run, and at the doubled value of the best solution

when merging the results of multiple runs. Further, it could be

considered to set this threshold with consideration of the

experimental data uncertainties.

As a result of the thresholding step, we obtained hundreds of

near-best solutions instead of a single formally best one.

Predictably, a lot of them were pretty similar, so we needed to

extract from this vast amount the smaller list of distinctive

parameter combinations, due to this we applied the clustering

procedure as the next step. To be fair, the clustering step provided

still a larger number of possible solutions than we expected but

made it possible to visually analyze their variety (Figure 5A,

Supplementary Figure S6B–S11B).

No significant differences were scored when comparing the

optimization performed in different sorption units (% or mol/L).

From our experience, it is difficult to say which is better. Since in

the case of % unit, there is a clear inflection in the sorption data,

perhaps these units are a little more convenient for use and

interpretation. However, there is still no unambiguous opinion.

The obtained clusters of possible sets of parameters mainly

differ in the concentration of the strong sites (log [≡FesOH]),

which in turn provides variation in the constants of sorption

reaction where strong sites are involved (logK1, logK3, logK5). If

there were a reliable way to determine the concentration of

strong sorption sites, optimization of the whole sorption

model would be much easier and more unambiguous.

In the absence of such a method, an alternative possibility is

to filter the obtained solutions based on some valid chemical

reasoning that could be formalized in numerical conditions on

parameter values. In this case, two conditions were introduced

for this purpose. First, the constant of the sorption reaction with

the strong site should be higher than the constant of the similar

reaction with the weak site (this assumption does not work in the

case of the hybrid approach). The second condition was the

Linear free energy relationship (LFER), the assumption of the

linear correlation between the equilibrium constants of

hydrolysis reaction in solution and sorption reaction based on

their analogy. Previously it was successfully used for several

minerals (Schindler et al., 1976; Balistrieri et al., 1981;

Hachiya et al., 1984; Bradbury and Baeyens, 2005;

Romanchuk and Kalmykov, 2014). Applying this filtering

procedure has significantly reduced the number of candidate

parameter combinations (Figures 5B–D, Supplementary Figure

S6D–S11D).

And finally, the parameter sets with the lowest value of the

objective function were selected from the thresholded and filtered

list of candidate solutions. The corresponding values of

parameters and objective function are given in Table 1. In the

case of the hybrid approach, there were two solutions with nearly

equal values of the objective function. The parameters are given

through the slash. The uncertainties for the parameter values

given in Table 1 are standard deviations for the values within

selected clusters. We understand that it is not an ideal and quite

rough description of the underlying uncertainties and discuss

some avenues for corresponding further work in Section 2.4.6. To

visualize the obtained solutions, the modeling results together

with experimental data were plotted in Figure 6. The models

derived by all three approaches give an adequate description of

the experimental data in the wide range of conditions for the

three radionuclides. To make the comparison of obtained models
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easier we also provided the values of adjusted determination

coefficient R2adj (scaled from 0 to 1) as an additional measure of

the goodness of fit calculated for each of the final models in

Table 1. We discuss briefly goodness-of-fit measures in Section

2.4.6 and Section S8 of the supplementary material. Of course, it

is worth noting that a numerical description of the behavior of a

single radionuclide or even more so of a single experiment

usually looks better, but the strength of this approach is the

simultaneous description of several radionuclides. This is

essential in the context of developing models for the safety

assessment of radioactive waste storage and disposal facilities

or areas contaminated with radionuclides.

To analyze how models with obtained parameters fit the

literature data, we presented the results graphically via diagonal

plots featuring predicted versus observed values with 95%

confidence and prediction intervals (Figure 7). The confidence

interval shows how well the average experimental value can be

estimated and the prediction interval demonstrates how well

individual experimental values can be simulated. All used

modeling approaches correctly fit most experimental literature

data. However, some of the data points are apparent outliers. As

mentioned above, differences in the experimental conditions

(concentration, phase separation methods, CO2 presence, and

other factors) may influence the determined sorption value.

Supplementary Table S4 lists the specific experimental

conditions from the studied literature data. When comparing

pH dependence, the data from (Coutelot et al., 2018) and

(Khasanova et al., 2007) differ from all other data regardless

of applied approaches. In both cases, the additional filtration

through filters may have led to an overestimation of the sorption

value due to the partial sorption of radionuclides onto the filter

surface.

Sorption isotherms are presented in the literature less often

than pH dependences. The data from Missana et al., 2003 lie

beyond the prediction interval of all models in the current study.

However, the pH dependences from the same paper are described

much better. A possible explanation for this result is that the

partial precipitation of intrinsic U phases expected at

FIGURE 5
Clusters of the obtained solution in the: (A) monodentate approach, (B) monodentate approach after filtering, (C) polydentate approach after
filtering, (D) hybrid approach after filtering. Sorption units are %, the dataset contains experimental and literature data.
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concentrations higher than 10−7 M at the studied pH values may

affect the sorption isotherm. For the accounting sorption

together with precipitation, another model is needed.

3.5 LFER and adding Cd and Zn

Despite the successful use of LFER as an additional condition

for the choice of parameters, this assumption is insufficient for

predicting other radionuclides’ sorption constants. Therefore, to

increase predictive capability and to verify the adopted models,

the literature data for the Zn and Cd sorption onto goethite were

added to the dataset. These two cations were chosen because the

hydrolysis constants values allowed equal coverage of the data

points for the LFER and also on the score of literature data

availability. In this part, only the hybrid approach was chosen as

an example and as the most promising from our perspective

approach.

TABLE 1 Parameters of the best solutions of Eu(III), Np(V), and U(VI) sorption optimization onto goethite using different approaches in the units of
sorption %.

Monodentate approach

[≡FesOH], sites/nm2 — 0.014 ± 0.03

[≡FewOH], sites/nm2 — 2.296

≡FesOH + UO2
2+ $ ≡FesOUO2

+ + H+ logKm1 4.89 ± 0.19

≡FewOH + UO2
2+ $ ≡FewOUO2

+ + H+ logKm2 2.07 ± 0.10

≡FesOH + NpO2
+ $ ≡FesONpO2 + H+ logKm3 0.13 ± 0.10

≡FewOH + NpO2
+ $ ≡FewONpO2 + H+ logKm4 −3.89 ± 0.11

≡FesOH + Eu3+ $ ≡FesOEu2+ + H+ logKm5 6.17 ± 0.12

≡FewOH + Eu3+ $ ≡FewOEu2+ + H+ logKm6 2.47 ± 0.02

Goodness of fit MMSE 171.1

R2
adj 0.90

Polydentate approach

[≡FesOH], sites/nm2 — 0.006 ± 0.007

[≡FewOH], sites/nm2 — 2.304

2≡FesOH + UO2
2+ % (≡FesO)2UO2 + 2H+ logKp1 −0.43 ± 1.98

2≡FewOH + UO2
2+ % (≡FewO)2UO2 + 2H+ logKp2 −3.69 ± 0.09

≡FesOH + NpO2
+ $ ≡FesONpO2 + H+ logKp3 0.55 ± 0.45

≡FewOH + NpO2
+ $ ≡FewONpO2 + H+ logKp4 −3.48 ± 0.43

3≡FesOH + Eu3+ $ (≡FesO)3Eu + 3H+ logKp5 −5.93 ± 0.66

3≡FewOH + Eu3+ $ (≡FewO)3Eu + 3H+ logKp6 −10.81 ± 0.13

Goodness of fit MMSE 194.3

R2
adj 0.90

Hybrid approach

[≡FesOH], sites/nm2 — 0.015 ± 0.03/0.027 ± 0.01

[≡FewOH], sites/nm2 — 2.295/2.283

≡FesOH + UO2
2+ $ ≡FesOUO2

+ + H+ logKh1 4.69 ± 0.1/4.00 ± 0.12

2≡FewOH + UO2
2+ $ (≡FewO)2UO2 + 2H+ logKh2 −3.95 ± 0.1/-3.75 ± 0.12

≡FesOH + NpO2
+ $ ≡FesONpO2 + H+ logKh3 0.15 ± 0.09/-0.31 ± 0.02

≡FewOH + NpO2
+ $ ≡FewONpO2 + H+ logKh4 −3.89 ± 0.08/-4.12 ± 0.11

≡FesOH + Eu3+ $ ≡FesOEu2+ + H+ logKh5 6.20 ± 0.12/5.82 ± 0.01

3≡FewOH + Eu3+ $ (≡FewO)3Eu + 3H+ logKh6 −11.21 ± 0.06/-11.39 ± 0.01

Goodness of fit MMSE 172.1/182.8

R2
adj 0.90/0.91
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FIGURE 6
The experimental data obtained in this work together with the modeling for Monodentate, Polydentate, and Hybrid approaches Parameters of
the models are presented in Table 1.
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FIGURE 7
Graphical presentation of literature data vs modeling predictions for the used modeling approaches in (A,B,C) sorption % and (D,E,F) mol/L
scales. Parameters of the models from Table 1 were used.
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Adding the Cd and Zn sorption data to the dataset slightly

changed all the parameters (Table 2). The results of modeling Cd

and Zn sorption data are presented in Supplementary Figure S12.

The fitted curve is quite good in representing the experimental

data. Thus, a developed model allows us to describe the sorption

of 5 different cations.

Figure 8 shows obtained LFER. It can be seen that the values

of the weak site reaction constant are closer to linear dependence

compared to the strong site. As was discussed above, the

constants of the sorption reaction onto the weak site are

determined much more reliably. The significant variation in

the values for strong site reaction can be related to the

complexity of determining their concentration and to the

possible different nature of the binding of different cations on

them. In addition, the uncertainty in the determination of the

hydrolysis constant can also affect the reliability of LFER. It

should also be noted that the chemical properties of the studied

cations are pretty different. It is still unclear whether the “yl”

cations (UO2
2+ and NpO2

+) should be separated from the other

cations (Eu3+, Cd2+, Zn2+). Nevertheless, the obtained equations

can be used to predict the sorption constants for various cations

with hard-to-detect sorption, such as plutonium in different

oxidation states.

3.6 Parameter optimization details:
objective function, parameter scale,
method choice, and uncertainties of the
optimization results

While applying the general optimization procedure described

in Section 2.3.2 to the specific problem, one faces multiple

choices. Some of them such as the selection of model units

and stopping criteria, and dealing with outliers were already

discussed above. In this section, we wanted to highlight some

other seemingly minor aspects that nevertheless could affect the

practical outcome.

To start with, defining the objective function is more or less

obvious when we are dealing with the single output of the

simulation. In the case when the output of interest consists of

multiple points or even multiple different curves, there are

several issues to address. For example, it is not uncommon for

experimental and simulated values to be obtained at different

points, so we need to interpolate them before comparison. In our

case, we applied piecewise-linear interpolation to the simulated

curves.

In addition to this, the distance between experimental data

and modeled results could be defined in various ways. A brief

overview of goodness-of-fit measures is provided in section

S8 of the supplementary material. Some general reasoning for

the choice of goodness-of-fit measures can be found, for

example, in Moriasi et al., 2007 and El-Khaiary and Malash,

2011. The main recommendation is to use measures that take

into account the number of data points and the number of

varied model parameters. Since the number of the parameters

was the same in most of the comparisons during this work, the

MMSE was selected as one of the simplest generalizations of

the root mean square error for multiple curves with a different

number of points in each of them. However, this choice could

be debatable, in particular, the obvious drawback of the MMSE

function is that it is not normalized which means that we could

TABLE 2 Parameters Eu(III), Np(V), U(VI), Cd(II), Zn(II) sorption onto
goethite optimization using the hybrid approach in the units of
sorption %.

Hybrid approach, 5 cations

[≡FesOH], sites/nm2 — 0.045 ± 0.001

[≡FewOH], sites/nm2 — 2.265

≡FesOH + UO2
2+ $ ≡FesOUO2

+ + H+ logKh1 4.07 ± 0.12

2≡FewOH + UO2
2+ $ (≡FewO)2UO2 + 2H+ logKh2 −4.11 ± 0.17

≡FesOH + NpO2
+ $ ≡FesONpO2 + H+ logKh3 −0.56 ± 0.01

≡FewOH + NpO2
+ $ ≡FewONpO2 + H+ logKh4 −4.24 ± 0.06

≡FesOH + Eu3+ $ ≡FesOEu2+ + H+ logKh5 5.55 ± 0.01

3≡FewOH + Eu3+ $ (≡FewO)3Eu + 3H+ logKh6 −11.52 ± 0.07

≡FesOH + Cd2+ $ ≡FesOCd+ + H+ logKh7 0.47 ± 0.03

2≡FewOH + Cd2+ $ (≡FewO)2Cd + 2H+ logKh8 −9.70 ± 0.04

≡FesOH + Zn2+ $ ≡FesOZn+ + H+ logKh9 1.42 ± 0.01

2≡FewOH + Zn2+ $ (≡FewO)2Zn + 2H+ logKh10 −8.81 ± 0.01

Goodness of fit MMSE 156.5

R2
adj 0.88

FIGURE 8
LFERs for cations sorption onto strong and weak sites of
goethite. Data from Supplementary Table S5. The obtained
equations: strong site logKsorb = 0.76·logKhydr + 8.69, R2 = 0.56,
weak site logKsorb = 0.54·logKhydr + 1.64, R2 = 0.92.
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rank objective function values only by comparison with each

other, not on some predefined scale. Also, to take into account

the fact that values of output in mol/L units differed by several

orders of magnitude, we used their logarithm during

calculations of the objective function for corresponding

model variants. An alternative way to balance the relevance

of the wide-ranging points by assigning weighting factors

based on measurement uncertainty is described in Zavarin

et al., 2022. The use of weighting in general is a considerably

common tool to include some additional information or expert

insights into an objective function definition. The main

controversial aspect of it is that in many cases the weighting

process is difficult to universally formalize. In our case, we used

weighting only to balance experimental curves with a different

number of data points. However, analysis of the bulk

optimization results indicates that if many S-shaped curves

are being fitted, a decent goodness-of-fit can be reached by

having a perfect fit at the beginning and end of the curve at the

cost of the bend section of the curve. To correct this behavior,

in further studies we consider assigning higher weights to bend

points because they correspond to the main process under

investigation.

And this brings us back to the discussion of the modeling

units. On one hand, the downside of fitting models to data in %

units is that data near 0 and 100% sorption are obscured, and for

some strongly sorbing elements such as Eu(III) or Th(IV), it

becomes difficult to fit curves where the majority of data are close

to 100% sorbed. On the other hand, while using % as the unit of

sorption, it is easier to determine the primary process, which

provides a sharp inflection on the experimental curve.

Additionally, sorption in the range around 0 and 100%

sometimes can be affected by competing processes, such as

complexation, that need to be considered in the conceptual

model. Nevertheless, today there is no unambiguous answer to

what units are better.

Next, considerations on the parameter ranges are

relatively obvious but still important: when we are

narrowing it down too much, we are missing some

solutions. But when we are broadening it too much, we will

slow down the optimization process and also will need to filter

out a lot of technically satisfactory but unrealistic solutions at

the later stages. Another related decision point is the scale of

the parameters. Optimization algorithms usually implicitly

assume that all insignificant parameters are excluded at the

sensitivity analysis stage and the remaining parameters are

commeasurable in terms of their impact on the modeling

result. This assumption means that, for example, using linear

increments in parameter values or agent velocities as part of

the optimization algorithm would be efficient for searching

through parametric space. In this study, we had two types of

parameters: logarithms of reaction constants and sorption site

concentrations. To ensure that all the dimensions of the

parametric space are equal for the optimization routine, we

applied a logarithmic transformation to the site

concentrations before optimization and an inverse

transformation afterward.

The next decision point is the optimization method choice.

Albeit the fact that the complex discussion on the comparison

and the selection of the optimization methods is clearly outside

the scope of this work, we wanted to outline several aspects of this

topic.

As was stated above, in this work, we used the PSO algorithm

which belongs to the wide class of heuristic optimization

techniques. The main idea of heuristic optimization is that

natural systems behave in a way that successfully solves

different kinds of real-world optimization problems, and these

FIGURE 9
Illustration on the representation of uncertainties: (A) parameters’ range for the best cluster of solutions obtained by the hybrid approach in
sorption % units and (B) corresponding spread for two simulated dependences.
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quasi-random behavior patterns can be efficiently reproduced for

the purposes of searching for the optimum for the “black-box”

model. Heuristic optimization methods are known to be efficient

tools for fitting models to experimental data in various fields,

including geochemical modeling (Villegas-Jiménez and Mucci,

2009; Shi et al., 2014; Abdelaziz et al., 2019; Stolze et al., 2019).

Despite the advantages of heuristic optimization methods

(namely, abilities for global search of the optima for high-

dimensional multimodal nondifferentiable functions) and their

widespread acceptance, the previous generations of optimization

methods, i.e. local methods such as Levenberg-Marquardt

gradient-based algorithm or Nelder-Mead downhill simplex

algorithm (Venter, 2010) are also still in use (Elo et al., 2017;

Komárek et al., 2018; Morelová et al., 2020; Mosai et al., 2021).

Partly this is because these old methods are fast and efficient,

typically require little problem-specific tuning, and are also

FIGURE 10
Steps of the optimization process from the perspective of experts’ decisions.
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frequently incorporated into the well-known modeling toolboxes

such as FITEQL (Herbelin and Westall, 1999), PEST (Doherty,

2015), UCODE_2005 (Poeter et al., 2005). To overcome the

locality of their search through the parametric space, some

modifications are often introduced, such as multiple starts

from different random points in the parametric space

(Bompoti et al., 2019). That, strictly speaking, transforms the

initial local method into one another heuristic approach. It is

noteworthy as we can see even from the current paper multiple

starts could be helpful for heuristic optimization as well, but in

this case to overcome the whole different layer of issues.

Coming back to the optimization technique choice it is fair to

mention the main drawback of heuristic methods formulated in

the «no-free-lunch theorem of optimization» (Wolpert and

Macready, 1997): there is no general-purpose and universal

best optimization strategy, and the only way for one heuristic

algorithm to outperform another is to be adjusted to the structure

of the specific problem.

Analyzing the experience of this case study, we could point

out at least a couple of desired characteristics of the

optimization technique that could be beneficial in

connection to the adjustment optimization methods

specifically for parameter optimization of surface

complexation models. In particular, two types of approaches

seem to be worth exploring in this context: multimodal

optimization methods (Li et al., 2017) and heuristic methods

for constrained optimization (Kulkarni et al., 2021). On the

other hand, optimization procedures that are employing

different kinds of regularization (Liu et al., 2018) should be

used very carefully. That is because their main strength, namely,

to obtain any satisfactory solution as fast as possible, could do a

disservice in the situation when we want to explore the

variability of possible solutions.

Another significant issue with global optimization

procedures lies in the presentation of the confidence bounds

of the optimization results. Since parameter optimization is an

inseparable part of the whole process of dealing with model

uncertainties (Saveleva et al., 2021), it seems odd not to mention

the uncertainty of the optimization results. The matter is that the

confidence assessment of optimization results for linear models

obtained using local search methods is rather straightforward.

Assuming that deviations between predicted and experimental

data follow a normal probability distribution, the confidence

region defines a hyperellipsoid in the parameter space, with the

best estimate of model parameters placed at the center (Schwaab

et al., 2008; Wang et al., 2015). On the other hand, when we are

dealing with complex nonlinear problems with multiple optima

(as in the case of surface complexation model fitting), the

assumption that the confidence region is an ellipsoid is

obviously very far from reality because these regions could be

not only nonelliptical but even unbounded, nonconvex and

composed of unconnected parts. In this case, likelihood

confidence regions could be used as a more accurate

representation of obtained solution uncertainty (Schwaab

et al., 2008; Tolazzi et al., 2018).

In this paper, the proposed optimization procedure allowed

us to address this issue from another angle. In particular, the

clustering step allowed us to decompose the uncertainty of

optimization results into two separate components: multiple

possible solutions and the spread within each of them.

Corresponding plots for the hybrid conceptual model are

shown in Figure 5D and Figure 9.

The bottom line is that while developing a surface

complexation model we are dealing not only with

uncertainties associated with models’ parameters but also with

multiple conceptual decisions, and these decisions are not always

made transparently yet they could result in significantly

dissimilar outcomes of the optimization. In this work, we are

not in a position to recommend one and only right choice for

each of them, but we attempted to identify these decisions

explicitly and provide some consideration on possible options

in Figure 10.

4 Conclusion

In this paper, we investigated the sorption of different

radionuclides onto goethite using the surface complexation

modeling approach. A wide range of sorption data with

varying experimental conditions is essential for SCM

parametrization. Therefore, large datasets were collected to

ensure more reliable values of sorption constants. A

substantial effort was undertaken both to obtain quality

experimental data on U(VI), Np(V), and Eu(III) sorption over

a wide range of total concentrations and to analyze the available

published data.

Over the course of the model development, the concept of

using two types of sorption sites (strong and weak) was

approved based on both theoretical and experimental

evidence. Then, in an effort to obtain a more feasible and

substantiated model description of the experimental data,

three modeling approaches were tested. First, the

monodentate approach assumes only monodentate

complex formation. The second, the polydentate

approach, presumes the formation of surface species with

a neutral charge as a result of sorption. And third, the hybrid

approach proposed in the current work anticipates the

formation of monodentate complexes with strong sites

and polydentate with weak sites. Overall all three

modeling approaches could produce appropriate

simulation results given properly adjusted parameters.

However, in the case of the monodentate approach, more

parameters are required for a better description at higher

pH values compared to other methods.

Parameter optimization of the proposed models was

performed by the multi-start optimization procedure
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developed on the basis of the PSO heuristic algorithm with

filtering and clustering stages. This approach made it possible

not only to obtain some satisfactory set of parameters but to

identify and compare different variants of parametrization for

each model.

The analysis of possible modeling approaches and their

parametrization raises the discussion on approaches and

challenges for a unified numerical description of sorption

processes. In our opinion, one of the most critical problems is

the difficulty of determining the concentration of sorption sites,

especially strong ones. Not least relevant is also the problem of

choosing sorption reaction equations. Several conceptual

decisions could affect the outcome of the parametrization

process and, therefore, should be made transparently.

Finally, the developed models were tested by adding the

literature data on two other cations, Cd(II) and Zn(II). It resulted

in the construction of a reliable model that could adequately

describe the sorption of at least five cations simultaneously and

could probably be extended using the obtained LFER.
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