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The diffusion phenomena in uranium–plutonium mixed oxides U1−yPuyO2

dictate the physicochemical properties of mixed oxides (MOX) nuclear fuel

throughout manufacturing, irradiation, and storage. More precisely, it is

paramount to estimate the cation interdiffusion insofar as it dovetails with

the actinide redistribution during sintering and under irradiation. This paper

draws a critical review of the existing experimental data of U and Pu

interdiffusion coefficients in MOX fuel.
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1 Introduction

The diffusion phenomena in solids dictate their physicochemical properties, such as

redox behavior, melting point, recrystallization, creep, sintering, and ionic conductivity,

among others. In the nuclear industry, these diffusion properties are of paramount

interest since they directly impact the in-pile performances of the fuel and hence the safety

of the reactor. For instance, uranium–plutonium U1−yPuyO2 mixed oxides (MOX), with

various compositions, are used for decades for nuclear power all over the world (Olander,

2009; Baron et al., 2020; Kato et al., 2020; Dudarev, 2022; Kato and Machida, 2022).

During their lifetime, MOX fuel pellets undergo the harshest temperature, atmosphere,

and irradiation conditions. More precisely, green compacts are sintered at elevated

temperature, usually around 2,000 K, in highly reducing atmosphere (hydrogen-

containing gas mixture) (Ramaniah, 1982; Okita et al., 2000; Vauchy et al., 2014a).

Under irradiation, because of the concomitant fission reactions and the coolant’s action, a

thermal gradient (up to ~300 K/mm) occurs along the MOX pellet radius and induces a

rapid restructuring of the fuel (Bober et al., 1973; Noirot et al., 2008; Maeda et al., 2009a;

Maeda et al., 2009b; Van Uffelen et al., 2010; Ishimi et al., 2019; Kato and Greenspan,

2021; Ozawa et al., 2021). During both these high temperature stages, actinide cations

migrate to mix up and segregate, respectively. MOX fuels are therefore always subjected to

strong chemical gradients (oxygen and cations). Due to their outstanding atomic weight

(MU−Pu ≥ 238 u), these actinides hardly move and need a significant addition of energy to

diffuse, hence the extreme sintering temperature.
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As their chemical and radiological toxicities are potentially

lethal (International Commission on Radiological Protection,

1996; Voeltz, 2000; Rodriguez and Wexler, 2014), Pu-bearing

solids need to be handled in dedicated confined environments

(glove boxes); thus, they are challenging to study. Only a handful

of diffusion coefficients in actinide-bearing oxides are published,

anionic and cationic combined. Particularly, the physicochemical

processes associated with cation diffusion are remarkably

complex, and their scanty migration is hardly measurable.

Within this frame, this paper draws a review of the available

experimental data on cation interdiffusion coefficients in U–Pu

dioxides, since they are the very key for manufacturing and in-

pile behaviors.

2 Crystal structure and defect
chemistry of actinide dioxides

Actinide dioxides (AnO2) are known to crystallize in a

fluorite structure (CaF2 type), space group Fm3m (#225),

where the cations are located in the face-centered cubic lattice

(noted f.c.c.) and the oxygen anions in tetrahedral sites (Figure 1)

(Fahey et al., 1974).

Even at room-temperature, this crystal structure can

accommodate large deviations from oxygen stoichiometry

(O/An = 2) as evidenced in the pure poles UO2+x (Geønvold

and Haraldsen, 1948), PuO2−x (Gardner et al., 1965), AmO2−x

(Chikalla and Eyring, 1968), CmO2−x (Mosley, 1972), BkO2−x

(Baybarz, 1968), and CfO2−x (Baybarz et al., 1972) as well as in

the respective solid solutions, the most studied being U1−yPuyO2±x

Markin and Street, 1967), U1−yAmyO2±x (Bartscher and Sari,

1983), and Pu1−yAmyO2−x (Vauchy et al., 2017).

These deviations from stoichiometry and irradiation defects

both induce severe lattice defects and can also enhance atomic

diffusion (Kilner et al., 1981; Matzke, 1983a; Ferry et al., 2005;

Smirnov and Elmanov, 2016). Due to the large mass of the

actinide atoms, cationic vacancies and/or interstitials are

unprobeable; thus, only the anion sub-lattice (oxygen)

supports the defects (Belle, 1961; Atlas et al., 1966; Matzke

and Sørensen, 1981; Matzke, 1987), namely, oxygen vacancies

(V••
O and V•

O) and interstitials (O″
i ) for O/An ≠ 2 compositions

and electron/hole (e′/h•) pairs in the AnO2 region (Cristea et al.,

2007; Kato et al., 2017a). The migration of oxygen point defects

(vacancies and interstitials) is the main mechanism responsible

for diffusion in oxide fluorite type structures and more precisely

in actinide dioxides (Crank, 1957; Matzke, 1990; Murch, 2001).

3 Interdiffusion vs. self-diffusion

Diffusion in binary substitutional solid solutions is called

interdiffusion. This corresponds to the thermally activated

atomic transport of species in a chemical potential field as

they tend to rearrange to uniformize the molecular

distribution in the medium. Interdiffusion then describes

the tendency of two materials of different chemical

FIGURE 1
AnO2 fluorite structure (atoms drawn proportionally to the
ionic radii of U and O).

FIGURE 2
Schematic representation of (A) AnO2/BnO2 and (B) AnO2/
An1−yBnyO2 interdiffusion couples.
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compositions (usually as a diffusion couple) to homogenize

as a function of thermodynamic conditions. Figures 2A,B

schematically illustrates two examples of diffusion couples,

AnO2/BnO2 and AnO2/An1−yBnyO2, respectively (An and Bn

having different Z numbers). In both cases, a cationic

chemical gradient exists between the two lattices and

hence can be defined as interdiffusion.

Once the chemical equilibrium is established, i.e., no

chemical gradient remains, the diffusion phenomena that take

place in such a medium only correspond to the Brownian motion

of the constituting atom. This is known as the self-diffusion

(Crank, 1957; Murch, 2001; Mehrer, 2007).

Studies on actinide dioxides often report “tracer diffusion” of

a given species, which are claimed to be “self-diffusion.” Figure 3

shows a schematic representation of the three experimental cases

encountered in the literature for cation “self-diffusion”

measurements in AnO2.

The first case (Figure 3A) corresponds to contacting two

samples of the exact same chemical composition AnO2 but with

different isotopic compositions, one being enriched in a given

isotope yAn compared with the host material (xAn). The couple is

then annealed, allowing yAnO2 to diffuse in xAnO2, and the
yAn/xAn diffusion profile is analyzed. To the best of our

knowledge, this is the very definition of measuring self-

diffusion. Unfortunately, this type of experimental study is

rarely carried out on actinide dioxides (Nagels et al., 1966;

Sabioni et al., 1998). Albeit being of prime importance, these

results are excluded from the discussion as this review focuses on

interdiffusion.

On the other hand, a chemical gradient cannot be excluded in

the next two examples of “tracer diffusion” experiments. The

associated published data on (U, Pu)O2 will then be considered in

this review, in addition to the “real” interdiffusion

measurements.

The second case (Figure 3B) shows the typical experimental

procedure proposed in the literature to investigate An self-

diffusion in AnO2 (Auskern and Belle, 1961; Schmitz and

Lindner, 1963; Alcock et al., 1966; Yajima et al., 1966; Matzke,

1969; Matzke, 1973; Matzke, 1983b; Glasser-Leme and Matzke,

1983; Ma, 2017). Normally, this technique consists in depositing

a thin layer (by evaporation/condensation) of a pure isotope yAn

(usually more α-active than xAn, e.g., 238Pu or 233U) on a polished

surface of a specimen xAnO2 (UO2, PuO2, or their solid solution),

and the migration of this species is observed in the host lattice

using α-spectrometry (Marin and Coniglio, 1966; Hawkins and

Alcock, 1968). It is very unlikely that the deposited layer and the

substrate material are of the same chemical composition. Indeed,

the deposition process is operated in a high vacuum and induces

the condensation of a metallic layer on the substrate (Schmitz

and Lindner, 1963; Wade, 1971; Wade et al., 1978). An obvious

oxygen chemical gradient is then present between the substrate

and the layer and may dramatically enhance the diffusion of An

in AnO2. One may accept these data as self-diffusion due to the

claimed infinitesimal thickness of the said layer and/or due to its

hypothetical oxidation, regardless of the published studies that

show it is metallic. However, we believe that the associated results

cannot be accepted as pure self-diffusion.

The third case (Figure 3C) and the second case are very

similar, except the small, yet important, difference in the

chemical composition of the host lattice. Indeed, yAn is

deposited on the surface of a xAn1−yBnyO2 material (An and

Bn being different elements). Regrettably, this technique is also

widely used to determine “self-diffusion” coefficients of a species

An in a host material (Schmitz and Lindner, 1965; Lindner et al.,

1967; Riemer and Scherff, 1971; Matzke, 1973; Matzke and

FIGURE 3
Schematic representation of (A) isotopic self-diffusion
between yAnO2 and xAnO2, (B) tracer layer deposition

yAn on
xAnO2, and (C) tracer layer deposition yAn on xAn1−yBnyO2.
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Lambert, 1974; Schmitz, Marajofsky; Lambert, 1978; Matzke,

1983a; Matzke, 1983b; Noyau, 2012; Noyau et al., 2012). For

some reason, even if one may consider that the second example is

suitable for An self-diffusion in AnO2, this simplification cannot

be accepted here. Even in the ideal case of a spontaneously

oxidized layer to the same O/An ratio than that of the substrate,

the presence of another atom Bn in the cation sub-lattice makes it

impossible to accept it as self-diffusion. Neglecting or denying the

existence of this chemical gradient may induce severe

experimental biases when interpreting the data as pure “self-

diffusion.” Indeed, interdiffusion coefficients are of several orders

of magnitude larger than that of self-diffusion (Matzke, 1990).

When these experimental values of the so-called self-diffusion are

used for calculations and/or fuel performance codes, this may be

especially problematic.

4 Determination of the interdiffusion
coefficients

4.1 Bulk vs. grain boundary diffusion

A polycrystalline material is often considered as a semi-

infinite medium composed of adjacent crystals that are separated

by grain boundaries. Most of the uranium–plutonium MOX

studied are polycrystalline specimens, and the influence of

both lattice and grain boundary diffusions needs to be described.

Bulk, or lattice, diffusion refers to the migration of atoms

within the volume of a crystal (grain). In the case of interdiffusion

measurements, bulk diffusion corresponds to the net mass

transport through the surface of the grains. Figure 4 shows an

illustration with contacted single crystals with species A diffusing

in the B lattice.

Harrison proposed three types of grain boundary diffusion

kinetics in polycrystalline materials (Harrison, 1961). Figure 5

illustrates these kinetics with species A diffusing (considered

infinite) in the B lattice.

The first type (Figure 5A) corresponds to the situation where

bulk diffusion is negligible and where a significant grain

boundary diffusion occurs. A sharp composition transition is

observed between the grain boundaries and the bulk of the grains.

This type of diffusion behavior is observed in the first steps of an

interdiffusion experiment.

The second type (Figure 5B) corresponds to the situation

where the lattice diffusion cannot be considered as negligible

anymore. A composition gradient is then established between the

grain boundaries and the bulk of the grains. This type of diffusion

behavior is observed when the annealing time and/or

temperature increases compared to the first type.

The last type (Figure 5C) corresponds to the situation where

the grain boundary and bulk diffusion kinetics are similar. Only a

slight composition gradient remains between the grain

boundaries and the bulk of the grains. Usually, this type of

behavior is observed when the diffusion distance is much larger

than the grain size and the diffusion fields of the neighboring

grains overlap.

In most experiments, the second type of diffusion is observed

and is quantified by measuring the isoconcentration contours in

adjacent grains along the boundaries (Figure 6).

Bulk and grain boundary diffusions can be very different in

polycrystalline materials, the latter being known to be “pathways”

or “shortcuts” for atomic transport (Fisher, 1951; Knorr et al.,

1989). Indeed, differences of several orders of magnitude are

usually reported between these two types of diffusion resulting

from the high level of disorientation of the atoms located along

the grain boundaries. In practice, authors rarely differentiate

these two effects, and averages are usually calculated in

polycrystalline materials. On the other hand, some studies

involving single crystals are also reported. Studying such

materials allows extracting the bulk diffusion due to the

nonexistence of grain boundaries; however, it could also raise

questions of preferential penetrations with respect to crystal

orientation. This problem is being ignored in polycrystals as a

result of the random grain orientation.

For example, Figure 7 shows real EPMA elemental

mappings of a diffusion couple A–B (arbitrary gray levels),

corresponding to the second case of grain boundary diffusion

(Figure 5B).

The grain boundary diffusion can usually be determined by

three different means (Le Claire, 1963; Peterson, 1983):

- Measuring the distance of the diffusion apex from the

surface (“y” in Figure 6).

- Measuring the angle (“Ø” in Figure 6) between the grain

boundary and the tangent to a concentration contour.

- Measuring the amount of diffusing species in slices parallel

to the interface plane.

FIGURE 4
Bulk interdiffusion in two adjacent single crystals of species A
and B.
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4.2 Experimental techniques

In crystalline materials, the interdiffusion coefficients are

usually determined directly via the preparation of diffusion

couples and subsequent annealing. Each specimen is polished

to obtain a surface roughness appropriate for contact. The

samples are then annealed to allow species diffusion, and their

concentration is determined as a function of their depth of

penetration, usually by electron probe microanalysis (EPMA)

(Oishi et al., 1981; Sakka et al., 1982; Dean and Goldstein, 1986;

Léchelle et al., 2012) or ion beam analysis [e.g., Rutherford

backscattering spectrometry, nuclear reaction analysis or

secondary ion mass spectrometry (Ishigaki et al., 1987;

Vauchy et al., 2015a; Jeynes and Colaux, 2016)]. The

“diffusion profile” is the variation in the elemental

concentration with the perpendicular distance from the

interface plane (see Figure 7). Other ion beam analysis

techniques are also encountered for depth profiling.

4.3 Mathematical approach

Solids submitted to a spatial concentration gradient (herein,

chemical gradient) tend to homogenize with time and temperature.

The resulting flux of atoms (of the same species) is usually noted as J

and is defined by the first Fick’s law given in Eq. 1):

J � −D zC
zx

(1)

where zC/zx is the spatial concentration gradient and D is the

diffusion coefficient.

Figure 8 shows a representation of the evolution of

composition–distance curves with annealing time tn in an

ideal A–B interdiffusion couple.

If the atomic transport of species A and B is equal and

opposite, the lattice structure remains unchanged by the

diffusion process, directly leading to the interdiffusion

coefficient ~D. In this sole ideal case, the acquisition of only

FIGURE 5
Three tyupes of grain boundary diffusion kinetics of species A in B.

FIGURE 6
Isoconcentration contours in bicrystals with grain boundary normal to the free surface.
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one of these profiles is necessary to obtain ~D. Although being

theoretically not mandatory, repeating the measurement with

various annealing times allows reducing uncertainties on the

interdiffusion coefficient. The second Fick’s law is used:

zC
zt

� D
zC
zx

(2)

The Boltzmann–Matano method (Boltzmann, 1894; Matano,

1933) is widely used to calculate the interdiffusion coefficients

from the elemental depth profiles (one dimensional) shown in

Figure 8. TheMatano plane is defined as the abscissa at which the

two areas α under the diffusion profile curve are equal (Figure 9).

From this representation, Eq. 3 gives the resolution of the

diffusion equation:

~D � − 1
2t

∫
C2

C1
(x − xM)zC

zC
zx

∣∣∣∣C
(3)

In practice, species A and B rarely have the same diffusion rates,

and their interpenetration induces a shift of the lattice planes called

the Kirkendall effect (Kirkendall, 1942). The individual diffusion

coefficients of A and B (DA and DB), also called intrinsic diffusion

coefficients, correspond to their “net” displacement with respect to

their local lattice plane. The mathematical expression of the A–B

interdiffusion coefficient is given by the Darken equation (Eq. 4):

~D � NA.DB + NB.DA (4)

where NX and DX are the molar fraction and intrinsic diffusion

coefficient of species X, respectively.

In this same case, an alternative (and more relevant) method

consists in measuring both A and B elemental profiles and

resolving the second Fick’s law (Eq. 2). The interdiffusion

coefficients of the two species are then directly obtained.

5 Uranium–plutonium interdiffusion
coefficients

5.1 Reviewed studies

An exhaustive investigation of the published U–Pu

interdiffusion coefficients in their dioxide was attempted in

this review (Schmitz and Lindner, 1963; Davies and Novak,

1964; Schmitz and Lindner, 1965; Lindner et al., 1967;

FIGURE 7
Elemental mappings of species A and B in their mutual lattice
(arbitrary gray scale).

FIGURE 8
Evolution of ideal interdiffusion profiles of species A (dashed)
and B (solid) in their mutual lattice with annealing time tn.

FIGURE 9
Representation of an interdiffusion profile and its
interpretation for calculations.
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Theisen and Vollath, 19671967; Riemer and Scherff, 1971;

Schmitz, Marajofsky; Chilton and Edwards, 1978; Lambert,

1978; Glasser-Leme and Matzke, 1982; Matzke, 1983b;

Glasser-Leme and Matzke, 1984; Verma, 1984; Glasser-Leme,

1985; Jean-Baptiste and Gallet, 1985; Marin, 1988; Mendez; Kutty

et al., 1999; Sato et al., 2010; Noyau, 2012; Berzati, 2013). Most of

the available data are from the 1970s–1980s, and recent studies

are scarce. Table 1 gives the main details about the studies

reviewed here.

5.2 Relation between ~D, pO2, and T

All the available data are gathered in Figure 10 as an

Arrhenius diagram. The color of the data points refers to the

analysis techniques used.

The large scattering in the available data may have resulted

from the differences in experimental techniques and analysis

procedure, among others. However, most of the authors agree

that the cationic composition (Pu content) has only a minor

influence on the interdiffusion coefficients. A common trend also

emerges, i.e., ~D increases with temperature, reconfirming that

diffusion is thermally activated.

For a given temperature, it can be seen clearly that the

interdiffusion coefficients can vary by a factor of 108. Indeed,

diffusion in oxides is first governed by temperature but also by

the oxygen activity in the surrounding gas mixture. In a previous

study, we have shown that even if a composition change is not

experimentally noticeable between different conditions (T, pO2),

significant variations in diffusion coefficients are possible

(Vauchy et al., 2015a). A more suitable representation is the

variation in ~D as a function of both temperature and oxygen

TABLE 1 Description of the type of experiment, analysis method, specimens and temperature ranges of the reviewed studies.

Author Experiment Method Specimens Temperature
(K)

References

Schmitz Tracer α-spectrometry 238Pu on sintered UO2 1,533–1,844 Schmitz and Lindner,
(1963)

238Pu on sintered UO2 1,496–1,773 Schmitz and Lindner,
(1965)

238Pu on sintered U1−yPuyO2 (y = 0, 0.04, 0.10, 0.15, 0.20, and 0.30) 1,783 Schmitz and Marajofsky,
(1974)

Davies Tracer α-spectrometry 242Pu on sintered UO2 2,673 Davies and Novak,
(1964)

Theisen Sintering EPMA Sintering of U1–yPuyO2 (y = 0.15, 0.18, 0.20 and 0.25) 1,732–1,882 (Theisen and Vollath,
19671967)

Lindner Tracer α-spectrometry 232U on sintered U0.85Pu0.15O2;
238Pu on sintered U0.85Pu0.15O2 1,207–1,824 Lindner et al. (1967)

Riemer Tracer α-spectrometry 238Pu on sintered U0.85Pu0.15O2 1,524–1,777 Riemer and Scherff,
(1971)

Chilton Couple EPMA Bonded sintered UO2–U0.70Pu0.30O2 2,023–2,223 Chilton and Edwards,
(1978)

Lambert Tracer α-spectrometry 238Pu on UO2 and U0.80Pu0.20O2 single crystals 1,673–2,173 Lambert, (1978)

Glasser-
Leme

Couple α-spectrometry Bonded sintered UO2–U0.83Pu0.17O2 1,773 Glasser-Leme and
Matzke, (1982)

Couple α-spectrometry Bonded UO2–U0.82Pu0.18O2 single crystals 1,873 Glasser-Leme and
Matzke, (1984)

Couple α-spectrometry Bonded sintered UO2–U0.83Pu0.17O2 and UO2–PuO2 bonded
UO2–U0.82Pu0.18O2 single crystals

1,773–2,118 Glasser-Leme, (1985)

Matzke Tracer α-spectrometry 238Pu on UO2 and U0.82Pu0.18O2 single crystals 238Pu on sintered
U0.85Pu0.15O2

1,673–1,973 Matzke, (1983b)

Verma Sintering XRD Sintering of U0.50Pu0.50O2 1,573–1,878 Verma, (1984)

Jean-
Baptiste

Couple EPMA Bonded sintered UO2–PuO2 and UO2–U0.70Pu0.30O2 2,178 Jean-Baptiste and Gallet,
(1985)

Marin Sintering EPMA Sintering of U1−yPuyO2 (y = 0.04, 0.05, 0.08, 0.09, 0.12, 0.25,
0.30 and 0.325)

2,023 Marin, (1988)

Mendez Sintering EPMA Sintering of PuO2 and U0.75Pu0.25O2 compacts in UO2 1,743–1,948 Mendez, (1995)

Kutty Sintering Dilatometry Sintering of U0.50Pu0.50O2 1,031–1,520 Kutty et al. (1999)

Sato Couple EPMA Bonded sintered UO2–U0.63Pu0.34Am0.03O2 and
UO2–U0.61Pu0.34Am0.05O2

1,873 Sato et al. (2010)

Noyau Couple EPMA Bonded sintered UO2–U0.55Pu0.45O2 1,767–1,973 Noyau, (2012)

Berzati Sintering EPMA Sintering of UO2–PuO2 and UO2–U0.70Pu0.30O2 compacts 1,873–1,973 Berzati, (2013)

Frontiers in Nuclear Engineering frontiersin.org07

Vauchy et al. 10.3389/fnuen.2022.1060218

https://www.frontiersin.org/journals/nuclear-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fnuen.2022.1060218


partial pressure pO2 of the gas (when available). Due to their

extremely low (and unrealistic) values, the data from Kutty et al.

(1999) were precluded. Also, most of the authors studied the

interdiffusion in sintered materials (either coated or coupled),

while some investigated the cation migrations during sintering

(Theisen and Vollath, 19671967; Verma, 1984; Marin, 1988;

Mendez; Berzati, 2013). Since sintering involves physical

mechanisms and because both solid solution formation and

densification are concomitant processes, the associated

interdiffusion coefficients were separated from the others to

avoid a direct comparison. Figures 11A,B shows the resulting

plots. Figures 11C–I shows the details at different temperatures.

Even in this representation, the experimental results on dense

materials remain largely scattered (Figure 11A). As a general trend

among the same study, interdiffusion coefficients increase with

both pO2 and T (except Chilton et al. and Jean-Baptiste et al.).

Concerning the “sintering” experiments (Figure 11B), the

values seem less scattered (10−18–10−14 m2.s−1), but the available

data are also more restricted. The values of ~D are larger by a few

orders of magnitude than the average of the data shown in

Figure 11A (10−19–10−18 m2.s−1). Indeed, grain boundaries are

particularly active during sintering and greatly contribute to the

atomic transport. As highlighted in Section 4.1, grain boundary

diffusion is larger than lattice diffusion by several orders of

magnitude, making their contribution prevail during the first

steps of the sintering process. Once again, ~D increases with both

temperature and oxygen partial pressure. This particular feature

can be useful for advanced sintering processes by varying in situ

the oxygen partial pressure during sintering of MOX fuel pellets

to optimize the formation of solid solution and/or densification

(Berzati, 2013; Nakamichi et al., 2020).

5.3 Relation between ~D, O/M ratio, and T

To provide a complete understanding of the interdiffusion

phenomena, the O/M ratio of the samples studied in the

literature was either tabulated or calculated from the Pu

content, temperature, and atmosphere conditions with the

relation given in (Hirooka et al., 2022). Figure 12 plots the

dependence of ~D upon temperature and O/M ratio. The

“sintering” data were rejected as they should not be directly

compared to the other studies.

Regardless of the representation, the literature data still

remain largely scattered. One must consider a critical analysis

of these data with respect to the experimental procedures. Within

this context, the values from Matzke (Matzke, 1983b) and

Glasser-Leme (Glasser-Leme and Matzke, 1982; Glasser-Leme

and Matzke, 1984) can be considered as doubtful. Indeed, they

were carried out on “single crystals” obtained from arc-melted

powders, and the melted pool was subsequently cut and polished

to obtain a surface suitable for vapor-phased tracer deposition.

The problem with this technique (beyond the questions raised in

Section 3) resides in the fact that the “crystal” was arbitrary cut,

without taking into account its orientation. It is known that the

crystal orientation has a strong influence on diffusion properties

(Turnbull and Hoffman, 1954; Burriel et al., 2016; Holby, 2019).

Therefore, measuring diffusion coefficients without referring to the

FIGURE 10
Arrhenius diagram for cation interdiffusion coefficients against the reciprocal of the temperature.
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FIGURE 11
Variations in interdiffusion coefficients as a function of temperature and oxygen partial pressure obtained (A) from dense samples and (B) after sintering
of green specimens. Details of the variation in ~D in dense materials are given at (C) 1,750 K–1,775 K, (D) 1,850 K–1,875 K, (E) 1,950 K–1,975 K, (F)
2,000 K–2,025 K, (G) 2,118 K–2,123 K, (H) 2,178 K, and (I) 2,223 K, respectively.
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Miller indices of the associated crystal planes is useless.

Furthermore, the “tracer diffusion” experiments, namely, Schmitz

(Schmitz and Lindner, 1963; Schmitz and Lindner, 1965; Schmitz,

Marajofsky), Lindner (Lindner et al., 1967), Riemer (Riemer and

Scherff, 1971), and Lambert (Lambert, 1978), should also be rejected

as the nature (composition, thickness, etc.) of the deposited layer is

really questionable, and the α-degradation energy method used

allows probing only the first atomic layers as the path of α particles

in such dense and heavy materials is very restricted. The data

obtained by means of this technique cannot be considered as

representative of bulk diffusion properties. Unfortunately, only

the five investigations, namely, that of Chilton (Chilton and

Edwards, 1978), Glasser-Leme (Glasser-Leme, 1985), Jean-

Baptiste (Jean-Baptiste and Gallet, 1985), Sato (Sato et al., 2010),

and Noyau (Noyau, 2012), are acceptable (Figure 13).

As the number of data points is extremely small and

scattered, it seems unreasonable to make a direct comparison

of the associated ~D values. However, a more general discussion

on (cation) diffusion properties in AnO2 can be proposed.

6 Oxygen/metal ratio, oxygen
potential, points defects, clusters, and
(inter) diffusion

As already detailed, the driving force for interdiffusion in

fluorite structures, hence AnO2, is the migration of free oxygen

vacancies (in AnO2−x) or interstitials (in AnO2+x) by the hopping

process. However, recent studies seem to suggest that some

complex cationic charge-compensation mechanisms can take

place in U1−yPuyO2±x (Martin et al., 2022), similarly to what

was clearly observed in U1−yAmyO2±x mixed oxides (Epifano

et al., 2019). Such a behavior could have an effect on the diffusion

mechanisms as the crystal lattice would be distorted due to the

difference in ionic size of the cations. As these new results need to

be confirmed and because they were never experimentally

evidenced at elevated temperatures, we will not further discuss

their effects on the cation interdiffusion in MOX fuels.

Thus, in hypostoichiometry, the greater the concentration of

vacancies, the larger the interdiffusion coefficient. However, the

reality is a little different. Indeed, increasing the number of

oxygen vacancies induces a reduction of An(IV) to An(III) to

keep electroneutrality. These trivalent cations trap the oxygen

vacancies, forming uncharged cluster defects (Anderson, 1971;

Ando and Oishi, 1983; Bevan et al., 1986; Nakayama and Martin,

2009; Yoshida et al., 2011; Vinograd, Bukaemskiy, Modolo,

Deissmann, Bosbach).

For instance, at a given temperature, a decrease in the oxygen

potential of a U1−yPuyO2 MOX leads to a decrease in its oxygen/

metal ratio by the partial reduction of Pu(IV)–Pu(III) (Kato et al.,

FIGURE 12
Variations in interdiffusion coefficients as a function of (A)O/M
ratio of the specimens (tabulated or calculated) and temperature
with details at (B) 1,750 K–1,775 K, (C) 1,850 K–1,875 K, (D)
1,950 K–1,975 K, (E) 2,000 K–2,025 K, (F) 2,118 K–2,123 K,
(G) 2,178 K, and (H) 2,223 K, respectively.
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2017b; Hirooka et al., 2022). Due to the attractive Coulomb

(electrostatic) interaction, trivalent plutonium atoms trap oxygen

vacancies, forming the clusters Pu′ − V••
O − Pu′ (for double-

charged oxygen vacancy) and/or Pu′ − V•
O (for single-charged

oxygen vacancy) (Manes et al., 1975; Matzke and Sørensen, 1981;

Cristea et al., 2007). More complex/extended defects might even

be considered (shear planes, micro-domains, etc.) by lowering

the O/M ratio (thus pO2), trapping more and more oxygen

vacancies (Catlow and Sørensen, 1981). These traps are a

barrier to cation interdiffusion. Experimental evidences of this

FIGURE 13
Variations in the acceptable interdiffusion coefficients from the literature as a function of O/M ratio of the specimens (tabulated or calculated)
and temperature.

FIGURE 14
(A) Schematic Brouwer diagram and (B) defects fraction as a function of pO2 in U1−yPuyO2±x at a given temperature.
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peculiar behavior were found in U1−yPuyO2 MOX. Indeed,

during sintering of UO2−PuO2 co-milled compacts, the

formation of the solid solution, i.e., cation interdiffusion, is

promoted when the oxygen partial pressure of the gas mixture

is increased (Mendez; Berzati, 2013; Takeuchi et al., 2011;

Vauchy et al., 2016a) and vice versa. This behavior is even

more pronounced at near stoichiometric compositions (O/M

≥ 1.99) as a result of a probable dramatic increase in the

concentration of free oxygen vacancies (or of a less favorable

clustering process) (Norris, 1977).

In hyperstoichiometric (O/M > 2.00) U1−yPuyO2 MOX, the

presence of oxygen atomsO″
i in the interstitial position is balanced

by the partial oxidation of U(IV)–U(V) to maintain

electroneutrality (Brett and Fox, 1966). These atoms in the

interstitial position are also known to form clusters (Willis,

1963). To some extent, they can create channels that allow the

different species to diffuse with ease. Similarly to

hypostoichiometry, a further increase in the deviation from

stoichiometry can induce a stagnation (or even a decrease) in

the diffusion coefficient due to the formation of extended defects,

the most important being di-interstitial clusters (Wang et al., 2014;

Brincat et al., 2015; Yu et al., 2015; Caglak et al., 2020).

The Brouwer diagram given in Figure 14A shows the

variations in the concentrations of point defects in U1−yPuyO2,

at temperature T, as a function of the oxygen partial pressure. For

O/M < 2, decreasing pO2 leads to larger deviations from

stoichiometry and thus to a higher concentration in oxygen

vacancies. However, these defects (single or double-charged

oxygen vacancies, V•
O and V••

O ) are trapped in clusters, and the

fraction of free oxygen vacancies dramatically drops (Cristea et al.,

2007) (Figure 14B), inducing a decrease in cation interdiffusion.

This trapping process can explain the experimental

observations of enhanced U–Pu interdiffusion in near

stoichiometric compositions, as compared to lower O/M ratios.

More generally, the free-point-defects-mediated diffusion

mechanism not only impacts cations but is generic for atomic

transport, both in hypo- and hyperstoichiometry. Indeed, oxygen

chemical diffusion in AnO2±x was shown to be enhanced at

compositions close to O/M = 2.00 (Chereau and Wadier, 1973;

Sari, 1978; Bayoǧlu and Lorenzelli, 1979; Bayoǧlu and Lorenzelli,

1984; Stan and Cristea, 2005) as a result of preponderant clustering

when the deviation from stoichiometry is increased. This

observation remains under discussion among the community as

some other studies suggest either an increase or a stagnation in the

oxygen chemical diffusion coefficient when the deviation from

stoichiometry is increased (Woodley and Gibby, 1973; Kim and

Olander, 1981; Kato et al., 2009; Kato et al., 2013; Vauchy et al.,

2015b; Watanabe et al., 2015; Watanabe et al., 2017).

7 Diffusion mechanism in AnO2±x
fluorite structure

7.1 Empirical crystallographic approach

In this section, we propose a diffusion mechanism in AnO2±x

based on the crystallographic oxygen defects that the fluorite lattice

can accommodate. As the actinide dioxides are known to be ionic

crystals, the ionic radii of the constitutive species of the fluorite

AnO2±x structure (herein adapted to U1−yPuyO2±x) are either

tabulated from the literature or calculated from the respective

values in pure, stoichiometric dioxides UO2 and PuO2. Albeit

being a very simplistic model, the ions are considered to be

contacting hard spheres (sphere packed), since the structure of

stoichiometric AnO2 is the lowest-energy configuration.

Thus, in the fluorite structure of the pure, stoichiometric,

AnO2 dioxide, the O(–II) ionic radius rO(–II) is equal to 1/4 of the
lattice parameter a as the four oxygen atoms are inscribed into

the unit cell. The An(IV) ionic radius rAn(IV) can be calculated

from the cubic unit cell diagonal, a
�
3

√
. Indeed, in the fluorite

structure, the hard sphere model is expressed as Eq. 5.

a ×
�
3

√ � 4 × rO(–II) + 4× rAn(IV) (5)

As the lattice parameter a of the dioxide can be measured using

regular X-ray diffraction, giving rO(–II), the ionic radius of the

TABLE 2 Ionic radii of the constitutive species of the fluorite U1−yPuyO2±x.

Ionic species Coordination number Ionic radius (Å) References

U(V) 8 0.88 Ohmichi et al. (1981)

U(IV) 8 ~1.001 This work*

Pu(IV) 8 ~0.987 This work**

Pu(III) 8 1.112 Cross et al. (2012)

O(–II) in UO2 4 ~1.368 This work*

O(–II) in PuO2 4 ~1.349 This work**

O(–II) (i.e. O″
i ) 6 1.40 (Shannon and Prewitt, 1969; Shannon, 1976)

V••
O 4 ~1.08–1.10 This work⁂

*Calculating with aUO2 equal to 5.47127(8) Å at 298 K (Leinders et al., 2015). **Calculated with aPuO2 equal to 5.3957(5) Å at 298 K (Vauchy et al., 2017). ⁂Estimated with Kim’s empirical

formula (Kim, 1989), similarly to (Chatzichristodoulou et al., 2015).
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actinide rAn(IV) can then be easily calculated. Table 2 presents the
resulting values in U1−yPuyO2±x. As a reminder, in the fluorite

structure, the coordination number of the cations and anions in

their “normal” sub-lattice is 8 and 4, respectively. The most stable

position of isolated interstitial oxygen ions O″
i is predicted to be

(½, ½, ½) in AnO2+x (Dorado et al., 2011; Middleburgh et al.,

2013), so its coordination number is 6 (octahedral site).

Figure 15 schematically shows the resulting fluorite structure

of hypo- and hyperstoichiometric actinide dioxide AnO2±x.

7.1.1 Interdiffusion in hypostoichiometry
(O/M < 2)

Hypostoichiometry in AnO2 is defined as an O/M ratio lower

than the reference value 2. In this composition range, the

concentration in oxygen vacancies is larger than that of

interstitial oxygen atoms, the metal lattice being conserved

(see Section 2). Contrary to some common beliefs, the size of

oxygen vacancies is smaller than that of the anion. The lattice

locally collapses around the vacancy due to the electrostatic

interactions (repulsions) between the constitutive ions of the

crystal (Marrocchelli et al., 2013; Chatzichristodoulou et al.,

2015). As explained before, the cations have to accommodate

the charge of the oxygen vacancy and form trivalent ions. This

reduction is also accompanied by an increase in the ionic radius

of the metal atom (see Table 2), reverberating its effect as a local

swelling of the lattice due to steric effects. Usually, the magnitude

of the increase in the cation radius is larger than that of the local

collapse of the lattice due to the presence of the oxygen vacancy.

This competition creates large local distortions in the crystal

structure. Macroscopically, the lattice swells proportionally to the

magnitude of deviation from stoichiometry (Markin and Street,

1967; Kato and Konashi, 2009; Vauchy et al., 2014b; Vauchy

et al., 2017; Tracy et al., 2018).

As explained before, interdiffusion in hypostoichiometric

U1−yPuyO2−x is governed by the migration of free oxygen

vacancies. As shown in Figure 15, the formation of a doubly

charged oxygen vacancy is only possible if at least two plutonium

atoms are contiguous. As U1−yPuyO2−x is considered as a solid

solution, i.e., that the cations are randomly dispersed in the lattice,

not all Pu sites are equivalent in their propensity to form these

clusters. Indeed, if doubly charged oxygen vacancies are considered to

be formed, the presence of U ions in the first metal shell of Pu atoms

tends to stabilize Pu(IV) by decreasing the probability to form an

oxygen vacancy, hence of Pu′ − V••
O − Pu′. In other words, at least

two adjacent Pu(III) atoms are needed to form a neutral tetrahedron

with its center being occupied by a doubly charged oxygen vacancy

(Figure 15), as confirmed by DFT(+U) calculations (Cheik Njifon,

2018; Talla Noutack, 2019). Herein, the greater the cation distribution

homogeneity, the harder the Pu reduction (Vauchy et al., 2015c) and

hence the formation of free oxygen vacancies, driving the force of

cation interdiffusion in hypostoichiometry.

7.1.2 Interdiffusion in hyperstoichiometry
(O/M > 2)

Hyperstoichiometry in AnO2 is defined as an O/M ratio

larger than the reference value 2. In this composition range, the

interstitial oxygen atoms become predominant with respect to

the concentration in oxygen vacancies, the metal lattice being

again conserved (see Section 2). Compared to the atom in its

“normal” site (Table 2), these interstitial oxygens have a larger

ionic radius. The lattice then locally expands due to the steric

hindrance. The presence of such interstitials is balanced by the

metal lattice by inducing a partial oxidation of the cations to the

pentavalent state. These oxidized ions have a smaller ionic radius

than that of the tetravalent ones (Table 2), inducing a local

shrinkage of the crystal cell. Again, the ambivalence of these

defects creates tremendous local lattice distortions. The

contraction induced by the formation of An(V) is greater than

the local swelling generated by the presence of the interstitial

anion. Macroscopically, the lattice shrinks proportionally to the

magnitude of deviation from stoichiometry (Brett and Fox, 1966;

Markin and Street, 1967; Sali et al., 2016).

Cation interdiffusion in hyperstoichiometric U1−yPuyO2+x is

mediated by the migration of free oxygen interstitials [presumably

indirect mechanism (Dorado et al., 2010)]. The clustering effect of

interstitial oxygen atoms becomes preponderant when the deviation

FIGURE 15
Hypo- and hyperstoichiometry lattice defects in AnO2±x (U1−yPuyO2±x) fluorite structure (atoms drawn proportionally to their ionic radii). The
cluster Pu′ − V ••

O − Pu′ in O/M < 2 and an isolated oxygen interstitial in O/M > 2 are schematically represented. The U(V) ions are represented in their
most favorable position (Dorado et al., 2011).
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from stoichiometry is increased. As a result, they become less mobile

within the crystal structure, and the cation interdiffusion is then

either stabilized or declined.

7.2 Computational approach

Carrying experimental studies on materials containing

transuranium elements is difficult and can only be operated in

specific, and very limited, nuclear facilities around the world

(Vauchy et al., 2016b). Computation is a convenient

complementary approach for appraising the diffusion

mechanisms that take place in actinide dioxides.

Point defect chemistry is one of the tools used to interpret the

diffusion phenomena in the fluorite structure of U1−yPuyO2±x.

The formation and migration energies of the crystal defects are

either used (when available) or computed to estimate their

mobility in the solid, hence providing information on the

diffusion of these species. One common representation of the

mixed oxide relies on the interconnection of three distinct sub-

lattices: [U(III), U(IV), U(V), Pu(III), Pu(IV)]1[O’(−II), Va]2
[O’(−II), Va]1 standing for the normal cation, the normal anion

and the interstitial anion lattices, respectively. This formalism is

used for thermodynamic computations using the CALPHAD

method and the TAF-ID database (Guéneau et al., 2011; Guéneau

et al., 2021) andmore recently for calculating diffusion properties

with the cBΩmodel (Chroneos et al., 2015; Saltas et al., 2016) and

the DICTRA code (Moore et al., 2017; Chakraborty et al., 2020).

Atomistic approaches are also investigated using first-

principles calculations based on density functional theory

(DFT), often coupled to the Hubbard’s model (DFT + U), or

empirical potentials (EPs). Molecular dynamics (MD)

simulations can subsequently be carried out for computing the

diffusivity of some species in actinide dioxides (Freyss et al., 2005;

Dorado et al., 2010; Boyarchenkov et al., 2013; Cooper et al.,

2015; Matthews et al., 2019; Wang et al., 2019; Nekrasov et al.,

2021; Chen and Kaltsoyannis, 2022; Cooper, 2022).

Although being very useful for interpreting some

fundamental properties, these studies focused on self-diffusion

and/or on oxygen chemical diffusion phenomena. However, the

underlying diffusion mechanisms may possibly be used for

interpreting the experimental interdiffusion data.

Eventually, and as a direct engineering application, disposing

of reliable experimental cation interdiffusion coefficients can be

used for modeling the macroscopic U−Pu homogenization that

occur during sintering using a finite elements method (FEM)

(Léchelle et al., 2001; Léchelle et al., 2012; Dempowo et al., 2022).

8 Conclusion

Where are we now in the determination of cation

interdiffusion in uranium–plutonium mixed oxide fuels?

Answering this question remains difficult. Indeed, despite

being studied for decades, experimental determinations of

U–Pu interdiffusion coefficients in MOX fuel are scarce

and highly scattered. The lack of a more systematic

investigation of these diffusion properties is clear. A critical

review of the literature data unfortunately led to exclude most

of the proposed studies as the associated results were doubtful

due to experimental approximations and biases, among

others. Diffusion being a thermally activated phenomenon,

interdiffusion is enhanced, at the first order, by an increase in

temperature. Oxygen partial pressure also plays a major role

in interdiffusion. In hypostoichiometry, cation diffusion is

mediated by free oxygen vacancies, and an excessive decrease

in pO2 can induce severe clustering effects (oxygen vacancy

traps), reverberating as a barrier to cation migration. In

hyperstoichiometry, oxygen in the interstitial positions

greatly enhance diffusion properties until reaching a

plateau due to the competition between formation,

coalescence, and dissociation of clusters. As a general

conclusion, more reliable experiments are needed to

properly understand the cation interdiffusion in MOX

fuels, either for precisely tailoring sintering or for

predicting in-pile behavior. At the light of this critical

review of the published data, the preparation of new

interdiffusion couples from dense sintered pellets and

subsequent EPMA analysis appears to be the most relevant

method to obtain the true interdiffusion coefficients of U and

Pu in MOX fuels. Finally, the role of americium in the

diffusion processes needs to be further discussed as most of

the studies simply omit the presence of this daughter element

of plutonium.
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