
Oxygen potential, oxygen diffusion,
and defect equilibria in UO2±x

Masashi Watanabe* and Masato Kato

Fuel Cycle Design Office, Japan Atomic Energy Agency, Oarai-machi, Japan

Since the oxygen potential and the oxygen diffusion coefficient of UO2 have a
significant impact on fuel performance, many experimental data have been obtained.
However, experimental data of the oxygen potential and the oxygen diffusion
coefficient in the high temperature region above 1673 K are very limited. In the
present study, we aimed to obtain these data and analyze them by defect chemistry.
the oxygen potentials and the oxygen chemical diffusion coefficient of UO2 were
measured by the gas equilibrium method in the near stoichiometric region at
temperatures ranging from 1673 to 1873 K. A data set of oxygen potentials was
made together with literature data and analyzed by defect chemistry. The oxygen
potential of UO2 was determined as a function of O/U ratio and temperature, and an
equation representing the relationship was derived. The oxygen chemical diffusion
coefficient values obtained in this study were reasonably close to the literature
values. The oxygen partial pressure dependence of the oxygen chemical diffusion
coefficients was predicted from the evaluated results of the oxygen potential data,
but no clear dependence was observed.
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1 Introduction

It is well-known that UO2, which has a fluorite structure, is a non-stoichiometric oxide that
is stable in the hyper-stoichiometric composition range. It has also been shown that UO2 can
lose oxygen to form a hypo-stoichiometric phase at high temperatures and low oxygen
potentials. Many researchers have investigated oxygen potentials to determine the oxygen-
to-uranium (O/U) ratio and chemical stability (Aronson and Belle 1958; Markin TL. and Bones
RJ. 1962; Aukrust, Forland, and Hagemark 1962; Markin TL. and Bones RJ. 1962; Aitken,
Brassfield, and Fryxell 1966; Hagemark and Broli 1966; Markin, Wheeler, and Bones 1968;
Tetenbaum and Hunt 1968; Ackermann, Rauh, and Chandrasekharaiah 1969; Wheeler 1971;
Javed 1972; Wheeler and Jones 1972; Chilton and Edwards 1980; Ugajin 1983), because its
stoichiometry significantly affects thermal properties and fuel performance. Ugajin (1983)
investigated the near-stoichiometric region by thermogravimetry in a mixed-gas atmosphere of
CO/CO2. Oxygen partial pressure was determined in situ with a stabilized zirconia oxygen
sensor. Aronson and Belle (1958) and Markin and Bones (1962) determined the oxygen
potential for O/U ratios in the range of 2.01 to 2.53 by the electromotive force (EMF) method.
The oxygen potential in UO2−x was also measured at temperatures above 1873 K using H2 and
CO gases (Wheeler 1971; Javed 1972), and various methods were employed in the
measurements. However, the data were scattered over a range larger than 200 kJ/mol,
especially when located in the near-stoichiometric region because of difficulty in
determining the O/U ratio and oxygen potential pressure. The relationship between the
O/U ratio, the temperature, and the oxygen potential has been represented in previous
works. Lindemer and Besmann (1985) derived the relationship from the literature data and
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the classical thermodynamic theory for a solid solution. Some studies
represented the relationship by means of the thermodynamic database
(Guéneau et al., 2002; Baichi et al., 2006).

The diffusion kinetics for the oxygen ions in oxide fuels are
closely involved in diffusion-controlled phenomena such as
oxidation and reduction, sintering, and irradiation behavior. For
this reason, the oxygen diffusion coefficients of UO2 have been
measured since the 1960s (Auskern and Belle 1961; Belle 1969;
Bittel, Sjodahl, and White 1969; Marin and Contamin 1969; Lay
1970; Murch, Bradhurst, and De Bruin 1975; Breitung 1978; Murch
and Thorn 1978; Kim and Olander 1981; Bayoglu and Lorenzelli
1984; Ruello et al., 2004). The oxidation and reduction of oxide
fuels rely on chemical diffusion in thermodynamically non-ideal
systems where oxygen ions are the faster species. The oxygen
chemical diffusion coefficient, ~D, is generally obtained by
measuring weight changes or electrical conductivity changes
during redox reactions (Bittel, Sjodahl, and White 1969; Lay
1970; Bayoglu and Lorenzelli 1984; Ruello et al., 2004) and has
been measured over a wide temperature range; but there are very
few reports above 1673 K.

In this work, the oxygen potentials of UO2 were obtained in hyper-
stoichiometric compositions by the gas equilibrium method, a
Brouwer diagram was constructed, and correlations to represent
the O/U ratio were derived as functions of temperature and oxygen
partial pressure. In addition, the oxygen chemical diffusion
coefficients of UO2+x in the temperature range above 1673 K were
measured and compared with literature data, and the dependence of

oxygen chemical diffusion coefficients on oxygen partial pressure was
discussed.

2 Experimental procedures

Samples of UO2 were prepared by powder metallurgy, with UO2

powder made by the ammonium diuranate (ADU) process used as the
starting material. The main impurities contained in the raw powder
are listed in Table 1. The powder was pressed into a disk-like sample
and sintered at 1973 K for 2.5 h in a gas mixture of 4.5% H2–Ar, with
addedmoisture. The amount of moisture was adjusted by passing 4.5%
H2–Ar mixed gas through a water bath kept at a constant temperature.
The sample weight was 331.91 mg, and the size was 4.253 mm in
diameter by 2.275 mm in thickness.

The oxygen potential and the oxygen chemical diffusion
coefficient measurements were carried out at 1673 K, 1773 K, and
1873 K by the gas equilibriummethod using a thermogravimeter (TG-
DTA 2000SA, Bruker AXS). The uncertainty of the thermogravimeter
was ±0.01 mg, which corresponds to ±0.0005 in the O/U ratio. In the
measurements, it was observed that the sample weight was reduced by
60 μg/h. It was concluded that the high vapor pressure of the UO3

species caused the large weight reduction. Due to the small sample
volume and short time to reach equilibrium, the measurement of a
data point was carried out in less than 30 min; therefore, the
uncertainty in the O/U ratio determination was estimated to
be ±0.00015.

The oxygen partial pressure in the atmosphere was controlled
by the equilibrium reaction of H2O = H2 + 1/2O2 and determined
by oxygen sensors that measured the oxygen partial pressure at
the equipment inlet and outlet. The gas phase equilibrium was
related to the standard Gibbs free energy of formation of water,
ΔGf (J/mol), by the following equations (Kubaschewski and
Alcock 1979)

TABLE 1 Impurities in the UO2 raw powder.

Element Concentration (ppm)

Ag <0.2

Al <10

B <0.3

Bi <5

Ca <10

Cd <0.6

Cr <10

Cu <1

Fe 10

Mg <2

Mn <6

Mo <10

Ni <10

Pb <10

Si <10

Sn <10

Ti <10

V <10

Zn <50

FIGURE 1
Oxygen potential measurement results at 1673 K, 1773 K, and
1873 K.
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ΔGf � RT ln
PH2O

PH2P
1/2
O2

, (1)

ΔGf � −246440 + 54.8T. (2)
where R is the gas constant (8.3145 J/K/mol) and T is absolute
temperature. Eq. 1 represents the value from 298 K to 2500 K. The
ratio of PH2O/PH2 was calculated using PO2, which was monitored at
973 K using an oxygen sensor. The PO2 of the atmosphere in the
thermogravimeter at higher temperature was calculated under the
assumption that the PH2O/PH2 ratio had the same value at the oxygen
sensor and the thermogravimeter. The Δ �GO2 was described by the
following equation

Δ �GO2 � RT lnPO2. (3)
The uncertainty of Δ �GO2 was estimated to be ±10 kJ/mol from the

difference of PO2 between the inlet and outlet gas. In the
measurements, the change in specimen weight was measured in
response to changes in PO2 which were controlled by the ratio of
PH2O/PH2. Equilibrium conditions were obtained in a relatively short
time (~15 min) because of the smallness and thinness of the specimen
disk. An effect of vaporization of the specimen on measurement data
was not observed.

3 Results

The oxygen potential was measured at temperatures of 1673 K,
1773 K, and 1873 K, and data are shown in Figure 1. The PO2 slightly
increased with temperature, depending on the O/U ratio. The
relationship between PO2 and x is plotted in Figure 2. In this
figure, the well-known proportionality relationship between PO2

and deviation x from stoichiometry was observed:

x∝P1/n
O2
, (4)

where n is a characteristic number identifying the type of point defect
in agreement with literature data (Aronson and Belle 1958; Wheeler
1971; Javed 1972;Wheeler and Jones 1972). The figure shows that the

present data changed in accordance with the relationship of n = +2.
The literature data were also plotted in the figure and analyzed using
the relationship of Eq. 4. In the higher PO2 region, the relationship
was n = +6. In the hypo-stoichiometric region, it was observed to be
n = −3, as previously reported (Tetenbaum and Hunt 1968; Javed
1972).

Since the specimen used in this work had the shape of a planar
sheet, the diffusion equation was set up for planar sheet geometry with
a thickness of 2L. If the sheet is initially at a uniform concentration, C1,
and the surface condition (Crank 1979) is such that

−DzC

zx

∣∣∣∣∣∣∣x�±l � k C0 − Cs( ), (5)

where D is the diffusion coefficient, C is the concentration of diffusing
substance in the planar sheet, k is the rate constant for surface reaction,
Cs is the actual concentration just within the planar sheet, and C0 is the
concentration required to maintain equilibrium with the surrounding
atmosphere. The obtained solution is

FIGURE 2
Relationships among oxygen partial pressures and deviations, x, in UO2±x.

TABLE 2 Experimental conditions, oxygen chemical diffusion coefficient ~D, and
surface reaction rate constant, k.

No. Temperature °K O/U ratio ~D k

Initial Final (m2/s) (m/s)

1 1673 2.116 2.082 3.73 × 10–8 9.52 × 10–7

2 1673 2.082 2.062 1.05 × 10–9 2.77 × 10–6

3 1673 2.074 2.037 3.47 × 10–8 2.99 × 10–6

4 1673 2.020 2.004 8.36 × 10–9 1.03 × 10–5

5 1773 2.115 2.070 8.66 × 10–8 2.39 × 10–6

6 1873 2.133 2.101 1.16 × 10–8 1.57 × 10–6

7 1873 2.101 2.080 2.38 × 10–7 2.45 × 10–6

8 1873 2.068 2.050 6.24 × 10–8 3.87 × 10–7

9 1873 2.050 2.028 1.20 × 10–8 7.45 × 10–6
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C − C1

C0 − C1
� 1 −∑∞

n�1
2L cos βnx/l( ) exp −β2nDt/l2( )

β2n + L2 + L( ) cos βn , (6)

where the βn values are the positive roots of

β tan β � L. (7)
and

L � lk/D. (8)
is a dimensionless parameter. The total amount of diffusing

substance, Mt, entering or leaving the sheet up to time t is
expressed as a fraction of M∞, the corresponding quantity after
infinite time, by

Mt

M∞
� 1 −∑∞

n�1
2L2 exp −β2nDt/l2( )
β2n β2n + L2 + L( ) . (9)

The measured data were fitted by Eq. 9 using D and k as
parameters. The experimental conditions and the fitting results are
listed in Table 2, and Figure 3 shows the weight-change curve and the
fitted curve at 1673 K. Good agreement can be seen between the
experimental data and the fitted curve. The error in the oxygen
chemical diffusion coefficient was calculated to be 84%. It is
presumed that the periodic noise from the thermogravimeter
degraded the fitting accuracy.

4 Discussion

The relationships among n = +6, +2, and −3 are shown in Figure 2.
Two types of Brouwer diagram are proposed depending on the kinds
of dominant point defects: intrinsic defects and Frenkel defects. The
reported electrical conductivity measurements showed that the
electronic conduction mechanism was observed, therefore, it is
assumed that intrinsic defects were dominant in the stoichiometric
composition. Cooper et al. (2018) calculated a Brouwer diagram of

UO2 using an ab initio approach in which intrinsic defects were
dominant. In the near stoichiometric region, defect equilibria were
considered in reactions (10)–(13):

O×
O → V··

O + 2e′ + 1
2
O2. (10)

1
2
O2 → O″

i + 2h·. (11)
null → e′ + h·. (12)
O×

O → V··
O +O″

i . (13)
The equilibrium constants in the aforementioned defect reactions

can be described by Eqs 14–17, respectively:

KV � V··
O[ ] e′[ ]2P1/2

O2
, (14)

KO � O″
i[ ] h·[ ]2P−1/2

O2
, (15)

Ki � e′[ ] h·[ ], (16)
KF � V··

O[ ] O″
i[ ]. (17)

In the case where intrinsic defects are dominant, the defect
concentrations of e′ and h· dominate over those of V··

O and O″
i .

Therefore, [e′] � [h·] near the stoichiometric region. The following
Eqs 18–20 were obtained from 14–17:

e′[ ] � h·[ ]� Ki
1/2, (18)

O″
i[ ] � KO

Ki
( ) · P1/2

O2
� Kn�+2 · P1/2

O2
, (19)

V··
O[ ] � KV

Ki
( ) · P−1/2

O2
� Kn�−2 · P−1/2

O2
. (20)

KF was obtained from experimental and literature data in the
near-stoichiometric region as follows:

KF � Kn�−2 · Kn�+2 � KVKO

K2
i

. (21)

In the oxidation region where n = +2, the (2:2:2) Willis cluster
(Willis 1987) was assumed as follows:

2O×
O +O2 → 2Oa

i 2O
b
i 2VO( )′ + h· for n � +2. (22)

The equilibrium constant in the aforementioned defect reaction
can be described by the following equation:

Kox � 2Oa
i 2O

b
i 2VO( )′[ ] h·[ ]P−1

O2
. (23)

[O″
i ] can be written as

O″
i[ ] � 2 2Oa

i 2O
b
i 2VO( )′[ ] � 2K1/2

ox P
1/2
O2
. (24)

In the hypo-stoichiometric region, n = −3 has been reported by
previous studies (Tetenbaum and Hunt 1968; Javed 1972). Kofstad
proposed that interstitial uranium ions with two effective charges, M··

i ,
predominated in this region (Kofstad 1972). The following reaction
was assumed:

2O×
O +M×

M → M··
i + 2e′ +O2 for n � −3, (25)

M··
i[ ] � 1

2
2Kn�−3( )1/3P−1/3

O2
. (26)

In the oxidation region where n = +6, more complex defects were
expected; however, there have been no reports describing this
relationship. Defect reactions were not assumed in this region, and

FIGURE 3
Experimental data and fitted curves after variation of the O/U ratio
from 2.082 to 2.062 at 1673 K. The experimental data correspond to No.
2 in Table 2.

Frontiers in Nuclear Engineering frontiersin.org04

Watanabe and Kato 10.3389/fnuen.2022.1082324

https://www.frontiersin.org/journals/nuclear-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fnuen.2022.1082324


only the relationship of n = +6 was described by the following
equation:

O″
i[ ] � Kn�+6P1/6

O2
. (27)

The relationships of n = +2 and −2 should be observed in the near-
stoichiometric region because intrinsic ionization dominates. The
relationships among n = −3, +2 and +6, are shown in Figure 2.
The experimental data were fitted by Eqs. 26 and 19–27 assuming that
x = [M··

i ], [V··], or [O″], and the equilibrium constants were obtained
for each temperature. The equilibrium constant, K, in the defect
reactions can be written as

K � exp
ΔS
R

( ) exp −ΔH
RT

( ). (28)

Enthalpy, ΔH (J/mol), and entropy, ΔS (J/mol/K), for the
equilibrium constants were evaluated as follows:

Kn�−3 � exp
95.0
R

( ) exp −1079.1 × 103

RT
( ). (29)

Kox � exp
−38.1
R

( ) exp 173.0 × 103

RT
( ). (30)

Kn�+6 � exp
−81.0
R

( ) exp 130.0 × 103

RT
( ). (31)

In addition, it was assumed that Eq. 19 equals Eq. 24. The ΔH
and ΔS in each region are shown in Table 3. Eqs 17–27 describe the
Brouwer diagram as shown in Figure 4. The figure shows that
the Brouwer diagrams at 1673, 1773, and 1873 K represented
the experimental data very well. The Brouwer diagram can
give the defect concentrations of [V··

O] and [O″
i ]. The O/U

ratio can be described as Eq. 32, when the main defects are [V··
O]

or [O″
i ]:

O
U
 ratio � 2 − V··

O[ ] + O″
i[ ]. (32)

[V··
O] and [O″

i ] can be described in Eqs. 33 and 34 using Eqs.
19–27, respectively. The indices −5 and −1/5 are parameters that
represent x near the boundary between each line:

V··
O[ ] � Kn�−2P−1/2

O2
( )−5 + 2Kn�−3( )1/3P−1/3

O2
( )−5{ }−1/5

, (33)

O″
i[ ] � Kn�+2P1/2

O2
( )−5 + Kn�6( )1/3P−1/6

O2
( )−5{ }−1/5

. (34)

Eq. 32 was rewritten as Eq. 35 using Eqs 33 and 34, which can
represent the O/U ratio as functions of PO2 and T:

O
U
 ratio � 2 − { exp

32.0
R

( ) exp −464500
RT

( )P−1/2
O2

( )−5

+ 2 exp
95.0
R

( ) exp −1079100
RT

( )( )1/3

P−1/3
O2

( )−5}
−1/5

+⎧⎨⎩ exp
5.0
R

( ) exp 60000
RT

( )P1/2
O2

( )−5

+ exp
−81.0
R

( ) exp 130000
RT

( )( )1/3( )P1/6
O2

( )−5⎫⎬⎭
−1/5

.

(35)
Eq. 35 gives the relationships between oxygen potential,

temperature, and composition in UO2±x. Figure 5 shows the
relationships between x, T, and PO2 and literature data (Aronson
and Belle 1958; Wheeler 1971; Javed 1972; Wheeler and Jones 1972).

The ΔH and ΔS for the equilibrium constants were assessed as
shown in Table 3. The formation energies of O″

i , V
··
O, (V··

O +O″
i ), and

(e′ + h·) in UO2 were -60.0 kJ/mol, 464.5 kJ/mol, 404.5 kJ/mol, and
300.0 kJ/mol, respectively. The Frenkel defect formation energy was
compared with literature data (Catlow and Lidiard 1974; Catlow 1977;
Clausen et al., 1984; Jackson et al., 1986; Matzke 1987; Murch and
Catlow 1987; Petit et al., 1998; Crocombette et al., 2001; Freyss, Petit,
and Crocombette 2005; Iwasawa et al., 2006; Gupta, Brillant, and
Pasturel 2007; Terentyev 2007; Yun and Kim 2007; Nerikar et al., 2009;
Tiwary, van de Walle, and Gronbech-Jensen 2009; Yu, Devanathan,
and Weber 2009; Staicu et al., 2010; Andersson et al., 2011; Freyss
et al., 2012; Konings and Benes 2013; Vathonne et al., 2014), as shown

TABLE 3 Defect formation energies of UO2 and PuO2.

UO2 PuO2 (Kato et al., 2017)

ΔH (kJ/mol) ΔS (J/mol/K) ΔH (kJ/mol) ΔS (J/
mol/K)

Kn�+6 -130 -81.0 - -

Kox -173.0 -38.1 - -

Kn�+2 -60.0 5.0 159.3 -4.66

Kn�−2 464.5 32.0 282.5 54.66

Kn�−3 1,079.1 95.0 - -

Ki 300.0 85.1 325 85

KF 404.5 37.0 441.8 50

KO 240.0 90.1 484.3 80.34

Kv 764.5 117.1 607.5 134.7

FIGURE 4
Brouwer diagram of UO2±x at 1673 K, 1773 K, and 1873 K.
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in Figure 6. The present data approximately corresponded to
literature data, which were obtained by experiments and
calculations. The Frenkel defect formation energies of UO2were
compared with those of PuO2 (Kato et al., 2017) and they are
almost the same (Table 3). The formation energy value for O″

i is
lower in UO2 than in PuO2, -60.0 kJ/mol and 159.3 kJ/mol,
respectively. Conversely, the formation energy value for V··

O is
lower in PuO2 than in UO2, 282.5 kJ/mol and 464.5 kJ/mol,
respectively. These differences are caused by changing from M4+

to U5+ and Pu3+, respectively, in UO2 and PuO2.

Figure 7 shows a comparison between the experimental data
(Aronson and Belle 1958; Markin TL. and Bones RJ. 1962; Aukrust,
Forland, and Hagemark 1962; Markin TL. and Bones RJ. 1962;
Aitken, Brassfield, and Fryxell 1966; Hagemark and Broli 1966;
Markin, Wheeler, and Bones 1968; Tetenbaum and Hunt 1968;
Ackermann, Rauh, and Chandrasekharaiah 1969; Wheeler 1971;
Javed 1972; Wheeler and Jones 1972; Chilton and Edwards 1980;
Ugajin 1983) and the calculated results of the oxygen potential of
UO2. The results of the calculations represent the data within
σ = ±51 kJ/mol. It can be seen that there is no large discrepancy

FIGURE 5
Comparison of deviation from stoichiometry vs temperature and oxygen partial pressure with calculated results using Eq. (35). (A) hypo-stoichiometric
region; (B) hyper-stoichiometric region.

FIGURE 6
Comparison of Frenkel defect formation energy in UO2±x.
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between the calculated values and the literature values in the
hyper-stoichiometric composition range, but there is a large
discrepancy in the near- and hypo-stoichiometric regions where
there are few experimental data (Figure 7). Especially in the near-
stoichiometric region, further expansion of experimental data is
necessary, but it is greatly affected by impurities (Maillard et al.,
2022); thus, it is necessary to reduce the impurities in the sample to
obtain highly accurate data.

Figure 8 shows the comparison between the oxygen chemical
diffusion coefficients measured in this study and the literature data
(Bittel, Sjodahl, and White 1969; Lay 1970; Breitung 1978; Bayoglu
and Lorenzelli 1979; Ruello et al., 2004; Berthinier et al., 2013). The

data obtained in this study have larger values than those reported
by Bittel et al. and Breitung, but smaller values than those in the
near-stoichiometric composition proposed by Berthinier et al.
(2013). The data reported by Bittel et al. are the only
experimental data in the temperature range above 1673 K. They
evaluated the oxygen chemical diffusion coefficients from the
results of the steam oxidation of UO2, but it was pointed out
that the U4O9 phase was formed on the sample surface, which
caused the evaluated oxygen chemical diffusion coefficients to be
lower (Breitung 1978). According to the calculation results

FIGURE 7
Comparison between measured and calculated data.

FIGURE 8
Comparison between oxygen chemical diffusion coefficients in this
work and literature data.

FIGURE 9
Dependence of measured oxygen chemical diffusion coefficients
on oxygen partial pressure with calculation results. Solid lines show the
calculation results of the oxygen chemical diffusion coefficients. Dashed
lines show the calculation results of oxygen self-diffusion
coefficients.
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reported by Berthinier et al., the oxygen chemical diffusion
coefficients had maximum values near the stoichiometric
composition and decreased with increasing deviation from the
stoichiometric composition (Berthinier et al., 2013). Thus, the
oxygen chemical diffusion coefficients measured in this study can
be considered reasonable, in general. The dependence of the
measured diffusion coefficients on oxygen partial pressure is
shown in Figure 9. The oxygen chemical diffusion coefficients
and the oxygen self-diffusion coefficients (D*) are related by
Darken’s relationship as given by:

~D � 2 ± x

2x
D* ±

zlogPO2

zlogx
( ), (36)

where the positive and negative signs apply to the hyper- and hypo-
stoichiometric ranges, respectively. The oxygen self-diffusion
coefficient follows the equation of (Berthinier et al., 2013;
Watanabe, Kato, and Sunaoshi 2020)

D* � D0
VO

V··
O[ ] exp −ΔH

m
VO

RT
( ) + 2D0

Oi
O″

i[ ] exp −ΔH
m
Oi

RT
( ), (37)

where D0
VO

is the pre-exponential term for the oxygen vacancy
diffusion, D0

Oi
is the pre-exponential term for oxygen interstitial

diffusion, ΔHm
VO

is the migration energy of the oxygen vacancy,
and ΔHm

Oi
is the migration energy of the oxygen interstitial. The

[V··
O] and [O″

i ] in Eq. 37 can be calculated by Eqs 33 and 34. The
oxygen self-diffusion coefficient can be calculated by using the pre-
exponential terms and the migration energies evaluated by Kato et al.
The oxygen chemical diffusion coefficients can be derived from Eqs 36
and 37, and the calculation results are shown in Figure 9. Since the
oxygen chemical diffusion coefficients were measured in the regions of
n = +2 and n = +6, it is considered that the oxygen diffusion
coefficients were dependent on the oxygen partial pressure;
however, the oxygen partial pressure dependence was not clearly
observed in this study.

5 Conclusions

The oxygen potentials and oxygen chemical diffusion coefficients of
UO2 were measured by the gas equilibriummethod. A data set of oxygen
potential was made and analyzed based on defect chemistry. The
relationships between deviation x from stoichiometric composition
and the oxygen partial pressure were investigated. Defect equilibrium

constants were evaluated by fitting the experimental data and defect
formation energies were determined and used to construct a Brouwer
diagram. The correlation with UO2 oxygen potential was then derived.
The correlation described the oxygen potential very well even in the near-
stoichiometric composition range. The oxygen Frenkel formation energy
was estimated to be 404.5 kJ/mol, which was in good agreement with
literature values. As a result of comparisonwith the literature values, it was
found that the values of the oxygen chemical diffusion coefficients
obtained in this study were generally reasonable. The oxygen partial
pressure dependence of the oxygen chemical diffusion coefficient was
predicted from the evaluated results of the oxygen potential data, but no
clear dependence was observed.
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