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Introduction: Electroencephalography (EEG) is widely used for analyzing brain

activity; however, the nonlinear and nature of EEG signals presents significant

challenges for traditional analysis methods. Machine has shown great promise in

addressing these limitations. This study proposes a novel approach using Radial

Function (RBF) neural networks optimized by Particle Swarm Optimization (PSO)

to reconstruct EEG dynamics and extract age-related neural characteristics.

Methods: EEG recordings were collected from 142 participants spanning

multiple age groups. Signals were preprocessed through bandpass filtering (1–

35 Hz) and Independent Component Analysis (ICA) for artifact removal. neural

network was trained on EEG time-series data with PSO employed to optimize

model parameters identify fixed points in the reconstructed neural system.

Statistical analyses including ANOVA and Kruskal-Wallis tests were performed

to assess age-related differences in fixed-point coordinates.

Results: The RBF network demonstrated high accuracy in EEG signal

reconstruction across different frequency a normalized root mean square error

(NRMSE) of 0.0671 ± 0.0074 and a Pearson correlation coefficient ± 0.0678.

Spectral and time-frequency analyses confirmed the modelŠs capability to

accurately capture oscillations. Importantly analysis of RBF network fixed-point

coordinates revealed distinct age-related.

Discussion: These findings suggest that fixed-point coordinates of RBF

networks can serve as quantitative markers aging providing new insights

into age-dependent changes in brain dynamics. The proposed method offers

computationally efficient and interpretable approach for EEG analysis with

potential applications in neurological diagnosis and cognitive research.

KEYWORDS

electroencephalogram, RBF neural networks, age-related analysis, brain dynamics,
Particle Swarm Optimization

1 Introduction

Electroencephalography (EEG) stands as a non-invasive, economical, and practical
neuroscience research tool (Craik et al., 2019) that captures high-temporal-resolution
brain activity by recording postsynaptic potentials of cortical pyramidal neurons
(Smailovic and Jelic, 2019). This technology has demonstrated significant value in
diagnosing and researching various neuropsychiatric disorders, including epilepsy (Chen
and Koubeissi, 2019), Alzheimer’s disease (Ouchani et al., 2021), and depression
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(Patil et al., 2023; Põld et al., 2023; Tao et al., 2023). Traditional EEG
analysis, while valuable, has been limited by its reliance on clinical
expertise, consuming significant time and potentially introducing
subjective bias (Dong et al., 2021; Gil Ávila et al., 2023; Wiegand
et al., 2022). Moreover, the inherent complexity, non-linearity, and
non-stationarity of EEG signals (Song and Yoon, 2015) present
substantial challenges for accurate interpretation.

Recent years have witnessed remarkable advances in machine
learning applications for EEG signal processing and analysis
(Hussain et al., 2023; Mirchi et al., 2022; Schmierer et al.,
2024). Researchers have successfully implemented various machine
learning algorithms, including support vector machines, random
forests, and deep learning, to achieve automated feature extraction
and classification of EEG data (Chen et al., 2019). These
approaches have shown exceptional performance in multiple
applications, significantly enhancing diagnostic objectivity and
accuracy. Notable achievements include Bhattacharyya et al.
(2017) efficient epileptic seizure detection system combining
tunable-Q wavelet transform with Least Squares Support Vector
Machine (LS-SVM), Li et al. (2024) integrated the Recursive
Feature Elimination (RFE) algorithm with the Support Vector
Machine (SVM) algorithm and employed a cross-validation
method. Their study identified unique energy features in the
4–9 Hz frequency band of coma patients compared to brain-
dead patients. The SVM classifier achieved an accuracy of
99.59% (Li et al., 2024) and Hosseinifard et al.’s (2013) high-
accuracy depression detection using machine learning classifiers.
A recent breakthrough by Amini et al. (2021) demonstrated
impressive accuracy rates (89.1%, 85%, and 75%) in distinguishing
between Alzheimer’s Disease patients, those with Mild Cognitive
Impairment, and healthy controls using convolutional neural
networks. These advancements demonstrate machine learning’s
capacity to uncover hidden patterns in EEG data, opening
new avenues for precise diagnosis and personalized treatment
of neuropsychiatric disorders. Recent advances in EEG-based
neural modeling have significantly improved our understanding
of brain system dynamics, with traditional frequency-domain
and time-series analyses now complemented by modern machine
learning approaches that enhance predictive capabilities. Studies
have explored diverse methodologies, including Markov Chain
analysis for EEG pattern identification (Wiemers et al., 2024), deep
learning-based EEG feature extraction using CNN, LSTM, and
GRU networks (Rivas et al., 2025), and graph neural networks for
motor learning and rehabilitation prediction (Han et al., 2025).
Additionally, multimodal research integrating EEG, MEG, and
fMRI data fusion has expanded insights into neural connectivity
and cognitive functions (Baghdadi et al., 2025). Despite these
advancements, challenges remain in optimizing EEG models
while balancing computational efficiency and interpretability. Deep
learning architectures, though powerful, often require large-scale
training datasets and extensive computational resources (Wei
et al., 2025), limiting their feasibility in real-time applications.
In contrast, function approximation methods like Radial Basis
Function (RBF) networks offer a practical trade-off between
accuracy and computational feasibility, making them particularly
suitable for real-time EEG processing.

While machine learning has made remarkable progress in
EEG analysis, existing methods face several significant challenges.
Traditional approaches rely heavily on manually designed features,
potentially missing crucial EEG signal information (Rakhmatulin

et al., 2024), while most studies are confined to either temporal
or frequency domain analysis (Cai et al., 2020), limiting their
ability to fully characterize the complex dynamics of EEG signals.
Furthermore, current models often lack interpretability (Yagin
et al., 2024), hampering their utility in clinical diagnosis. These
limitations underscore the need for novel analytical methods
capable of automatic multidimensional feature extraction and
accurate characterization of EEG nonlinear dynamics, while
maintaining clinical interpretability.

A promising approach emerges from viewing neural electrical
activity as a complex dynamical system and reconstructing its
governing equations through EEG data analysis. Recent research
has demonstrated the unique advantages of RBF neural networks
in analyzing complex physiological signals, exemplified by Du et al.
(2023) successful differentiation of cardiac characteristics between
healthy individuals and heart disease patients. Inspired by these
findings, we propose a novel analytical framework based on RBF
neural networks for characterizing resting-state brain activity.

2 Materials and methods

2.1 Ethical statement

This study was conducted in accordance with the principles
outlined in the Declaration of Helsinki and was approved by
the Ethics Committee of the Affiliated Hospital of Jiangsu
University (Approval No. KY2024K1102). All participants were
fully informed about the study objectives, procedures, and
potential risks before participation. Written informed consent was
obtained from all adult participants. For minors (participants
under 18 years old), written informed consent was provided by
their legal guardians or parents. Participation in the study was
entirely voluntary, and all subjects had the right to withdraw
at any time without any consequences. The study ensured
strict confidentiality and anonymization of all participant data
throughout the research process. EEG recordings were conducted
in a controlled environment by trained medical professionals to
ensure both participant safety and data quality.

2.2 Participants

This investigation was conducted at the Affiliated Hospital
of Jiangsu University, enrolling patients who underwent health
examinations or sought medical attention for symptoms including
headache, dizziness, and fever between November 2023 and
November 2024, with no evidence of intracranial organic
lesions. The study population consisted exclusively of Han
Chinese individuals, primarily from Jiangsu Province. Exclusion
criteria encompassed: (1) history of neurological disorders
including epilepsy, cognitive impairment, Parkinson’s disease,
central nervous system infections, craniocerebral trauma, brain
tumors, or alcohol intoxication; (2) presence of intracranial organic
lesions on current examination; (3) inability to complete EEG
examination due to altered consciousness or unstable physical
condition; (4) refusal to provide informed consent. A total of 142
subjects met the inclusion criteria and completed the study.
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We collected comprehensive data from all participants,
including demographic information (gender, date of birth,
education level) and clinical data (medical history, head
CT/MRI findings). All subjects underwent standardized resting-
state EEG examinations, with results confirmed to be within
normal parameters.

2.3 EEG data acquisition and processing
methodology

Electroencephalogram recordings were conducted using a
Neurofax EEG-1200C system (Neuroworkbench, Nihon Kohden)
with 32-channel capability (including two ECG channels) at
200 Hz sampling frequency. Electrode placement followed
the international 10/20 system protocol, with impedances
maintained below 5 k�. Recordings were performed in a
quiet environment, where participants completed a 10 min
session of eyes-closed and eyes-open conditions while seated
comfortably. Participants were instructed to maintain alertness
while minimizing physical movements. All recordings were
conducted by a single experienced EEG physician who was blinded
to participants’ clinical information. Analysis was restricted to
eyes-closed condition data.

Signal processing was performed using Matlab R2021a (The
Mathworks, United States). Raw signals underwent bandpass
filtering (1–35 Hz) to isolate conventional frequency bands [δ(1–
4 Hz), θ(4–8 Hz), α(8–12 Hz), and β(12–30 Hz)] while eliminating
noise artifacts. Artifact rejection was implemented using FASTICA
algorithm for Independent Component Analysis (ICA). From the
32 recorded channels, 19 key channels were selected (Fp1, Fp2,
F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1,
O2) and re-referenced using a longitudinal bipolar montage, where
each channel was referenced to the electrode immediately posterior
to it (e.g., Fp1-F3, F3-C3, C3-P3, P3-O1) (illustrated in Figure 1).
This anterior-to-posterior bipolar derivation effectively minimized
volume conduction effects while enhancing the detection of
localized potential differences and improving spatial resolution.
Additionally, this montage configuration reduced contamination
from common reference artifacts and environmental electrical
interference (Babiloni et al., 2020). Ocular and cardiac signals were
excluded from the analysis.

2.4 EEG data analysis

2.4.1 Step 1: Data preprocessing
This study implements RBF networks to implicitly represent

the system’s dynamical equations. The RBF network training
process for EEG data consists of three key steps. The first step
involves data preprocessing, where Principal Component Analysis
(PCA) is applied to reduce 18-dimensional EEG signals to three-
dimensional sequences, with 40,000 data points retained per subject
for the training set. For an n-dimensional continuous dynamical
system defined as shown in Equation 1:

Ẋ= F (X) , X ∈ Rn (1)

FIGURE 1

Schematic diagram of longitudinal bipolar electroencephalogram
(EEG) electrode montage. The figure illustrates the electrode
placement according to the International 10–20 System used in this
study, with arrows indicating the direction of longitudinal
re-referencing between adjacent electrodes. The montage
includes: prefrontal region (Fp1-F7, Fp1-F3, Fp2-F4, Fp2-F8), frontal
region (F7-T3, F3-C3, Fz-Cz, F4-C4, F8-T4), central region (T3-T5,
C3-P3, Cz-Pz, C4-P4, T4-T6), and occipital region (T5-O1, P3-O1,
P4-O2, T6-O2). NASION and INION mark the positions of the
nasion and inion, respectively.

The temporal derivatives Ẋi(i = 1, 2) are computed using a
fourth-order five-point difference scheme, defined in Equation 2:
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The numerical derivative f
′

(t0) represents the rate of change in
the time series at time point t0. For complex systems, we calculate
these derivatives from observed time series Xi using a fourth-order
five-point difference method.

2.4.2 Step 2: RBF network training
The second phase involves RBF network training through

supervised learning, with an 8:1 split between training and
validation sets. The network maps EEG time series Xi (input)
to their corresponding derivatives Ẋ (output). Training is
implemented using MATLAB’s newrbe function, which optimizes
network parameters including center vectors (µ), variance of
activation function (6), the connection weight from hidden
neurons to output neurons (W), and hidden layer architecture.
The training process employs backpropagation with mean square
error minimization through gradient descent optimization. The
network features a single hidden layer, with its size adaptively
determined by newrbe based on data distribution and accuracy
requirements. Connection weights are initialized using uniform
random distribution to enhance generalization and avoid local
optima. The trained RBF network approximates the function F(X),
expressing the system dynamics as formulated in Equation 3:

Ẋ = Network (X) , X ∈ Rn (3)
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2.4.3 Step 3: Dynamical system analysis
In the third step, numerical methods were implemented to

analyze the implicit approximate system defined by Equation 3.
The Particle Swarm Optimization (PSO) algorithm (Gad, 2022) was
then employed to determine the fixed points XN of the implicit
dynamical system, satisfying

(
Network(XN)= 0

)
. To characterize

these fixed points, we introduced small perturbations δei to
numerically compute the Jacobian matrix through the perturbative
method defined in Equation 4:

Ji
(
XN

)
=

Network
(
XN+δei

)
−Network

(
XN

)
δ

(4)

The type and stability of the fixed points were determined
through eigenvalue analysis of the Jacobian matrix. EEG data
exhibiting stable fixed points were selected for subsequent age-
related group analysis.

2.5 Statistical analysis

All statistical analyses were performed using MATLAB
R2021a. Quantitative data are presented as mean ± standard
error of mean (SEM), and qualitative variables are described
using frequencies and percentages. Error bars in all figures
represent SEM. The Shapiro-Wilk test was used to assess
data normality (P > 0.05 indicating normal distribution). For
normally distributed data, comparisons between multiple groups
were conducted using one-way ANOVA, while the Kruskal-
Wallis test was applied for non-normally distributed data. When
significant differences were detected by either ANOVA or Kruskal-
Wallis test, post hoc multiple comparisons were performed
using the Tukey-Kramer method. Multiple group categorical
variables were analyzed using Pearson’s chi-square test. All
statistical tests were two-tailed, with statistical significance set at
P < 0.05.

3 Results

3.1 Subject demographics

This study included 142 participants; demographic
characteristics are shown in Table 1. Statistical analysis showed no
significant difference in gender distribution between age groups
(p = 1). The ratio of males to females was approximately 1:1.

3.2 Assessment of RBF network
prediction accuracy

To evaluate the RBF neural network’s performance in EEG data
modeling, we selected 40,000 data points from each participant’s
EEG recordings for network training. Participants were stratified
into nine age groups to ensure comprehensive capture of age-
specific EEG characteristics. Following training, the model’s
predictive capability was evaluated using the remaining data
(approximately 5,000 points) as a test set for EEG waveform
prediction on previously unseen time series.

The RBF network demonstrated outstanding predictive
performance (Figure 2), as quantified by two widely accepted
statistical metrics: Normalized Root Mean Square Error (NRMSE)
and Pearson correlation coefficient (r). The model achieved
an NRMSE of 0.0671 ± 0.0074 on the test set, indicating
minimal deviation between predicted and actual EEG signals.
The Pearson correlation coefficient of 0.7209 ± 0.0678 between
predicted and actual EEG signals further validated the strong
positive correlation between model predictions and real signals,
highlighting the practical significance of our achieved prediction
accuracy.

In conclusion, the RBF neural network exhibited excellent
performance in EEG data simulation and prediction, providing an
effective tool for investigating the non-linear dynamics of brain
electrical activity.

3.3 Spectral analysis evaluation of RBF
network performance

This study employed spectral analysis to evaluate the RBF
neural network’s prediction capabilities across different frequency
bands, comparing actual EEG signals with predicted outputs.
Figure 3 illustrates the power spectral density (PSD) comparison
between these signals across four standard EEG frequency bands: δ
(0.5–4 Hz), θ (4–8 Hz), α (8–13 Hz), and β (13–30 Hz).

The spectral analysis demonstrated exceptional prediction
performance of the RBF network across all frequency bands
(Figure 3). The PSD curves of predicted and actual EEG signals
showed remarkable concordance, with nearly 100% matching in
the δ and θ bands. Although minor deviations were observed
in the α and β bands, the predicted signals maintained accurate
representation of the primary spectral characteristics.

This high prediction accuracy was consistently observed
across all nine age groups, validating the RBF network’s superior
generalization capability. The network model, trained on 40,000
data points, demonstrated robust adaptation to EEG characteristics
across different age groups, confirming its reliability.

Notably, while prediction accuracy showed slight degradation
in higher frequency bands compared to lower frequencies,
attributable to the inherent complexity and variability of high-
frequency neural activity, the model successfully captured key
features in the α band, establishing a foundation for future research
in high-frequency EEG analysis.

3.4 Time-frequency analysis assessment
of RBF network performance

We conducted time-frequency analysis using Short-Time
Fourier Transform (STFT) to evaluate the RBF network’s capability
in capturing EEG signal dynamics. The analysis employed a
Hamming window function (256-point window length, 128-point
overlap, 512-point FFT), generating spectrograms that enabled
direct comparison between actual and predicted signals across the
0–50 Hz frequency range.

Results demonstrated the RBF network’s successful
reconstruction of primary frequency components and their
temporal evolution (Figure 4). Specifically, both actual and
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TABLE 1 Demographic characteristics of study subjects.

Age group (years) Male n (%) Female n (%) Age (Mean ± SD) Total n

0–10 11 (55.0%) 9 (45.0%) 7.526± 1.307 20

10–20 8 (47.1%) 9 (52.9%) 13.444± 2.706 17

20–30 5 (50.0%) 5 (50.0%) 24.600± 4.061 10

30–40 7 (46.7%) 8 (53.3%) 35.667± 2.870 15

40–50 6 (54.5%) 5 (45.5%) 44.455± 2.945 11

50–60 13 (52.0%) 12 (48.0) 55.440± 2.931 25

60–70 9 (52.9%) 8 (47.1%) 63.824± 2.298 17

70–80 9 (52.9%) 8 (47.1%) 73.471± 2.211 17

> 80 5 (50.0%) 5 (50.0%) 81.600± 2.366 10

Total 74 (52.1%) 68 (47.9%) 43.599± 24.789 142

FIGURE 2

Representative actual and predicted waveforms from different age groups. (A–I) Blue lines represent the actual recorded waveforms, while red lines
show the corresponding predicted waveforms for subjects in age groups of < 10 years (A), 10–20 years (B), 20–30 years (C), 30–40 years (D),
40–50 years (E), 50–60 years (F), 60–70 years (G), 70–80 years (H), and > 80 years (I). Scale bar [shown in panel (I)] applies to all panels:
30 µV/0.5 s.

predicted signals exhibited consistent patterns across multiple
frequency bands: sustained high-energy distributions in the delta
band (0–4 Hz), accurate capture of periodic power modulations
in the alpha band (8–13 Hz), and precise representation of
intermittent activities in the beta band (13–30 Hz).

The time-frequency analysis results validated the high
concordance between predicted and actual signals in both
frequency distribution and temporal evolution. These findings,
in conjunction with previous NRMSE and spectral analyses,
substantiate the RBF network’s reliability and accuracy in
reconstructing EEG signal dynamics.

3.5 Age-dependent analysis of RBF
network fixed-point spatial coordinates

We investigated the relationship between age and three-
dimensional spatial coordinates (X, Y, Z) of RBF network fixed

points. After excluding 17 participants with unstable equilibrium
points (41.2% under age 10), distinct age-related patterns emerged
across spatial dimensions (Figure 5A).

The X-coordinates showed minimal values in the 20–30 age
group, with notable negative values (ANOVA, 10–20 vs. 20–30,
P = 0.0064; 20–30 vs. 30–40, P = 0.0005), while maintaining
stability across other age groups without significant between-group
differences (Figure 5B). The Y-coordinates exhibited a non-linear
age-related pattern (Figure 5C). Values were initially low in the < 10
age group (Kruskal-Wallis, < 10 vs. 20–30, P = 0.0021), increased
during ages 10–20, and stabilized between ages 20–60 (Kruskal-
Wallis, 20–30 vs. 50–60, P = 1.0000). A declining trend emerged
after age 60, with significant reductions observed in the > 80 age
group compared to middle-aged adults (Kruskal-Wallis: 60–70 vs.
> 80, P = 0.0013). The most pronounced decline was evident
in octogenarians. The Z-coordinates displayed variations across
age groups but lacked significant age-related trends or inter-group
differences (ANOVA, P = 0.1352; Figure 5D).
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FIGURE 3

Comparison of power spectral density between actual and predicted electroencephalogram (EEG) signals across different age groups. (A–I)
Representative power spectral density plots from individual subjects in different age groups (< 10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–70,
70–80, and > 80 years). Blue lines represent actual EEG recordings, while red lines indicate model-predicted EEG signals. The power spectral
density was calculated over the frequency range of 0–45 Hz.

These results reveal complex age-dependent patterns
in spatial coordinates, with each dimension exhibiting
distinct characteristics, thereby offering new insights into
age-related EEG features.

3.6 Performance comparison with
alternative models

To further validate the effectiveness of the RBF network,
we compared its performance against three commonly used
architectures in EEG analysis: Multilayer Perceptron (MLP),
Convolutional Neural Networks (CNN), and Long Short-Term
Memory (LSTM) networks. As summarized in Table 2, the RBF
network achieved an NRMSE of 0.0671 ± 0.0074 and a Pearson
correlation coefficient (r) of 0.7209 ± 0.0678, which is comparable
to CNN (0.0614 ± 0.0068, r = 0.7512 ± 0.0621) and LSTM
(0.0589± 0.0072, r = 0.7689± 0.0597) while requiring significantly
lower computational resources. In contrast, the MLP model
exhibited lower predictive accuracy (NRMSE = 0.0893 ± 0.0105,
r = 0.6583 ± 0.0732), likely due to its limited capacity to capture
EEG signal dependencies. Training time was significantly shorter
for the RBF network (40 min) compared to CNN (120 min)

and LSTM (150 min), and inference was nearly instantaneous
(< 0.01 s per trial), making it a computationally efficient option.
Given these results, the RBF network provides a practical balance
between accuracy and computational feasibility, making it well-
suited for EEG-based dynamical system reconstruction and real-
time applications.

4 Discussion

In this investigation, we developed an innovative framework
for EEG signal analysis by combining RBF neural networks
with Particle Swarm Optimization (PSO) to reconstruct and
analyze brain system dynamics. This approach demonstrates
both predictive accuracy for system trajectories and powerful
insights into the underlying dynamical properties of
complex neural systems.

To ensure computational efficiency while maintaining high
predictive accuracy, we optimized both hardware usage and
algorithmic efficiency. All experiments were conducted on an
Intel Core i7-12700K CPU with 32GB RAM and an NVIDIA
RTX 4070 GPU. Training the RBF network on the full
dataset of 142 participants took approximately 40 min, while
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FIGURE 4

Time-frequency analysis of actual and predicted electroencephalogram (EEG) data across different age groups. (A–I) Representative time-frequency
plots from individual subjects in nine age groups (< 10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–70, 70–80, and > 80 years). For each age group,
the upper panel shows the actual EEG time-frequency distribution, while the lower panel displays the corresponding model-predicted
time-frequency distribution. The color scale, shown on the right side of panel I and applicable to all panels, represents power/frequency (dB/Hz).
Note the consistency between actual and predicted patterns across all age groups, particularly in the lower frequency bands (0–20 Hz).

the inference phase was nearly instantaneous (< 0.01 s per
trial), making it suitable for real-time applications. Although
RBF networks can become computationally expensive with
an excessive number of neurons, we employed a controlled
neuron allocation strategy using principal component analysis
(PCA)-guided feature reduction to optimize model complexity
while preserving performance. Additionally, batch processing
and parallel computation in MATLAB were implemented to
reduce memory overhead during training. These optimizations
allowed our approach to remain scalable without requiring
excessive computational resources. Future work could explore
sparse RBF architectures or hardware-specific optimizations such

as GPU-accelerated training to further improve efficiency for
larger EEG datasets.

Our results indicate that RBF networks effectively capture
the essential characteristics of EEG data, particularly excelling
in spectral reconstruction. While minor variations in frequency
energy distributions were observed, attributable to both the
inherent complexity of neural signals and training data limitations,
these findings suggest potential improvements through expanded
datasets and enhanced computational resources, albeit at increased
computational cost.

Utilizing the trained RBF network, we successfully employed
PSO algorithms (Gad, 2022) to identify system fixed points,
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FIGURE 5

Distribution of fixed points across different age groups and their coordinate comparisons. (A) Three-dimensional scatter plot showing the
distribution of fixed points for all age groups. Different colors represent different age groups: < 10 years (red), 10–20 years (orange), 20–30 years
(light green), 30–40 years (dark green), 40–50 years (green), 50–60 years (light blue), 60–70 years (blue), 70–80 years (purple), > 80 years (pink).
(B–D) Box plots comparing the distribution of fixed points along X-axis (B), Y-axis (C), and Z-axis (D) across age groups. Red lines in box plots
indicate means. Statistical significance is denoted as follows: ns (not significant, p > 0.05), * (p < 0.05), ** (p < 0.01), *** (p < 0.001).

establishing critical markers for understanding neural dynamics. In
the context of dynamical systems theory, these fixed points serve as
fundamental determinants of both local and global system behavior
(Bollman et al., 2007; Parmananda, 2003). This methodology
provides a robust framework for analyzing the nonlinear dynamics
inherent in EEG systems, offering new perspectives in neurological
research.

In our investigation of age-related characteristics, several
significant findings emerged: First, Y-axis values demonstrated
non-linear age-dependent changes, with notably lower values in
individuals under 20 and over 70 years of age, while maintaining
stability between 20 and 70 years. This pattern strongly correlates
with established patterns of brain development and aging, reflecting
dynamic functional changes across the lifespan. Particularly
noteworthy was the upward trend observed in the 10–20 age group,
which, although not significantly different from the 0–10 age group,
likely indicates crucial developmental features during adolescence.

We observed a significant decrease in X-axis values around age
20–30, potentially indicating unique patterns of brain functional

organization in young adults, possibly linked to synaptic pruning
and neural network optimization. The Z-axis showed no significant
variations across age groups, suggesting that certain fundamental
neural activity patterns remain stable throughout the life cycle.

Importantly, the 0–10 age group frequently failed to achieve
equilibrium points, which may be attributed to two factors:
data quality issues due to poor test compliance in young
children, or the inherent dynamic instability characteristic of
the developing brain, consistent with rapid neurodevelopment
and plasticity during this period. These findings suggest new
directions for clinical EEG applications, particularly in the early
detection and intervention of age-related cognitive disorders and
neurodegenerative diseases. These findings demonstrate that age-
related neuroplasticity changes are intimately linked to specific
synaptic functions and neural network connectivity, providing
novel perspectives for understanding cognitive decline in aging
populations. This work presents new approaches for EEG signal
analysis and early diagnosis of age-related neurological disorders,
while deepening our understanding of neurodegenerative diseases
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TABLE 2 Performance comparison of different neural network models for electroencephalogram (EEG) analysis.

Model NRMSE
(Mean ± SD)

Pearson
correlation (r)

Training time
(minutes)

Inference time
(per trial, s)

Computational
resource

requirement

RBF network 0.0671± 0.0074 0.7209± 0.0678 40 < 0.01 Low

MLP 0.0893± 0.0105 0.6583± 0.0732 55 < 0.01 Medium

CNN 0.0614± 0.0068 0.7512± 0.0621 120 0.05 High

LSTM 0.0589± 0.0072 0.7689± 0.0597 150 0.08 High

CNN, convolutional neural network; LSTM, long short-term memory; MLP, multilayer perceptron; NRMSE, Normalized Root Mean Square Error; RBF, radial basis function.

and potentially informing the development of targeted therapeutic
strategies to improve associated cognitive dysfunctions.

The findings of this study have important implications for
clinical EEG analysis and neurological disorder assessment. The
RBF network’s ability to reconstruct EEG dynamics and extract age-
related fixed-point characteristics suggests potential applications in
early detection and monitoring of neurodegenerative diseases such
as Alzheimer’s and Parkinson’s disease, where EEG abnormalities
often emerge before clinical symptoms. Additionally, the model’s
computational efficiency and real-time inference capability
make it suitable for ICU EEG monitoring, cognitive function
assessment, and brain-computer interface (BCI) applications. Its
ability to analyze neural activity dynamically without extensive
computational resources enhances its feasibility for bedside
monitoring and mobile EEG devices. Future studies could explore
multi-modal EEG-fMRI integration and clinical dataset validation
to further expand its translational potential in neurological and
cognitive disorder diagnosis.

The selection of the RBF neural network in this study was
guided by several key considerations that make it particularly
suitable for EEG signal analysis. While deep learning architectures
such as CNNs and LSTM networks have demonstrated strong
performance in various EEG classification tasks, their applicability
to dynamical system reconstruction and fixed-point analysis
remains limited. EEG signals exhibit complex nonlinear and
non-stationary properties, requiring models capable of efficiently
capturing these dynamics. RBF networks serve as universal
function approximators, providing a smooth and interpretable
representation of EEG dynamics (Zhou and Li, 2020). Unlike
deep learning models, which often function as “black boxes,”
RBF networks allow for direct interpretation of the learned
transformation, which is particularly valuable in neuroscience
research. Additionally, deep learning models such as CNNs and
LSTMs typically require large datasets for optimal performance,
which poses a challenge in EEG studies where data availability is
often limited. RBF networks, on the other hand, are well-suited for
smaller datasets, as they require fewer training samples while still
maintaining high predictive accuracy (Shorten and Murray-Smith,
1996). Moreover, training deep learning models often demands
extensive computational resources and hyperparameter tuning,
whereas RBF networks can efficiently converge with minimal
tuning, making them a more practical choice for clinical EEG
applications. The primary objective of this study was to reconstruct
the underlying dynamical properties of EEG signals and analyze
fixed points in brain activity across different age groups. RBF
networks provide a natural framework for approximating complex
continuous functions, allowing for the extraction of stable fixed

points using the Particle Swarm Optimization (PSO) algorithm
(Rani and Victoire, 2018). Deep learning models, while effective
in classification tasks, are not inherently designed to identify and
analyze such fixed points, making them less suitable for our specific
research objectives. These factors collectively justify the use of RBF
networks in this study, and the results obtained further confirm that
RBF networks effectively capture the underlying neural dynamics
of EEG signals while providing a computationally efficient and
interpretable approach for analyzing age-dependent brain activity
patterns.

However, several limitations must be acknowledged: First,
despite the universal approximation capability of RBF neural
networks (Cybenko, 1989; Hornik et al., 1989), our current RBF
architecture is relatively simple and may not fully capture all
features of complex EEG systems. Second, the limited sample
size (N = 100) and uneven age distribution may affect statistical
power. Additionally, batch effects in EEG data acquisition may
introduce systematic biases. Future research directions should: (1)
implement more sophisticated network architectures with larger
training datasets; (2) address dimensional decoupling challenges;
(3) conduct larger-scale cohort studies; and (4) incorporate
clinical assessment metrics to enhance model accuracy and clinical
relevance.

In conclusion, this study demonstrates the promising
application of RBF neural networks in EEG data analysis,
successfully capturing complex non-linear features of brain
activity across age groups. These findings provide crucial
evidence for understanding age-related changes in EEG signal
dynamics, contributing to both early diagnostic strategies and
therapeutic intervention approaches for neurological disorders,
while establishing a foundation for future neuroscientific research.
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