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PANDAS-MOC (Purdue Advanced Neutronics Design and Analysis System with

Methods of Characteristics) is being developed to find high fidelity 3D solutions

for steady state and transient neutron transport analysis. However, solving such

transport problems in a large reactor core could be extremely computationally

intensive and memory demanding. Because parallel computing is capable of

improving computing efficiency and decreasing memory requirements, three

parallel models of PANDAS-MOC are designed using the distributed memory

and sharememory architectures in this article: a puremessage passing interface

(MPI) parallel model (PMPI), a segment OpenMP threading hybrid model (SGP),

and a whole-code OpenMP threading hybrid model (WCP). Their parallel

performances are examined by the C5G7 3D core. For the measured

speedup, PMPI model > WCP model > SGP model. The memory

consumed by the WCP model is about 60% of that consumed by the PMPI

model. This study also demonstrated that the performance of WCP parallelism

is limited by the hybrid reduction in the CMFD calculation and omp atomic

clause in the MOC sweep. Once they are optimized, the WCP model can

outperform the PMPI model.
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1 Introduction

Neutronics analysis for large reactor problems generally requires a significant amount

of memory and is extremely time-consuming due to the complex geometry and

complicated physics interactions, which makes serial computing an unpromising

approach for this problem. In contrast, parallelism partitions a large domain into

multiple subdomains and assigns a computing node to each, and only the data

corresponding to the assigned subdomain are stored in each node. Therefore, it has

substantially decreased the need for memory and makes whole-core simulations possible.

Moreover, because all nodes could run their jobs concurrently, the overall run time tends

to decrease with the increasing number of devoted computing nodes/subdomains (Quinn,

2003).

In neutron transport analysis, the most popular deterministic method for solving the

3D Boltzmann neutron transport equation is the method of characteristics (MOC), which
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is a well-established mathematical technique used to solve the

partial differential equations. It first discretizes the problem into

several characteristic spaces and then tracks the characteristic

rays for certain directions through the discretized domain. The

fact that the direct whole-core transport calculation based on the

MOC is feasible was demonstrated by the DeCART in 2003 (Cho

et al., 2003) and then became popular in the neutronics field. One

capability that makes it more promising than other methods is

that it can accurately handle arbitrary and complicated

geometries. However, whole-core 3D MOC calculations are

generally not possible without the use of large computing

clusters for two reasons. First, solving the neutron transport

equation demands very large discretization, which has a six-

dimensional phase space for steady-state eigenvalue problems.

Second, to accurately simulate a 3D problem, the required

number of rays and of discretized regions has increased by a

factor on the order of 1000 compared with that required to solve

a 2D problem. Consequently, MOC is usually considered as a 2D

method for neutronics analysis. The solution of the third

dimension is approximated by lower-order methods, given

that there is more heterogeneity in the LWR geometry in the

radial plane (2D) than in the axial direction (1D). Once the 2D

radial solution and the 1D axial solution are ready, they are

coupled by the transverse leakage. This method is referred to as

the 2D/1D method, which starts with the multi-group transport

equation and then derives the 2D radial and the 1D axial

equations through a series of approximations. In real LWR

reactors, the heterogeneity of the geometry design is quite

large in the x-y plane and relatively small in the z direction.

Meanwhile, the 2D/1D method assumes the solution changes

slightly in the axial direction, which allows coarse discretization

in the z-direction and only requires fine mesh discretization over

the 2D radial domain. Therefore, the 2D/1D method could

balance accuracy and computing time better than the direct

3D MOC method, making it a perfect candidate for such a

problem. To date, the 2D/1D approximation technique has been

widely implemented in advanced neutronics simulation tools,

such as DeCART (Cho et al., 2003), MPACT (Larsen et al., 2019),

PROTEUS-MOC (Jung et al., 2018), nTRACER (Choi et al.,

2018), NECP-X (Chen et al., 2018), OpenMOC (Boyd et al.,

2014), PANDAS-MOC (Tao and Xu, 2022b).

The high fidelity 3-D neutron transport code PANDAS-

MOC (Purdue Advanced Neutronics Design and Analysis

System with Methods of Characteristics) is being developed

at Purdue University. In this code, the 2D/1D method is used to

estimate the essential parameters of a safety assessment, such as

criticality, reactivity, and 3D pin-resolved power distributions.

Specifically, the radial solution is determined by the MOC, the

axial solution is resolved by the nodal expansion method

(NEM), and they are coupled by the transverse leakage. Its

steady state and transient analysis capability have been

validated in the previous work (Tao and Xu, 2022b, 2021).

To improve its computing efficiency on large reactor cores,

three parallel models are developed from the PANDAS-MOC

code based on the nature of distributed and shared memory

architectures: a pure MPI parallel model (PMPI), a segment

OpenMP threading hybrid model (SGP), and a whole-code

OpenMP threading hybrid model (WCP). The design and

performance of these models will be discussed in detail in

this article.

This article is organized as follows. Section 2 gives a brief

introduction to the PANDAS-MOC methodology, and Section 3

is a short description of parallelism and the numerical

experimental platform. Next, the information of the geometry

and composition of the C5G7-TD Benchmark is presented in

Section 4. Section 5 describes the design of three parallelization

models and the parallel performance regarding the run time and

memory usage. Section 6 summarizes the advantages and

disadvantages of the codes explored in this article. Based on

these, further improvements are offered along with the current

results. Finally, Section 7 summarizes this study and discusses

future work.

2 PANDAS-MOC methodology

This section will briefly introduce the methodology of the

PANDAS-MOC. The detailed derivations can be found in Tao

and Xu (2022b). The transient method begins with the 3D time-

dependent neutron transport equation (Eq. 1) and the precursor

equations (Eq. 2):

1
vg r( )

zφg r,Ω, t( )
zt

� −Ω · ∇φg r,Ω, t( ) − Σtg r, t( )φg r,Ω, t( )

+Ssg r,Ω, t( ) + χg r( )
4π

SF r, t( )

+ 1
4π

∑
k

χdgk λkCk r, t( ) − βkSF r, t( )( )
(1)

zCk r, t( )
zt

� βk r( )SF r, t( ) − λk r( )Ck r, t( ), k � 1, 2, . . . , 6 (2)

where φ is the angular flux; Σtg is the total macroscopic cross-

section; βk is the delayed neutron fraction; χg is the average fission

spectra, which is a weighted average of the prompt fission spectra

(χpg) and delayed fission spectra (χdgk), (Eq. 3); Ck is the density of

delayed neutron precursors; Ssg is the scattered neutron source

(Eq. 4); SF is the prompt fission neutron source (Eq. 5). The

remaining variables are in accordance with the standard

definitions in nuclear reactor physics.

χg � χpg +∑
k

βk χdgk − χpg( ) (3)

Ssg r,Ω, t( ) � ∑
g′
∫

4π
Σg′g r,Ω′ · Ω, t( )φg′ r,Ω′, t( )dΩ′ (4)

SF r, t( ) � 1
kseff

∑
g′
]Σfg′ r, t( )∫

4π
φg′ r,Ω, t( )dΩ (5)
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Several approximations are implemented in the transport

equation to find the numerical solution. The exponential

transformation is first considered for the angular flux. Then,

the time domain is discretized by the implicit scheme of the

temporal integration method. The change of the exponential

transformed fission source is assumed as linear within each time

step. In addition, the analytic solutions of the densities of

delayed neutron precursors are obtained by integrating the

precursor equations (Eq. 2) over the time

step. Consequently, Eq. 1 can be transformed into the

transient fixed source equation; the Cartesian form of this

equation is:

η
z

zx
+ ϵ z

zy
+ μ

z

zz
( )φn

g r,Ω( ) + Σn
tg r( )φn

g r,Ω( )

� Snsg r,Ω( ) + 1
4π

χg r( )SnF r( ) + Snntg r( ) + Sn−1trg r( )[ ]
(6)

where

r � x, y, z( ), Ω � μ, α( ), η � sin θ cos α, ϵ � sin θ sin α

Sn−1trg r( ) � Sn−1dcg r( ) + Sn−1dtg r( ), Sn−1dcg r( ) � ∑
k

χdkgλkĈ
n−1
k r( )

Sn−1dtg r( ) � ϕn−1
g r( )

En
g r( )Δtnvg r( ), Snntg r( ) � χ̂gS

n
F r( ) − Σn

dgϕ
n
g

En
g r( ) � e−α

n
g r( )Δtn , αng � logPtot

n − logPtot
n−1( )/Δn−1, Σn

dg � αng
vg

+ 1
Δtnvg

It is computationally intensive to solve the 3D equation directly.

Hence, the 2D/1D method is employed in the PANDAS-MOC

code. Particularly, the 2D equation is obtained by integrating Eq.

6 axially over a plane (∫zt

zb
dz) and solved by the MOC. The 1D

equation is reasoned by radially integrating over a box (∫∫Adxdy)
and solved by the NEM. The multi-level coarse mesh finite

difference (ML-CMFD) approach is implemented to accelerate

the convergence for iterative solutions to the transient fixed

source equation (Eq. 6).

2.1 2D Transient MOC

The MOC transforms the axially traversed, 2D, fixed-source

equationinto the characteristic form along various straight

neutron paths over the spatial domain. Consider one inject

line (rin) passing through a point in direction Ω; any location

along this ray could be expressed as:

r � rin + sΩ � rin + l

sin θ
Ω (7)

where l is the distance between the parallel tracks, θ is the

azimuthal angle of the characteristic ray, and l/sin θ is the

distance from the starting point to the observation point

along the track. Additionally, the global long rays are

constructed by connecting multiple modular rays with an

identical azimuthal angle, and each track also can be

separated into several segments based on the traversed

geometries and materials along the path (Figure 1).

Therefore, the outgoing flux of one segment is the incident

flux of the adjacent next segment along the neutron flying

direction. The incident flux (φin
p (Ω)), outgoing flux (φout

p (Ω)),
and the track-average flux (�φp(Ω)) over each segment of the ray

are computed as:

φout
p Ω( ) � φin

p Ω( ) + φd
p Ω( )
x

x (8)
φd
p Ω( )
x

� Q Ω( )
Σt

− φin
p Ω( )[ ] 1 − e−x

x
, x � Σt

lp
sin θ

(9)

�φp Ω( ) � Q Ω( )
Σt

− φd
p Ω( )
x

(10)

The reason why ϕdp(Ω)/x is used here instead of ϕdp(Ω) is to avoid
the potential loss of significance for very small x in Eqs 8–10.

Given that there are abundant tracks with different azimuthal

FIGURE 1
MOC discretization and rays.
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angles within each computational region, the overall average flux

(�φ(Ω)) in a flat-source region (FSR) can be determined by the

track-average fluxes and the track lengths of all enclosed

characteristic rays as

�φ Ω( ) � ∑p �φp Ω( )lp Ω( )
∑plp Ω( ) � ∑

p

�φp Ω( )lp Ω( )CΩΔΩ

A
(11)

where CΩ = A/(ΔΩ ∑plp(Ω)), and ΔΩ is the ray-spacing distance

for the direction Ω.

2.2 1D Transient NEM

Integrating the 1D equation obtained from Eq. 6 over a 4π

solid angle and combining with Fick’s law gives the transverse

integrated 1D diffusion equation, which can be further simplified

as the 1D transient NEM equation when the cross-sections are

considered uniform in a plane:

−Dn
g

z2

zz2
ϕn
g z( ) + Σn

rg z( )ϕn
g z( ) − ∑

g′≠g
Σn
g′gϕ

n
g′ z( ) − χgS

n
F z( )

� Sn−1trg z( ) + Snntg z( ) − Ln
0,g z( ) (12)

The quadratic leakage in the 1D problem depends on the average

leakages of the investigating node and its left and right neighbors.

For this reason, the transverse leakage and the transient source

here are approximated by the conventional second-order

Legendre polynomial:

Sg ξ( ) � ∑2
i�0

sg,iPi ξ( ) (13)

where Pi(ξ) are the standard Legendre polynomials, and the

quadratic expansion coefficients (sg,i) are determined by the

node-average transverse leakages and thickness of the node of

interest (�scg, hc) and its left and right neighbors (�slg, �srg, hl, hr).
Similarly, the flux is estimated by a fourth-order Legendre

polynomial:

ϕg ξ( ) � ∑4
i�0

ag,iPi ξ( ) (14)

For a two-node problem, 10 constraints are required to solve the

coefficients (ag,i) for each energy group, including the two nodal

average fluxes (2), the flux continuity (1) and current continuity

(1) at the interface of two adjacent nodes, and the three weighted

residual equations for each node (6). More details could be found

in Hao et al. (2018).

2.3 CMFD acceleration

The transport equation for large nuclear reactors is generally

difficult to solve; however, with the aid of the CMFD technique,

the neutron diffusion equation can converge to the iterative

solutions quite efficiently. Therefore, the multi-level CMFD

acceleration method is used to find the transport currents in

both steady-state and transient modules. In the multi-level

CMFD, once the multigroup (MG) node average flux and the

surface current are ready, the one-group (1G) parameters can be

updated accordingly. This new 1G CMFD linear system renders

the next generation of 1G flux distribution, which will be used to

update the MG flux parameters to speed the eigenvalue

convergence. Meanwhile, given that the CMFD equations are

typical large sparse asymmetric linear systems Ax = b, where A is

the sparse matrix for the neutron properties and interactions

with each other and surrounding materials, and b is the source

term, the preconditioned generalized minimal residual method

(GMRES) is employed because it can take advantage of the

sparsity of the matrix and is easy to implement (Saad, 2003).

In addition, Givens rotation is considered in the GMRES solver

because it can preserve better orthogonality and is more efficient

than other processes for the QR factorization of the Hessenberg

matrix, which has only one non-zero element below its diagonal.

More details can be found in Tao and Xu (2020) and Xu and

Downar (2012).

2.4 Code structure

PANDAS-MOC is being developed using the C language at

Purdue University. The code is capable of performing steady-

state standalone analysis and the combination of steady-state and

transient analysis based on the users’ requirements; its simplified

workflow is illustrated in Figure 2A. In this work, we will focus on

the performance of the steady-state module; its simplified

flowchart is shown in Figure 2B. The flowchart for the

transient calculation is omitted for brevity and can be found

in Tao and Xu (2022b).

3 Parallelism

Parallel computing allows different portions of the

computation to be operated concurrently by multiple

processors to solve a single problem. Compared to

conventional serial computing, it is more efficient with regard

to the run time and memory because it often scales the problem

size to execute the code on more processors, which makes it a

good choice for solving a problem that involves large memory

demands and intensive computations.

The current primary parallel standards are the message-

passing interface (MPI) and the open multi-processing

(OpenMP). The MPI is used for distributed memory

programming, which means that every parallel processor is

working in its own memory space, isolated from the others.

OpenMP is applied for shared memory programming, which
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means that every thread has access to all the shared data. In

addition, OpenMP is executed based on threads and performs

parallel by explicitly inserting “#pragma omp” pragmas into the

source code. It is intuitive to think that the communication

between OpenMP threads is faster than the communication

between the MPI processors, as it needs no internode

synchronization. In addition, given that modern parallel

machines have mixed distributed and shared memory, the

hybrid MPI/OpenMP parallelization should also be considered

to take advantage of such memory architecture. Normally, the

hybrid parallel model uses MPI to communicate between the

nodes and OpenMP for parallelism on the node. Therefore, it can

eliminate the domain decomposition and provide automatic

memory coherency at the node level and has lower memory

latency and data movement with the node (Quinn, 2003).

Generally, the first step of performing parallelism is breaking

the large problem into multiple smaller discrete portions, which

is called decomposition or partitioning, and then arranging the

synchronization pointers, such as barriers, to assure the

correctness of computations. If the workload among the

processors is distributed in an unbalanced fashion, some

processors might be idle, waiting for the processors with

heavier loads, which consequently creates a bottleneck for

improving the parallel performance. In other words, good

load balance can help maximize the parallel performance, and

it is directly determined by the partitioning algorithm.

The measurement of parallel performance is the speedup (S),

which is defined as the ratio of the sequential run time (Ts)

(approximated using the run time with one processor (T1)) and

the parallel run time while using p processors (Tp). Also,

FIGURE 2
Flowchart of the PANDAS-MOC and the steady-state module. (A) PANDAS-MOC code structure; (B) scheme of steady-state analysis.
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efficiency (ϵ) is a metric of the utilization of the resources of the

parallel system, the value of which is typically between 0 and 1.

Sp � Ts

Tp
≈
T1

Tp
, ϵp � Sp

p
(15)

According to Amdahl’s law (Quinn, 2003), the maximum

speedup Sp that can be achieved when using p processors depends

on the sequential fraction of the problem (fs).

Sp � 1

fs + 1−fs

p

→ lim
p→∞

Sp � 1
fs

(16)

For example, if 10% of the work in a problem remains serial,

then the maximum speedup is limited to 10× even if more

computing resources are employed. Therefore, real

applications generally have sublinear speedup (Sp < p), due to

the parallel overhead, such as task start-up time, I/O, load

balance, data communications and synchronizations, and

redundant computations.

This study is conducted in the “Current” cluster at Purdue

University. Its mode is an Intel(R) Xeon(R) Gold 6152 CPU @

2.10 GHz. It has two nodes and 22 CPUs for each node.

4 Test problem

The parallel performance of designed codes in this work are

determined by a steady-state problem, in which all control rods

are kept out of the C5G7 3D core from the OECD/NEA

deterministic time-dependent neutron transport benchmark,

which is proposed to verify the ability and performance of the

transient codes without neutron cross-sections spatial

homogenization above the fuel pin level (Hou et al., 2017)

(Boyarinov et al., 2016). It is a miniature light water reactor

with eight uranium oxide (UO2) assemblies, eight mixed oxide

(MOX) assemblies, and a surrounding water moderator/

reflector. In addition, the C5G7 3D model is a quarter-core,

and fuel assemblies are arranged in the top-left corner. For the

sake of symmetry, the reflected condition is used for the north

and west boundaries, and the vacuum condition is considered for

the remaining six surfaces. Figure 3A is the planar and axial

configuration of the C5G7 core. The size of the 3D core is

64.26 cm × 64.26 cm × 171.36 cm, and the axial thickness is

equally divided into 32 layers.

The UO2 assemblies and MOX assemblies have the same

geometry configurations. The assembly size is 21.42 cm ×

21.42 cm. There are 289 pin cells in each assembly arranged as

a 17 × 17 square (Figure 3B), including 264 fuel pins, 24 guide

tubes, and one instrument tube for a fission chamber in the

center of the assembly. The UO2 assemblies contain only UO2

fuel, while the MOX assemblies includes MOX fuels with

three levels of enrichment: 4.3%, 7.0%, and 8.7%. In addition,

each pin is simplified as two zones in this benchmark. Zone

1 is the homogenized fuel pin from the fuel, gap, cladding

materials, and zone 2 is the outside moderator (Figure 3C).

The pin (zone 1) radius is 0.54 cm, and the pin pitch is

1.26 cm.

As for the geometry discretization, the calculations are

performed with a Tabuchi–Yamamoto quadrature set with

64 azimuthal angles and three polar angles, and the spacing

FIGURE 3
Geometry and composition of the C5G7-TD benchmark. (A) Planar and axial view of 1/4 core map; (B) fuel pin compositions and number
scheme; and (C) pin cell.
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of MOC rays is 0.03 cm. The spatial discretization uses eight

azimuthal flat source regions for each pin cell and three

radial rings in the fuel cells (Figure 1). The moderator cells

are divided into 1 by 1 coarse mesh or 6 by 6 finer mesh

according to their locations in the core. In addition, the

convergence criterion for the GMRES in the ML-CMFD

solver is set as 10–10, the convergence criterion for the

eigenvalue is 10–6 and for the flux is 10–5. No

preconditioners are called to show the improvement

brought by the parallelism.

5 Parallel models and performance

5.1 Pure MPI parallel model

5.1.1 Design
In this model, the entire work is partitioned by multiple MPI

processors, so that each processor undertakes a part of the

calculation simultaneously. The fundamental concept is to

divide the whole core problem (original domain) into various

smaller tasks (subdomains), and each task has a manageable size

FIGURE 4
MPI domain decomposition example. (A)Whole problem domain (B)MPI domain decomposition (C)One sub-domain (D) Cell and neighbors.

FIGURE 5
PMPI performance for the 3D problem. (A) Outer iterations and keff results (B) Speedup partition in axial direction (C) Speedup (D) Efficiency.
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for an individual processor. Figure 4 is an example of the domain

decomposition implemented in this parallelization. A problem

with a large domain (100cm × 75 cm × 100 cm) can be divided

into 4 × 3 × 4 subdomains when executing 48 processes. Hence,

the size of each subdomain is 25cm × 25 cm × 25 cm, and they are

assigned to MPI processors with one-to-one correspondence.

Subdomains can be further divided into multiple cells by the

finite difference methods with respect to the solution accuracy,

and each cell has six adjacent neighbors in the west, east, north,

south, top and bottom sides.

Following this idea, the spatial decomposition in PANDAS-

MOC is handled by the MPI, and it has two levels: manual

decomposition and cell-based decomposition. Users may

manually enter a preferred number of subdomains in x, y,

and z directions, which is also the number of MPI processors

applied in each direction. The code will then partition the pin-

cells automatically according to the entered number to enforce

that the number of pin-cells assigned to each MPI processor are

as balanced as possible.

Based on the domain decomposition, the PMPI code is

developed with a similar structure to the serial code, except

that multiple synchronization points are included in the parallel

algorithms, such as MPI barriers, and data communication or

reduction. First, the data exchange happens at the cells locating

near the interface of the subdomains. In the neutron transport

problem, various parameters are globally shared among all MPI

distributed memories, such as the cross-sections, diffusion

coefficients, non-discontinuity factors, partial current, and

flux. It is necessary to communicate with other processors

about those terms across the subdomains to perform the

calculation correctly. Therefore, additional ghost memories are

required to store the data received from the neighboring

subdomains, and those data exchanges between processors are

performed by MPI routines such as MPI_sendrecv(),

MPI_Send(), and MPI_Recv(). Second, the reduction operation

is a procedure generating the overall results using the partial

results from all involved subdomains by the MPI routines like

MPI_Allreduce(). Because those collective manipulations can

only be performed until all processors has reached the same

position to read, write, and/or update the latest information

from/to all the involved processors, they will introduce

communication overhead to the parallel performance.

The algorithm of PMPI model is described in Algorithm 1.

For brevity, here only the key steps in PANDAS-MOC are listed.

In the CMFD solver, each thread has its own local matrix A and

local vectors b because of the domain decomposition. Then, to

determine the global flux, data communications and reductions

across all MPI processors are required. Particularly, the CMFD

result of a cell is affected by the coefficients of its six neighbors,

which could be located in different subdomains. Then,

MPI_Send() and MPI_Recv() are employed to exchange the

necessary data to perform the matrix–matrix or matrix–vector

productions. In addition, MPI_Allreduce() is essential to

determine the change of variables between two consecutive

iterations, such as infinity-norm of flux change or source

change. While in the MOC sweeping, the message passing is

required for the angular flux of each characteristic ray starting at

the subdomain boundary, and reduction is only needed to update

the average flux for each FSR (Eq. 11).

Algorithm 1. PMPI algorithm.

5.1.2 Performance
Table 1 describes the total MPI processors applied for the 3D

benchmark problem and their distribution in the x, y and z

directions. Tests were divided into two categories: partition on

axial direction standalone and partition on all directions. The

axial layers were assigned toMPI processors as equally as possible

for all tests to achieve better load balance, as were the pin cells in

the x-y plane. All tests are repeated five times to eliminate

systematic error, and the average run time is employed for

performance analysis.

TABLE 1 MPI distribution for 3D problems.

MPI MPI-(x,y,z) MPI MPI-(x,y,z)

1 (1,1,1) 6 (3,1,2)

2 (1,1,2) 12 (3,1,4)

4 (1,1,4) 24 (3,2,4)

8 (1,1,8) 36 (3,3,4)

16 (1,1,16) — —

32 (1,1,32) — —

TABLE 2 Measured run time of key functions of steady-state
calculation using one MPI processor.

Steady state ML-CMFD NEM MOC sweep

Run time (sec) 7228.068 2196.113 5.916 3938.422

Ratio (%) — 30.383 0.082 54.488
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All estimated keff are equal to 1.165,119 with negligible error

(~ 10−8), which is the same as the eigenvalue obtained in the

TD4/5 results in Tao and Xu (2022b). The outer iterations of the

multi-level CMFD solver within the steady-state calculation are

presented in Figure 5A. This figure reveals that tests having MPI

domain decomposition only on the axial direction can provide a

consistent converged eigenvalue with a consistent iteration

number. In contrast, tests partitioned on all directions

converged to a similar eigenvalue with 5–10 more iterations

because of the round-off error accumulated from reduction

operations with different arithmetic orders.

Table 2 has tabulated the run time for the entire steady-

state calculation and the essential functions (ML-CMFD,

NEM, and MOC sweep) when using one MPI processor.

Note that three essential functions altogether have cost 85%

of the run time of the steady-state calculation. The remaining

15% of the time is consumed by updating the MOC parameters

with the CMFD results and vice versa, including evaluating

cell-averaged flux and homogeneous cross-section for each cell

from the MOS swept FSR flux, estimating the current coupling

coefficient with partial currents on each cell surface, updating

the scale flux of each FSR and angular flux on the system

boundary from CMFD solutions, and preparing the fission and

scattering source for each FSR with FSR scalar flux.

Furthermore, compared to the time consumed by the ML-

CMFD solver and the MOC sweep solver, the NEM time is

< 1% of the total run time. Here, it can also be observed that

the CMFD solver takes a relatively large portion of the overall

computational effort. The reason for such behavior is that the

MG and 1G CMFD linear systems constructed during each

iteration are nearly singular or ill-conditioned and require

many iterations to solve. Consequently, the following analysis

will focus on the ML-CMFD and MOC sweep solvers, even

though the parallel strategies investigated in the work can

effectively accelerate other calculations as well. Treating run

time with one MPI processor (T1) as the sequential time (Ts),

the parallel speedup and efficiency are evaluated and plotted in

Figure 5.

Figure 5B depicts the speedup obtained from the tests with

solely axial MPI domain decomposition, in which the executed

numbers of MPI processors were 2k (k = 1, 2, . . . , 5). Because

MOC sweeping has consumed around 55% of the overall

steady-state run time, the steady-state speedup approaches

the MOC sweep speedup. In this scenario, the measured

speedup was close to the linear speedup at first and then

deviated when more MPI processors were involved. The

parallelization overhead is caused by the unbalanced

workload. Considering that the top four and bottom four

layers of the benchmark core are composed of moderators

while the central 28 layers are the fuel region, the

corresponding computational tasks will be very different

due to the different pin-cell compositions and discretization

styles. The workload distribution becomes more biased when

adding more MPI processors, although the number of layers in

each subdomain remains the same.

Figures 5C,D include the speedup and efficiency of all

measured tests, showing that contributing more processors

will increase the speedup. However, having domain

decomposition in the x and y directions will hurt the

parallel efficiency to some extent; the more synchronization

points, the greater the synchronization execution latency

overhead. Although all subdomains are allowed to solve

their local problems concurrently, interior subdomains will

not have the boundary conditions ready until they have been

exchanged through all other subdomains across the interior

interfaces and the problem boundaries. Among three

measurements, this is most evident in the MOC sweep. To

perform the MOC sweeping along each long characteristic

track, the outgoing angular flux at the previous subdomain is

considered as the incident value for the next subdomain. As a

result, the overhead in communicating the information across

the subdomain interfaces is unavoidable.

5.2 Segment OpenMP threading hybrid
model

5.2.1 Design
The previous PMPI model was built only based on the

distributed memory model. The hybrid MPI/OpenMP

programming is considered to develop another parallel model

of PANDAS-MOC and take advantage of the hybrid distributed

and shared memory architecture on modern computing

machines. Starting from the framework of MPI domain

decomposition and the finite difference methods, the OpenMP

pragmas are added ahead of the spatial for-loops to partition the

calculation. As depicted in Figure 6, when enacting four OpenMP

threads, the cells within an MPI subdomain are partitioned into

four groups. Specifically, the OpenMP parallel regions are

mostly the for-loops, and their work-sharing constructs are

specified by the “#pragma omp parallel for” statement with a

series of clauses, such as private, reduction, or collapse, which

depends on the purpose of the associated calculations. For

example:

Because the OpenMP parallelism does not involve in the

domain decomposition but the functional decomposition and

only manages a piece of calculation, this code is named the

Segment OpenMP threading hybrid model (SGP), and its

algorithm is described in Algorithm 2. Given that inserting the
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OpenMP directives does not change the code structure and

iterative scheme, SGP has an algorithm very similar to the

algorithm of the PMPI code (Algorithm 1). However,

considering that the OpenMP parallelism needs to be created

and destroyed each time the “#pragma omp parallel” is called, the

SGP model has extra OpenMP construction overhead in addition

to the drawbacks of the PMPI model, which will discount the

parallel performance to some extent.

Similar to the PMPI model, data synchronization is still

essential to the correctness of the SGP code. In hybrid MPI/

OpenMP parallelization, reduction is conventionally performed

by two steps. The first step is the OpenMP reduction, in which

the partial result in each individual OpenMP thread is collected

by the omp reduction clause to generate the local result for the

corresponding MPI processor. The second step is using the MPI

routines like MPI_Allreduce() or MPI_Reduce() to gather and

compute the global result as in the PMPI model. Meanwhile,

OpenMP offers several options to synchronize the threads, such

as critical, atomic, and barrier. The SGP model relies on the

“atomic” and implicit/explicit “barrier” to avoid a potential race

condition and guarantee synchronization. Furthermore, the

synchronization points pertaining to the MPI processors are

defined similarly to those in the PMPI model.

Algorithm 2. SGP algorithm.

5.2.2 Performance

The parallel performance is examined by the 3D problem

with the identical geometry discretization, numerical conditions,

and parallel setup in Section 5.1. The tested numbers of the MPI

processor and OpenMP threads are tabulated in Table 3. All runs

were repeated five times to avoid systematic measurement error,

and the average run time was considered for the parallel

performance analysis. The speedup for the overall steady state,

ML-CMFD solver, and MOC sweep module is computed based

on the run time cost by the PMPImodel using oneMPI processor

(Table 2). All tests could be separated into three categories,

although some tests may exist in multiple categories at the

same time:

Category 1:m ≥ 1MPI processors and p = 1 OpenMP thread.

Category 2:m = 1MPI processor and p ≥ 1 OpenMP threads.

Category 3:mMPI processors and p threads, andm × p = 36.

The important overheads induced by the algorithm per se are

described in Table 4. In addition, Figures 7A,B compare the

steady-state speedup and efficiency of the PMPI model (green

line), Category 1 of the SGP model (blue line), and Category 2 of

the SGP model (orange line), and it demonstrates that the

segment-threading implementation is not as efficient as the

pure MPI implementation. To further explore the factors that

jeopardize the speedup in each essential module, the speedup of

the ML-CMFD solver and MOC sweep are plotted in Figure 7.

Concerning the ML-CMFD solver (Figure 7C), tests in Category

1 had one OpenMP thread executed, hence the single difference

compared to the PMPI model is that the SGP model repetitively

creates and destroys the OpenMP region when the omp parallel

directive is explicitly stated. Thus, the gap between the green and blue

lines has confirmed the overhead brought by such thread initialization

and finalization. Furthermore, when executing a singleMPI processor

and multiple OpenMP threads, the tests in Category 2 also suffered

from the initialization issue, which, nevertheless, was not the principal

FIGURE 6
Segment OpenMP threading example. (A) Whole problem domain (B) MPI domain decomposition (C) Segment OpenMP implementation.
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reason for the unsatisfactory performance. Given that the major work

in the ML-CMFD solver is the matrix–matrix, matrix–vector, and

vector–vector productions, the MPI/OpenMP reduction procedure

needs to be performed frequently. Here, the reduction procedure and

waiting time brought by implicit and explicit barriers cost more time

and slowed the calculation. This effect becomes more severe when

more OpenMP threads are involved due to the nature of OpenMP

parallelization on for-loops.

On the other hand, in the MOC sweep (Figure 7D), Category

1 and Category 2 presented similar speedups, which are smaller

than the PMPI, due to the limited starting and ending times of the

OpenMP parallelization. For example, for SGP tests using threads

(36,1), the steady state converged after 28 outer iterations, which

indicates that the code has swept the MOC rays 28 times, and the

“#pragma omp parallel for” directive has been enacted for 896 (=

28 × 32) times in the MOC sweep part. Therefore, the time cost of

these directives is negligible in contrast to the entire time spent by

theMOC sweep, which is around 320 s. The factor that diminished

the speedup of MOC solver is the omp atomic clause, which

ensures that a specific storage location is accessed atomically,

rather than exposing it to the multiple simultaneous reading

and writing threads that may result in indeterminate values. To

verify this speculation, removing the “#pragma omp atomic”

statement from the SGP code was tested. Using (36, 1), when

running without the omp atomic clause, the measured run time for

the MOC solver is 188.123 s, while the MOC solver with the omp

atomic clause consumed 319.759 s. This test pinpointed that the

atomic construct itself used more than 40% of the MOC run time.

Tests having the total number of threads as 36 (Category 3)

were conducted to study the hybrid parallel performance. The

collected speedup of the ML-CMFD solver and the MOC sweep are

plotted in Figures 7E,F, respectively, where the dotted green lines are

the PMPI performance with 36 MPI processors. Even though all

speedup results are not comparable to the PMPI speedup using

36 MPI processors, the ML-CMFD and MOC sweep presented

different tendencies. Among all tests, the ML-CMFD solver has

the best speedup at (36,1). MPI dominated the

performance improvement in this part because of the

limitation of the OpenMP parallel overhead from

repetitious construct and destruct and synchronization

points, which was demonstrated in the previous

discussion. In contrast, the speedup of MOC sweep at all

groups of MPI processors and OpenMP threads is larger than

or at least close to the speedup at (36,1), and (4,9) has

achieved the largest speedup because of its better load

balance. The speedup and efficiency for the entire steady-

state calculation are shown in Figures 7G,H. Similar to the

MOC sweep performance, tests with (4,9) achieved the best

speedup for the overall steady-state calculation. The

corresponding optimal parallel efficiency is around

0.428 and is smaller than 0.529, which is the PMPI

efficiency while running 36 MPI processors.

5.3Whole-codeOpenMP threading hybrid
model

5.3.1 Design
Considering that the repeated creation and destruction of

the OpenMP regions could significantly lower the parallel

TABLE 4 Key overheads in different tests (○: does not exist, ›: exists).

Parallel overhead PMPI Category 1 Category 2 Category 3

OpenMP repeated creation and destruction ○ ⊗ ⊗ ⊗

OpenMP synchronization points ○ ⊗ ⊗ ⊗

OpenMP reduction ○ ○ ⊗ ⊗

MPI reduction ⊗ ⊗ ○ ⊗

MPI subdomain communication ⊗ ⊗ ○ ⊗

TABLE 3 Number of MPI processors and OpenMP threads for 3D problems.

MPI processor MPI-(x,y,z) OpenMP thread MPI processor MPI-(x,y,z) OpenMP thread

1 (1,1,1) 1,2,4,6,8,12,16,24,32,36 12 (3,1,4) 1,3

2 (1,1,2) 1,18 18 (3,3,2) 1,2

3 (1,1,3) 1,12 24 (3,2,4) 1

4 (1,1,4) 1,9 32 (1,1,32) 1

6 (3,1,2) 1,6 36 (3,3,4) 1

9 (3,1,3) 1,4 — — —
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performance of the OpenMP threading, especially in the

CMFD part, this model deliberately treats the entire project

as a unit and uses MPI and OpenMP to partition it

simultaneously to avoid such impacts. Therefore, this model

is named the whole-code OpenMP threading hybrid model

(WCP). Figure 8 is an example of the domain decomposition

in WCP. The original problem domain is partitioned by four

MPI processors, and each processor further spawns

FIGURE 7
SGP parallel performance (36: category 3). (A) Speedup: Steady State, (B) Efficiency: Steady State, (C) Speedup: ML-CMFD, (D) Speedup: MOC
Sweep, (E) Speedup (36): ML-CMFD, (F) Speedup (36): MOC Sweep, (G) Speedup (36): Steady state, (H) Efficiency (36): Steady state.

Frontiers in Nuclear Engineering frontiersin.org12

Tao and Xu 10.3389/fnuen.2022.1002951

https://www.frontiersin.org/journals/nuclear-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fnuen.2022.1002951


27 OpenMP threads to split the work within each subdomain.

Each color in the right-hand plot identifies an MPI

subdomain, and each cubic represents the OpenMP

decomposition. Here, the code creates 108 (= 4*27)

subdomains, but the required amount of ghost memories

and inter-processor communications are similar to the case

using four MPI processors and one OpenMP thread, given that

increasing the number of OpenMP threads does not ask for

more memory, as does the number of MOC sweeps. The

consumed memory in this model is expected to be much

less than the PMPI model when the same number of total

threads is executed, which will be discussed in Section 5.4. In

this way, OpenMP parallelism is established immediately after

the MPI initialization (MPI_Init, MPI_Comm_size,

MPI_Comm_rank) and destroyed right before the MPI

finish (MPI_Finalize). This design will reduce the OpenMP

construction overhead to a negligible level because there is only

one creation and destruction of OpenMP parallelization through

the entire code, and it is capable of omitting many unnecessary

barriers to shrink the waiting time among threads. Other than that,

the treatment of reduction and synchronization is similar to that in

SGP. By introducing the OpenMP to this model, thread-private

variables and global-shared variables are further specified while

launching the OpenMP threads to prevent potential race condition

issues. Additionally, the data synchronization is completed by

OpenMP and MPI cooperatively. For example, the reduction

process is still performed by the omp reduction clause and the

MPI_Allreduce routine. One thing worth mentioning is that the

MPI routines inside the OpenMP parallelization region should be

performed by a single OpenMP thread, such asMPI_Allreduce() or

MPI_Sendrecv(). Other than that, the code flow and iteration

scheme are maintained similarly to the previous models, and

the algorithm of WCP is listed in Algorithm 3.

Algorithm 3. WCP algorithm.

5.3.2 Performance
The performance of the WCP model was assessed by repeating

the numerical experiments for the SGPmodel and using the number

of threads listed in Table 3. All runs were tested five times to avoid

systematic measurement error, and the average run time was

considered for the parallel performance analysis. The speedup of

steady-state calculation, ML-CMFD solver, and MOC sweep are

evaluated based on run time in Table 2 accordingly.

First, the speedup of the steady state while running with

one OpenMP thread (Category 1) or one MPI processor

(Category 2) is analyzed and illustrated in Figure 9A, along

with the corresponding tendencies obtained in the previous

PMPI and SGP models. The estimated speedup is still less than

PMPI in all tested cases. On the other hand, the contrast

between the Category 2 tests of the SGP model and the WCP

model hints that WCP can effectively improve the

performance when investing more OpenMP threads, in that

the OpenMP environment and parallel chucks are constructed

only once, and the number of implicit barriers has been greatly

reduced in the WCP model.

FIGURE 8
Whole-code OpenMP threading example. (A) Original domain (B) WCP decomposition.
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To investigate the performance more closely, the speedup of

the ML-CMFD solver and MOC sweep are depicted in Figures

9B,C. In the ML-CMFD plot, theWCP successfully improved the

speedup for tests in both Category 1 and Category 2 due to less

time consumed by the creation and destruction of OpenMP

parallel regions and the implicit barriers. In contrast, the SGP and

FIGURE 9
WCP parallel performance (36: category 3). (A) Speedup: Steady state, (B) Speedup: ML-CMFD, (C) Speedup: MOC sweep, (D) Speedup (36):
ML-CMFD, (E) Speedup (36): MOC sweep, (F) Speedup (36): Steady state, (G) Efficiency (36).
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WCP offered similar performance for the MOC sweep part

because of the trivial times of enacting the OpenMP blocks in

the SGP model. Because the omp atomic directives are still kept

for data synchronization in this function of the WCP model, it is

still the principal issue in the parallelism of ray sweeping. Using

(36, 1), the MOC calculation needs 326.646 s to finish while

running the code with the atomic directives and needs 187.326 s

while running without the atomic directives, which implies that

the ratio of the atomic construction for the MOC calculation is

still above 40%. For now, the code without atomic directives

cannot be extended to cases using multiple OpenMP threads

owing to the race condition. Nevertheless, it has shed light on

how to further optimize the parallelization of MOC sweeping,

which is thoroughly discussed in Tao and Xu (2022c).

Meanwhile, the speedup and efficiency of tests having 36 total

threads are analyzed in Figures 9D–G. Similar to the previous

tests, the WCP model can effectively improve the speedup in the

ML-CMFD solver by decreasing the overhead caused by the

initializing and finalizing of the OpenMP constructs and the

synchronization points. Furthermore, (36,1) presented the best

speedup again among all tests, which means that the overhead

from the hybrid reduction is still a challenge in accelerating the

multi-level CMFD calculation. In addition, the speedup of the

MOC sweeping part in the WCP model and SGP model overlap

each other, and the relative differences between the two models

are smaller than 2% in all tests. Therefore, the parallel efficiency

in this part is limited by the atomic structures that are crucial to

the race-free conditions. The overall speedup and efficiency of

the steady state are shown in Figures 9F,G. Except for (1,36), the

evaluated speedup and efficiency are similar to or larger than that

obtained by (36,1). The best result happens at (4,9) again, and the

corresponding optimal parallel efficiency is 0.47, which is better

than the SGP model (0.428) yet still less than the PMPI model

(0.529). Moreover, the WCP speedup increased a substantial

amount compared to the SGP model, especially for the tests

having MPI domain decomposition in all x, y, and z directions.

For example, the speedup at (6,6) improved by 46.30%, the

speedup at (9,4) improved by 36%, and the speedup at (12,3)

improved by 46.94%.

5.4 Memory comparison

Considering that there is only a single copy of the data in the

shared-memory parallelization, regardless of the number of

enacted threads, whereas each process has an individual and

complete copy of all data with distributed-memory

parallelization, the shared-memory parallelization requires

much less memory than the distributed-memory

parallelization. To demonstrate this advantage in the WCP

model, the memory consumed by the PMPI and WCP models

is measured by othe getrusage command, which returns the sum

of resources used by all threads corresponding to the calling

process. Specifically, the maximum resident set size usage is

exploited as the actual resources used to complete the work.

Because the usage values are returned for each processor, the total

consumed memory is estimated as the sum of all active

processors.

In addition, the consumed memory was measured at three

points: 1) after MPI initialization; 2) after geometry setup and

discretization and shared/thread-private arrays allocation; and 3)

after the steady-state calculation. The collected memory usage

data for these three parts in the PMPI model when executing

36 processors are 352968 kb, 15003744 kb, and 3545624 kb.

Accordingly, the memory usage in the WCP was also

measured by forcing the total number of threads to 36, and

the corresponding ratio of the WCP model to the PMPI model is

estimated and plotted in Figure 10. It is noticeable that the

evaluated ratios at all tests and all measuring points are less than

1.0 (yellow dashed line), except for the test running with (36,1).

In this test, the amounts of memory used by the geometry setup

and memory allocation in the two models are similar to each

other, but the WCP has cost 7.1% more memory in the MPI

initialization and has saved 12.1% memory in the steady-state

calculation compared to the PMPI model. Concerning the

memory usage in the test using (4,9), which had the best

parallel performance in the previous discussion, the assessed

ratio of memory used in the MPI initialization, geometry setup

and memory allocation, and steady-state calculation are 0.1096,

0.6167, and 0.5615, respectively, which has manifested the

preeminence of the hybrid MPI/OpenMP parallelization from

a memory perspective.

6 WCP optimizations

As discussed above, in spite of the memory advantages, the

parallel performance achieved from the current version of the

FIGURE 10
Ratio of memory used in WCP to PMPI (total number of
threads = 36).
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WCP model is better than the SGP model, which is the

conventional fashion of hybrid MPI/OpenMP parallelism, yet

not comparable to the PMPI model. In ongoing work, the

optimizations on the hybrid reduction in ML-CMFD solver

and parallelism of MOC sweeping are performed, and detailed

discussions are presented in Tao and Xu (2022a) and Tao and Xu

(2022c), respectively.

On the one hand, the reductions in the hybrid MPI/OpenMP

codes are generally completed by the omp reduction clause and

MPI reduction routines, which contain implicit barriers to slow

the calculations. To eliminate such synchronization points, two

new algorithms are proposed: Count-Update-Wait reduction

and Flag-Save-Update reduction. Instead of waiting for all

OpenMP threads to have their partial results ready, Count-

Update-Wait reduction immediately gathers the data once a

thread has finished its calculation and counts the number of

partial results that have been collected. When all threads have

rendered their partial results, the MPI_Allreduce routine is used

in the zeroth OpenMP thread to compute the global result and

reset the local variables and counts. Additionally, in the Flag-

Save-Update reduction, two global arrays are defined to store the

partial results and the status flag of each OpenMP thread,

respectively, and the threads are configured as a tree structure

to favor the reduction procedure. When all partial results are

collected, the MPI_Allreduce routine is called to generate the

global solution. Detailed information can be found in Tao and Xu

(2022a). The first algorithm has fewer barriers than the

conventional hybrid reduction yet introduces extra

serializations, such as atomic or critical sections, to ensure

that all partial results are collected from each enacted

OpenMP thread. The second algorithm contains no barriers;

the calculation flow is controlled by the status flags. In Tao and

Xu (2022a), we demonstrated that the Flag-Save-Update

reduction could provide a larger speedup than the Count-

Update-Wait reduction and the conventional hybrid reduction

algorithm, which nevertheless is still smaller than the

MPI_Allreduce standalone in the PMPI model.

On the other hand, while using the OpenMP directives to

partition the characteristic rays sweeping, the speedup of the

MOC sweep is limited by the unbalanced workload among

threads and the serialization overhead caused by the omp

atomic clause for assuring the correctness of MOC angular

flux and current update. Two schedules are designed to

resolve these two obstacles: The Equal Segment (SEG)

schedule and the No-Atomic schedule. The SEG resolves the

unbalanced issue, in which the average number of segments is

determined in the first step according to the total number of

segments and number of executed threads, and then long tracks

are partitioned based on this average number so that the segments

(i.e., the actual computational workload) are distributed among the

OpenMP threads as equally as possible. Based on SEG, theNo-Atomic

schedule further removes all omp atomic structures to improve

FIGURE 11
Performance comparison with 36 total threads (o: optimized algorithm, d: default method). (A) Speedup: ML-CMFD, (B) Speedup: MOC sweep,
(C) Speedup: Steady state, (D) Efficiency: Steady state.
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computational efficiency by pre-defining the sweeping sequence of

long-track batches across all threads to create a race-free job. The

implementation details can be found inTao andXu (2022c). Repeating

the same tests on each schedule confirms that the No-Atomic schedule

is capable of achieving much better performance than the other

schedules and even outperforms the PMPI sweeping with the

identical total number of threads.

A comparison of the performance obtained from the PMPI

(dashed blue line), the WCP using default methods as discussed

in Section 5.3 (green line, labeled as (d)), and the optimizedWCP

(pink line, labeled as (o)) is illustrated in Figure 11. Although the

ML-CMFD solver using the Flag-Save-Update reduction is still

slower than the PMPI using MPI_Allreduce (Figure 11A), the

advantage gained from the MOC sweep with No-Atomic

schedule is large enough to compensate for such weakness

(Figure 11B). Therefore, the optimized WCP code has

managed to accomplish much better speedup than the original

WCP code and is comparable to or even greater than the PMPI

code, as explained in Figures 11C,D.

7 Conclusion

In this article, a PMPI model of the PANDAS-MOC is

developed based on the distributed memory model, and the

SGP and WCP models are designed based on the hybrid

distributed and shared memory architecture. Their parallel

performance is examined using the C5G7 3D core. For the

PMPI model, tests with different numbers of processors all

converged to the same eigenvalues with different iterations

due to the round-off error accumulated from the arithmetic

operations. In addition, it provided a sublinear speedup due to

the load balance issue and communicating overhead between

the MPI subdomains. Moreover, the measured speedups of the

two hybrid models are smaller than the PMPI when executing

the identical number of processors and/or threads, whereas

WCP has better parallel performance than the SGP model.

SGP was heavily affected by the repeated creation and

destruction of the OpenMP parallelization, synchronization,

and reduction in the ML-CMFD solver and omp atomic

directives in the MOC sweeping. In the WCP model, the

overhead caused by the repeated creation and destruction

of the OpenMP regionsand by the omp barriers is resolved

by intentionally dividing the entire work as a unit by the MPI

and OpenMP simultaneously at the beginning of execution.

Although the optimal parallel efficiency provided by the WCP

model is 0.47, which is slightly smaller than the efficiency

obtained in the PMPI model (0.529), we have determined the

reasons that jeopardize the performance in both the ML-

CMFD solver and the MOC sweep in this work: the hybrid

reduction and omp atomic operations. In addition, the

advantage of the hybrid MPI/OpenMP memory usage has

been demonstrated for the WCP model. The estimated

ratios of consumed memory in the WCP model for the

arrays’ memory allocation and steady state were about 60%

of those of the PMPI model, which makes this model

promising from the memory perspective. This further

inspires our future work on the development of advanced

hybrid reduction algorithms and better MOC sweep schedules

in the WCP model. Once these challenges are resolved, the

optimized WCP model is expected to outperform the PMPI

model.
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