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We investigated developmental changes in neuromotor activity patterns

in Drosophila melanogaster larvae by combining calcium imaging with a

novel graph-based mathematical framework. This allows to perform relevant

quantitative comparisons between first (L1) and early third (L3) instar larvae. We

found that L1 larvae exhibit higher frequencies of spontaneous neural activity

that fail to propagate, indicating a lessmature neuromotor system. In contrast, L3

larvae show e�cient initiation and propagation of neural activity along the entire

ventral nerve cord (VNC), resulting in longer activity chains. The time of chain

propagation along the entire VNC is shorter in L1 than in L3, probably reflecting

the increased length of the VNC. On the other hand, the time of peristaltic waves

through the whole body during locomotion is much faster in L3 than in L1, so

correlating with higher velocities and greater dispersal rates. Hence, the VNC-

body interaction determines the characteristics of peristaltic waves propagation

in crawling larvae. Further, asymmetrical neuronal activity, predominantly in

anterior segments of L3 larvae, was associated with turning behaviors and

enhanced navigation. These findings illustrate that the proposed quantitative

model provides a systematic method to analyze neuromotor patterns across

developmental stages, for instance, helping to uncover the maturation stages

of neural circuits and their role in locomotion.

KEYWORDS

neuromotor development, locomotion, Drosophila larvae, calcium imaging, neuronal

activity, mathematical modeling, graph approach

1 Introduction

The use of model organisms is key for the understanding of life in a broad sense,

helping to unveil a large number of fundamental principles governing biological processes

(Alfred and Baldwin, 2015; Ankeny and Leonelli, 2020). However, this also poses many

challenges (Rine, 2014; Russell et al., 2017; Bertile et al., 2023; Myslivecek et al., 2023).

Indeed, choosing a particular species as a “generalist case" might raise relevant questions

such as its representativeness of holobionts, its reaching as a genetic prototype, and the

universality of its translational physiology, to list just a few issues. Moreover, to adequately

serve as a model, one needs a proper, quoting (Leonelli, 2013): “standardization of

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2025.1557624
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2025.1557624&domain=pdf&date_stamp=2025-03-20
mailto:J.Berni@sussex.ac.uk
mailto:luz@fisica.ufpr.br
https://doi.org/10.3389/fnins.2025.1557624
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2025.1557624/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Matos et al. 10.3389/fnins.2025.1557624

the organism in question and the accumulation of knowledge and

resources on the organism on a large scale.”

Although general methods have been proposed to deal with

non-model species (Bertile et al., 2023; Williams et al., 2011), to

work with certain particular organisms is still the main trend,

whose usual choices tend to be bacteria, yeast, worms, mice and flies

(Perillo, 2017). In particular, Drosophila melanogaster, commonly

known as the fruit fly, has long been central in developmental

biology studies (Yamaguchi and Yoshida, 2018; Lewis, 2004). For

example, its relatively simple genetic makeup and short generation

time makes the Drosophila ideal for the investigation of a wide

range of processes, e.g., related to genetics, ontogeny, learning,

development, aging, etc. (Stearns et al., 2000; Phillips et al., 2022).

Furthermore, Drosophila nervous system is complex enough to

share many structural similarities with more intricate nervous

systems, including human, yet simple enough to be feasibly

modeled.

Among the various life stages of the Drosophila, the larval

one represents a critical period of growth and transformation,

punctuated by changes in physiology, morphology and behavior

(Bate and Arias, 1993). This is precisely why such stage has been

proposed as an important instance to survey the relationship

between brain progressive development and the associated

behaviors (Gerber and Stocker, 2007). Thus, substantial efforts have

been made toward mapping the Drosophila melanogaster neural

system (Pfeiffer et al., 2008; Zheng et al., 2018; Naddaf, 2023).

Characterizing the neuromuscular network has been particularly

fruitful, as motor activity translates directly into observable and

measurable actions. Techniques such as calcium (Ca) imaging have

been instrumental in visually identifying neural clusters of motor

neuron activity associated with muscular contractions in the body

segments (reviewed by Kohsaka et al., 2017 and Kohsaka, 2023).

Also, analyses have indicated potential similarities between motifs

of neural activity and segmental contractions in D. melanogaster

larvae (Pulver et al., 2015).

Nonetheless, the depiction of the resulting data are usually

aimed to disclose the activity propagation patterns in the ventral

nerve cord (VNC), e.g., forward and backward wave fronts, not

addressing a proper quantification of the underlying dynamics.

Actually, despite all the progress, it is still not totally clear how

these nervous system patterns control alternations and duration

of the crawls and turns (the elementary movement steps given

rise to the locomotion trajectories). In fact, such control—

conceivably functioning at different hierarchical (and time-scale)

levels (Anteneodo and Da Luz, 2010) of the individual body

structural organization—needs to be mediated by feedbacks with

the environment. But this kind of trade-off interaction is also

not fully known (Koyama et al., 2020; Davies et al., 2021). The

bottom line is that contrary to the rapid advances in experimental

techniques (Davis, 2023), the aforementioned knowledge gaps are,

at least partially, due to an insufficiency of more appropriate

mathematical frameworks. It is conceivable that more robust

analysis and simulation methods could describe the brain patterns

involved, allowing to link them to emergent motor responses and

actions. As recently demonstrated in a breakthrough work (Shiu

et al., 2024), theoretical tools are paramount to comprehend the

sensorial processes in the Drosophila brain.

Given the above, as a novel protocol to delineate and typify

the neural-motor activity patterns of Drosophila larvae, we propose

a graph theory approach to characterize the structural patterns

of neuronal activity waves. It allows to quantitatively assess

asymmetry and propagation patterns across the VNC. This is

achieved by processing Ca imaging data such that each burst

of neuronal signal corresponds to an “event,” represented by a

graph node ascribed to the VNC activated region. As activity

propagates across different VNC regions, the associated activation

flow is represented by directed graph edges. This ensures that the

geometrical structure of the resulting graph mirrors the physical

arrangement of the triggered VNC regions.

Based on suchmathematical construction, among other aspects

one should be able to compare activity behavior in larvae across

different developmental stages, thereby describing the evolution of

motifs of neuronal activity underlying movement. To demonstrate

that this is indeed the case, we have performed many controlled

measurements (details in the following) explicitly considering the

larvae’s specific developmental phases. After emerging from the

egg, the Drosophila undergoes three growth stages, the instars

(see Figure 1). Each stage is separated from the previous one by

a cuticle molt to accommodate their remarkable size increase.

Throughout the first, second, and the beginning of the third instars,

the larvae display foraging behavior characterized by continuous

feeding and a permanent search for food. This feeding frenzy

is vital to sustain the mentioned rapid growth and to guarantee

enough energy reserves for surviving metamorphosis (Tennessen

and Thummel, 2011). So, the significance of larval movement

extends beyond mere locomotion. In consequence, the regulation

of foraging patterns has far-reaching implications for ecological

interactions, sensory perception, and ultimately, the fitness of the

organism. Naturally, all these processes are driven by the patterns

of neuromotor activity in the animal’s VNC.

In the experiments, we recorded detailed neuromotor activity

of the first (L1) and third (L3) larvae instars (with an one stage

lag chosen so to warranty a clear developmental maturation

between phases) and applied the proposed graph-based scheme

to investigate the structural characteristics of neuronal activity

underlying specific behavioral outputs, such as turning and

crawling. Additionally, we tracked larval trajectories in a custom-

designed measurement arena to examine dispersal behavior

(Almeida-Carvalho et al., 2017) and evaluated how differences in

neuromotor coordination influence movement dynamics. For this

type of locomotion data, besides L1 and L3, we also considered the

second (L2) instar. By comparing the neural structures across the

stages, our treated data clearly established that activity propagation

and generation in L1 larvae were less coordinated compared to

L3, reflecting the immaturity of the former neural networks. More

importantly, these differences could be concretely quantified by

relating distinct “motifs” to the graphs representing the neural

firing circuits. Indeed, their types, frequency of occurrence,

correlation and temporal sequence indicated the basic motion steps

being executed and how efficiently and synchronized the neural

signaling induced movement and spatial dispersion.

The structure of our works is as follows. In section 2 we first

describe the experimental procedures, including the rearing of

Drosophila larvae, the recording of their locomotion trajectories
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and the Ca imaging techniques employed to monitor neuromotor

activity. Second, we introduce our mathematical modeling

approach based on graph theory and motifs identification, which is

used to analyse and quantify the propagation patterns of neuronal

activity within the VNC. Section 3 presents our key findings,

highlighting the differences in spontaneous activity generation,

activity propagation efficiency, and symmetry patterns between

first instar (L1) and early third instar (L3) larvae. Finally,

section 4 summarizes the implications of our study, emphasizing

the developmental progression of neuromotor coordination and

suggesting potential directions for future research.

2 Methods

2.1 Drosophila larvae rearing

Larvae neuronal activity was assessed at two distinct stages of

their development, first instar (L1) and early third instar (L3). For

the recording of locomotion trajectories we also assessed second

instar (L2). To establish the experimental sample, 30 female and 20

male adult flies of the wild type OregonR strain (OrR) were placed

in a laying pot and provided with a standard corn media enriched

with yeast paste Petri dish to lay eggs. The eggs were collected for 2

h and incubated either for 24 h (first instar; L1), 48 h (second instar;

L2) or 74 h (early third instar; L3) at 25◦C under a 12-h light-dark

cycle. Three sets of larvae were produced for each developmental

stage. This controlled setup ensures synchronized development and

consistent conditions for subsequent analyses of locomotion and

trajectory patterns.

2.2 Recording locomotion trajectories

We conducted observations of larval exploratory behavior

in controlled environments under minimal external stimuli. The

recordings were conducted in the dark apart from infrared light

that the larvae can not see, maintaining a consistent temperature

of 25◦C. Each experimental trial spanned 60 min, during which

the larvae were tracked within a 240 × 240 mm2 arena. The arena

surface was prepared with a 0.4% agar-based coating, 2 mm in

thickness.

In each trial, a group of 10 larvae of similar size was put to

roam at the arena, and each developmental stage (L1 and L3) was

tested with three repetitions (summing up 30 larvae per stage).

Their movements were recorded through a frustrated total internal

reflection (FTIR)-based imaging technique (Risse et al., 2013) using

a Basler acA2040-180 km CMOS camera set at a resolution of

2,048 × 2,048 pixels. The recording was performed at two frames

per second, optimized for accurate representation of forward

displacements and actual pause-turn events, while minimizing

the inclusion of “flickering” movements (often associated with

peristaltic contractions). To enhance the observations precision, an

advanced imaging setup was employed, featuring a 16 mm KOWA

IJM3sHC.SW VIS-NIR lens and a 825 nm high-performance

longpass filter (Schneider, IF-093). For the recording of the first

instar larvae L1, an additional 2× amplification lens was used.

The images were then processed with the FIM-track software

(Risse et al., 2017), yielding positional time series for each of the

larva’s trajectories, see the schematics in Figure 2A. To make the

trajectories as free from the other organisms as possible, a tracking

was always interrupted upon any collision between two distinct

larvae. So, two new trajectories were assumed as the interacting

larvae would get enough away apart. Similarly procedure was

considered when the larvae reached the arena’s edge. Figure 2A

illustrates the experimental setup.

2.3 Recording locomotion wavelength

To evaluate the number of body segments along which

a peristaltic wave of muscle contraction progresses (here

operationally defined as “wavelength”), we recorded movies in L1

(15 individuals) and L3 (10 individuals). Larvae were transferred

to a 5 cm petri dish coated with 0.6 ml of 0.9% agarose. The

plate was inverted to view the denticle bands and 2 min movies

were captured at 30 fps with a ximea MQ013CG-ON camera

mounted on a Leica M420 microscope at 25× (L1) and 6× (L3)

magnification. Larvae only executed forward peristaltic wave and

their progression was determined by the number of segments

contracting as revealed by denticle belts movements that are

located on the boundary of each segment and clearly visible from

A8 to A1. The movement of the thoracic segments T3, T2 and T1

was evaluated by the movement of A1 and the front of the animal,

thus representing three segments. The events were quantified with

the open source software VCode 1.2.1 (http://social.cs.uiuc.edu/

projects/vcode.html).

2.4 Descriptive statistics of larval trajectory

Positional data, i.e., (x, y) coordinates of an individual larvae

trajectory i in each video frame j (so a characterization of time), is

represented by the vector

−→
Ri (tj) =

(

xi(tj), yi(tj)
)

, (1)

where (xi(tj), yi(tj)) represents the centroid coordinates of the

larvae at time tj = j1t. Here,1t = 0.5 s is the temporal resolution,

j = 1, 2, . . . ,N the frame index and N = 6000 the number of

frames per experiment. Measurements include the positions of the

head, tail, and three spine points for each larva in every frame

(Figure 2B). The body length Li(tj) at tj is computed as the sum

of distances between consecutive body points; an average 〈Li〉 is

calculated for each trajectory.

Trajectories are segmented into quasi-linear portions, defined

as stretches of more or less straight displacements, delimited by

the organism directional changes. The movement in a sequence of

frames are aggregated into a single step if the intermediate frame

positions all fall within a distance ǫ from the line connecting the

first and last frame positions (Turchin, 1998)—refer to in Figure 2C.

The distance ǫ is defined as half the average body length at each

trajectory, plus half the standard deviation, namely,

ǫ = 〈Li〉/2+

√

〈L2i 〉/2. (2)
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FIGURE 1

Drosophila full life cycle. In particular, the three larval phases, the instars, are explicitly shown. The characteristics times of the transitions between

di�erent developmental stages are also indicated.

The aggregation of frame-movements into steps is performed with

a Ramer-Douglas-Peucker algorithm so to find the combination

that best represents the trajectory (Wosniack et al., 2022; Ramer,

1972). The velocity Vk is defined in terms of the average velocity

across each linear step

Vk = ℓk/1Tk, (3)

where ℓk is the linear displacement of the step k and 1Tk its

duration. Vk is then normalized in relation to body-size by dividing

it by 〈Li〉.

To quantify the degree of dispersion of the trajectory i (starting

at ta and ending at tb), we consider the Mean Square Displacement

(MSD) over a time window τ , MSDi(τ ), computed by averaging all

possible displacements of duration τ along i

MSDi(τ ) =
1

n

t=tb−τ
∑

t=ta

[

(

xi(t + τ )− xi(t)
)2

+
(

yi(t + τ )− yi(t)
)2

]

.

(4)

Here, n is the number of displacements counted in each i. The

overall MSD(τ ) for the entire set of trajectories follows by averaging

theMSDi(τ )’s, normalized by their respective mean body length (so

to yield values in units of individuals sizes).

2.5 Calcium imaging

For calcium imaging of the central nervous system (CNS),

whose location in the individuals body is indicated in Figure 3A, the

GAL4-UAS system was employed to activate the calcium indicator

GCaMP3 (Tian et al., 2009). Specifically, the OK371-GAL4 driver

(Mahr and Aberle, 2006) was used for expression in motor neurons

and R36G02-GAL4 for A27h (Fushiki et al., 2016).

Thus, individual first and third instar larvae were dissected

using hypodermic needles. The central nervous system (CNS),

including the brain, subesophageal ganglion (SOG), and ventral

nerve cord (VNC), was delicately separated from the larval body

wall (Figures 3A, B). It was then mounted dorsal side up on

a cover slide coated with 0.1% poly-L-Lysine (Sigma P8920).

To ensure stability, recordings commenced at least 5 min post-

dissection. Throughout the dissection and subsequent Ca imaging

experiments, the CNS was bathed in a physiological saline solution

containing (in mM) 135 NaCl, 5 KCl, 2 CaCl2, 4 MgCl2, 5 TES and

36 sucrose.

For live imaging of the isolated CNS, wide-field epifluorescence

microscopy was employed. We used a cool LED simply better

control PE-300white at 1% intensity for uniform illumination at

488 nm, with imaging conducted using an Olympus BX50WI

compound microscope (Olympus, Center Valley, PA). The

emitted light was filtered through GFP emission filters before

being captured by an Hamamatsu Orca Flash 4.0 (Hamamatsu
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FIGURE 2

Schematics of the movement experiment and type of data gathered. (A) Arena, image processing setup, locomotion trajectory. (B) Positional

measurement points along the larvae’s body. (C) Displacement aggregation method to generate random walk steps.

FIGURE 3

Calcium imaging technique and representative results. (A) Drosophila’s body with indicated morphological structures. (B) The VNC and

corresponding ROIs located in each segment. Correlation between bodily movements (C) and VNC activity (D).

Photonics K.K). Image capture rates were set at 5 Hz using

HCImage software, maintaining constant gain settings. We

analyzed fluorescence values from regions of interest (ROIs) in

thoracic (T1–T3) and abdominal (A1–A8) ganglia (Figure 3B).

The optical intensity Ii = 1f /f were smoothed with a moving

average in the range of 3 s, the asymmetric least squares

method (Peng et al., 2010) was used to correct the signal

baseline, and the data normalized to put the signals within
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FIGURE 4

Typical calcium imaging signals. (A) A set of neural activity pulses for

left and right A1–A8 and T3 (T1 and T2 are very similar, so not

shown). (B) Peak patterns along a pulse of a given ROI (here A8).

Each peak corresponds to a neuromotor activity event in a ROI. For

the later graph construction, vertices will be associated to left (red)

and right (blue) peaks as the present ones.

a quantitative range from 0 to 1, where 0 shows minimum

activity and 1 maximum activity. Typical results are presented in

Figures 3C, D.

2.6 Mathematical modeling and a novel
graph characterization

Calcium imaging measurements lead to curves as shown in

Figure 4A, each representing neural activity within one neuronal

ROI and ranging from A1 to T3 on both the left and right

sides (Figure 4B). Given that crawling behavior emerges from a

coordinated pattern of peristaltic segment contractions (Heckscher

et al., 2012; Gjorgjieva et al., 2013), we should expect the ganglia

neuromotor activity to correlate with muscular contractions in the

corresponding body segments, as shown in Figures 3C, D. In this

way, calcium imaging of the larval VNC reveals a pulse propagation

along ganglia, similar to peristaltic contractions (Figure 5).

These results clearly indicate that clusters of neural activation—

whose local intensities variation can be monitored from the

images—are essential for producing functional locomotor behavior.

Nevertheless, the study of neuronal propagation across ganglia

FIGURE 5

Illustration of neural and muscular activities correlation. (A) Activity

pulses traces taking place in distinct ROIs, as measured by calcium

imaging. As indicated, the emerging pattern corresponds to a

forward wave (from A8 onward). (B) The dynamics of

VNC—equivalent to vertebrates spinal cord—wave behavior and the

resulting segment contractions during a forward crawling wave.

tends to be mostly descriptive. Indeed, it expresses bursts as

“waves,” but typified just in terms of either forward (toward the

anterior neural system part, i.e., A8→ T1) or backward (toward the

posterior neural system part, i.e., T1 → A8) propagation. Further

classifying the stimulations as either symmetrical, on both the left

and right sides, or asymmetrical, on one side only.

It is well known that the proper characterization of an

evolving network structure representing a system dynamics is

able to uncover many of its properties (Albert and Barabási,

2000; Wang et al., 2015; Perra et al., 2012; Zhang et al., 2021).

Hence, based on the type of data we typically acquire from

calcium imaging experiments, we have developed a mathematical

framework, a graph-based model, to quantitatively describe

the mentioned neural processes. The primary objective of

such an approach is to prevail over the limitations of the

previously mentioned qualitative analyses. Concretely, to identify
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different kinds of VNC activities and even ascertain how

the movement patterns may be regulated by left/right ganglia

sides switches. Hence, rather than just classifying a signal as

forward or backward, the generated graphs should also single

out the local traits of the propagating waves (in each ROI).

Additionally, they should unveil symmetrical features, such as

intensity and phase differences, something not possible by dividing

the images into two halves and treating them as simplified

binary data.

So, the key presumption is to be able to map each set of

neural activity, represented by a certain collection of signals as in

Figure 4A, to a graph. Naturally, the stemmed graphs are only a

partial representation of the full process, but as we demonstrate in

the following sections, they already yield significant information

about the actual phenomenology. Consecutive activities result

in distinct graph architectures, generating successive motifs. The

investigation of the sequential engendering of these motifs and

their correlation and frequency should give relevant quantifiable

information about the neurons signals propagation and how they

might related to motor behavior.

The protocol to construct a graph j is implemented as the

following (refer to Figure 6 as a schematic guide). We assume

a specific collection (labeled j) of signals, as those displayed in

Figure 4A (for how to specify the different j’s, see below). Then, we

first identify the different peaks i (i = 1, 2, 3, . . .) (Figure 4B) for

each activity curve from every ROI in j. Notice the peaks have two

fundamental properties: (a) intensity Ii = 1f /f (more details in

Section 2.5), which can be normalized between 0 and 1, where 0

and 1 indicate, respectively, the baseline and the overall maximum

along the whole activity curve; and (b) occurrence time ti, i.e.,

the instant the peak i reaches the intensity Ii. In this way, each

i corresponds to an activity event a
(j)
i (si, li, Ii, ti) of j, where si is

the segment (A1–A8, T1–T3), li is the side (left or right), Ii is the

normalized intensity and ti is the peak time instant. Second, vertices

(or nodes) vi are assigned to all these peaks i in the collection

j, forming the set {v}j (Figure 6A). Last third, we represent the

j sequential firing patterns across ROIs—essentially an activity

chain—by means of a directed graph Gj(v, Ee). For so, we consider

the vertices set {v}j, connecting them through a set of directed

edges {Ee}j, classified into two kinds, symmetry and propagation

(Figures 6A–C). The construction of {Ee}j obeys the straightforward

rule: if two adjacent ROIs are on the same segment (side), but

correspond to different sides (segments), and their activity peaks,

represented by vertices vi′′ and vi′ taking place at ti′′ and ti′ , are such

that 0 < 1t = ti′′ − ti′ ≤ τ , a symmetry (propagation) directed

edge Eei′ i′′ from vi′ to vi′′ is established, refer to (Figures 6B, C).

Thus, Gj gives a general picture of the full neural activity

instance j, with the vertices of Gj associated to the different

events a
(j)
i and the directed edges of Gj indicating their temporal

connection. In fact, {Ee}j is a direct portrayal of the neuronal

activity propagation, as illustrated in Figure 6D. Consequently,

typical neural activity patterns (for example, the forward wave

in Figure 6D) are represented as motifs, i.e., simple sub-

graphs of Gj, see Figure 7. By investigating successive graphs,

. . . ,Gj−1,Gj,Gj+1, . . ., it is possible to infer statistical properties

of activity propagation by comparing ordering, correlation and

relative frequencies of such motifs.

We finally mention how to identify different Gj’s. Typically, the

span of a full calcium imaging experimental run is of about Trun =

10 min, along which one clearly observes intense neural firing

activity in the brain. But such long series is composed by many

bursts, namely, chains of activation separated by short temporal

intervals. Each one of them—e.g., the collection of signals in

Figure 4A—constitutes thus a specific j and accordingly a graph Gj.

Taking the whole runs and computing the average interval between

successive (in time) peaks, we found 1t = 0.618 s and σ1t = 0.427

s for L1 and 1t = 0.755 s and σ1t = 0.234 s for L3, hence in both

cases with a fair effective1teff = 1t+σ1t ≈ 1 s. In this way, for the

above threshold we set τ = 31teff, establishing themaximum delay

between two connected peaks of τ = 3 s. Importantly, inmost cases

3 s fits with the normal times separating empirically clear distinct

bursts (identified by direct visual inspection), despite the fact that

the above factor of 3 was chosen somewhat arbitrarily. We define

as J the total number of graphs constructed from an experimental

series. Among all the J graphs, we define J1 as the number of trivial

ones, i.e., those having just a single vertex.

3 Results

Based on the novel protocol of analysis proposed (relying

on a graph construction), next we demonstrate its usefulness in

characterizing and interpreting the experimental data obtained.

3.1 Spontaneous activity

We shall name “spontaneous” activity events those whose

associated vertices have no incoming edges, refer to Figure 7. So,

they are not triggered (at least within a time interval 1t) by spikes

in neighboring ROIs. On the contrary, these events are the ones

that eventually can initiate waves of neural activity, meaning they

are the starting vertices of any graph Gj (see the discussion at the

end of Section 2.6).

The L1 and L3 larvae exhibit very similar main frequencies

of spontaneous activity (Table 1), calculated as the average of

J/Trun (Section 2.6). However, spontaneous events in L1 larvae are

slightly more prone to not triggering a chain of neural activity

(27.50%) than in L3 (20.00%), generating trivial graphs with a

unique vertex. Statistical analysis supports this observation, as the

metric nodes_no_incoming_no_outgoing_edges was significantly

higher in L1 than in L3 (t = 3.13, P = 0.012), indicating

a greater occurrence of trivial graphs in L1. Meanwhile, the

metric nodes_no_incoming_edges showed no statistically significant

difference between groups (t = 1.67, P = 0.129), suggesting

that while L1 larvae exhibit a higher mean, the difference is not

substantial between developmental stages. This higher failure rate

results in a larger value of J1/J for L1. On the other hand, among

the spontaneous activity events that successfully initiate an activity

propagation (AP); for L1 we find a fairly equal distribution between

forward and backward waves (∼ 35%) and just a little lower

percentage of both directions waves (∼ 30%); but for L3 close to

half (∼ 45%) of the waves are forward, whereas 35% are backward

and only 20% are both directions waves. But despite the mentioned
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FIGURE 6

Neural activity signals and graph representation. (A) Basic elements (vertices and edges) used to portray neural events as a graph. A directed edge

linking two vertices in adjacent ROIs (refer also to Figure 4) is established when both events, firing peaks, are within a time range 1t ≤ τ = 3s

—determined from data, as discussed at the end of Section 2.6. (B) The creation of a symmetry edge, joining vertices in di�erent sides. (C) The

creation of a propagation edge, joining vertices in di�erent segments. (D) Activity signals in each neural cluster with the constructed motifs

(sub-graphs of the full G) representing the associated pulses.

contrasts, the standard deviations of each one of these proportions

are similar for the L1 and L3 larvae, details in Table 1.

Interestingly, the distributions of spontaneous activity among

segments display certain distinctions for L1 and L3. Indeed, as

the forward propagation, the L3 larvae present a clear dominating

peak at A8, absent for L1 (Figure 8A). However, for backward

propagation, although the highest peak for L3 is at T1, we still

have other important peaks, notably at T2. Such trend for backward

propagation, in the sense there is not an unique very pronounced

peak, is the same for L1 (Figure 8B). But notice that for L1, the

second most frequent activity is not at T2, but instead at A2. The

prominence of A8 and T1 corresponds to the expected initiation
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FIGURE 7

Tree of possible propagation motifs resulting from the graph construction and their nomenclature (depending on the directional flow). The motifs,

basic small sub-graphs, have a central reference vertex, red dot, which then may or may not be connected to other vertices, yellow dots, by oriented

edges.
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TABLE 1 Frequency of the spontaneous events (SE) among all events (J/Trun) and relative percentage of their associated activities, averaged over each

larvae population.

AP type from SE Mean L1 (SD) Mean L3 (SD) 95% CI L1 95% CI L3

Frequency of SE in Hz 0.117 (0.040) 0.118 (0.036) [0.088, 0.146] [0.092, 0.144]

% of SE given rise to AP 72.50 (6.72) % 80.00 (10.47) % [67.693, 77.307] [72.510, 87.490]

% of forward AP 35.48 (13.25) % 44.42 (13.59) % [26.002, 44.958] [34.698, 54.142]

% of backward AP 34.51 (11.31) % 34.62 (11.97) % [26.419, 42.601] [26.057, 43.183]

% of both directions AP 30.01 (11.35) % 20.96 (8.19) % [21.891, 38.129] [15.101, 26.819]

SD, standard deviation; CI, confidence interval; AP, for activity propagation.

points of behavioral contraction waves (tail for forward, head for

backward). To better characterize these dissimilarities between L1

and L3, we used the Kolmogorov–Smirnov (KS) test (Dodge, 2008),

which evaluates whether or not two distributions differ significantly

by comparing their cumulative distribution functions (CDF). For

the forward propagations per segment of L1 and L3, the KS statistic

resulted in 0.545, with a P-value of 0.07. This near-threshold P-

value suggests that L1 and L3 distributions are likely governed

by distinct processes, albeit with a limited statistical certainty.

Conversely, for backward propagations, the KS statistic was 0.273,

with a P-value of 0.83, indicating minimal distinction between the

distributions, supporting the hypothesis of akin drives for L1 and

L3 in the case of backward propagations.

The relevant distinctions and similarities between L1 and

L3 spontaneous activity generation are more clearly evidenced

through heat-maps (Figures 8C–F). Such type of plots provides

relevant insight into the directional flow and distribution of

spontaneous activity across segments. As previously mentioned,

forward wave propagation reveals striking differences between

L1 and L3 (Figures 8C, E). In L3, forward activity is highly

concentrated at A8 and evolves consistently through most of the

larva’s body. In contrast, L1 displays a concentration of forward

activity generation predominantly at A1 and T3, highlighting an

important difference regarding the initiation vertices of contraction

waves for the L1 and L3 individuals. Nonetheless, backward

propagating waves for L1 and L3 exhibit fairly comparable patterns

(Figures 8D, E).

3.2 Propagation of activity

Differently from spontaneous, “excited” events relate to

activity triggered by preceding—but not later than 1τ—spikes

in neighboring segment ROIs. In our construction, these events

are represented by vertices attached to oriented edges. When

these edges income from the posterior (anterior) region, inset in

(Figures 9A, B), we have a forward (backward) propagating wave.

Further, if these vi’s are also tied to outgoing oriented edges Eei i′ ,

thus directed toward other vertices vi′ ’s, they form the interior links

of a propagation chain, or equivalent, “inner” vertices of a graph

Gj. Obviously, the first vertex of any Gj is spontaneous, whereas

the last is excited, but not an inner vertex. We denote as VL
inner(Gj)

(VR
inner(Gj)) the number of inner vertices of Gj related to the left

(right) segments. The length of Gj is then assumed as the largest

between VL
inner(Gj) and VR

inner(Gj). Such definition is useful if the

interest is to characterize the neural activity just in terms of type of

segments, regardless their locations.

Given a graph we can count the number of its vertices

corresponding to a certain segment (A1 to A8 and T1 to T3). So,

considering all the non-trivial J-J1 graphs obtained from the data,

we can determine the relative contribution of any segment to the

neural activity processes along a full experimental run. For instance,

in Figures 9A, B we depict the probability of each inner segment to

participate in, respectively, forward and backward waves. As one

can see, with the exception of T2, all other subsequent segments for

the L3 larvae are more likely to continue a propagating wave, either

forward or backward.

From the comparatively lower propagation probability in the

L1 larvae, one can infer that their neural signals present a higher

tendency to fade away while traveling along the VNC, resulting in

shorter activity chains, i.e., smaller Gj’s. This can be quantified by

computing the distribution of the previously defined graph length

forGj’s representing forward and backward waves. This is displayed

in Figures 9C, D. Note that for L3 larvae, both cases display peaks

at eleven vertices (or segments), indicating activity across the entire

neural system. On the other hand, for the L1 larvae the distributions

maximum are at four (forward) and five (backward), confirming a

propensity of wave abbreviation. In Table 2 we show the averaged

probability that once excited, a segment will also stimulate another

segment (so, propagating the signal). We see that the probabilities

are always greater for L3 than for L1 and that backward waves are

less likely of getting through than the forward waves.

Finally, we applied the KS test to compare the forward and

backward distributions (Figures 9C, D) for L1 and L3 larvae

populations. For the forward of L1 and L3, the result was 0.2

with a P-value of 0.994, pointing to a no sensible difference

between potential origins for the distributions. Conversely, for the

backward of L1 and L3, the KS value was 0.6 with a P-value of

0.052, suggesting eventual distinct drives for L1 and L3. These

findings might seem in contradiction with the same analysis done

for the distributions in Figures 8A, B. However, although similar,

the quantities in Figures 8, 9 represent complementary traits of

the neural activity evolution. This key aspect will be addressed in

Section 4.

3.3 The spatial features of neural activity

The exact succession structure of segments activation

(resulting from underlying neuromotor processes) is paramount in
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FIGURE 8

Spontaneous activity per segment of L1 and L3 larvae. (A, B) The distributions for segments initiating forward and backward waves (the elementary

motifs in the inset). (C–F) Heat maps in which the horizontal axes marks the origin of the activity chains, thus corresponding to the locations of the

spontaneous segments (or vertices). The propagation occurs along each row (as shown by arrows). The color intensity indicates how frequently a

given segment contributes to the associated propagation chain.

generating the distinct functional movements in Drosophila larvae.

For example, it is well established that sequential and symmetrical

excitation of segments along both sides of the VNC yield forward

and backward crawling (Loveless et al., 2019). In contrast,

asymmetrical activity, i.e., when segments are prompted only on

one side of the VNC, tends to control turning maneuvrers, a crucial

component of larval navigation that shapes individuals trajectories

(Pulver et al., 2015).

To gain quantitative insight into the interplay between neural

activity and movement patterns, we apply the present framework

to better classify the neural signal waves in terms of their

symmetry features. Specifically, we examine the symmetry edges
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FIGURE 9

Inner excited activity per segment (so A8 and T1 are not included) of L1 and L3 larvae. The probability for a segment to continue the (A) forward and

the (B) backward propagation once excited. The insets show a typical link (i.e., a very basic motif in the graph representation) of the propagation

chain. The graph length (main text) distribution for Gj ’s representing (C) forward and (D) backward propagation.

TABLE 2 Probability (in %) of a segment, once excited, to also excite a next one during forward and backward wave propagation, averaged over each

larvae population.

Direction Mean % L1 (SD) Mean % L3 (SD) MNE L1 (SD) MNE L3 (SD)

Forward 69.60 (5.60) % 77.45 (7.21) % 19.1 (8.62) 56.1 (47.65)

Backward 40.61 (12.33) % 64.62 (16.51) % 22.3 (12.28) 56.0 (41.56)

The mean number of observed propagation events (MNE) is also shown.

(as defined in Section 2.6), which represent nearly simultaneous

activation of a segment’s left and right sides in the VNC.

If the excitation of a segment is connected by a symmetry

edge, we assume such segment to be symmetrically activated.

Conversely, when the spike occurs solely on one side, the

segment is considered asymmetrically activated. These situations

are schematically illustrated in Figures 10A, B.

As it becomes clear by analyzing the obtained graphs, a

propagating wave typically does not keep changing back and

forth between symmetrical and asymmetrical motifs. Instead, it

shows a distinct region of either symmetrical or asymmetrical

activation, switching from one mode to the other at most just once

along the way. Therefore, we can divide activity propagation into

three cases.

1. Symmetrical: The engaged segments in a signal activate both the

left and right sides of the VNC (Figure 10C).

2. Partially asymmetrical: Part of the activity wave propagates

along both sides and part along a single side (Figure 10D);

3. Strictly asymmetrical: The propagation takes place only one side

(Figure 10E).

In terms of actual larvae locomotion, the symmetrical graphs

(associated to symmetrical VNC activity), relate to forward

and backward crawling, once this type of displacement is

generally correlated to bilateral segment contraction (Figure 10A).

In contrast, both partially and strictly asymmetrical graphs

are plausibly linked to turning behavior, reflecting the one-

sided segment activation characteristic of directional changes

(Figure 10B).
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FIGURE 10

The spatial symmetry characteristics of the graphs constructed from the neural signals and relations to larvae basic movement steps. (A) Forward and

backward crawling locomotion is related to neural activity propagation in the both sides of the VNC, whereas (B) body turns are usually associated to

spikes propagating in just on side of the ganglia segments. Consequently, the graphs can be classified as either (C) totally symmetrical, (D) partially

symmetrical, or (E) strictly asymmetrical.

Motivated by the previous observations, we contrasted the

symmetric graph structures for the L1 and L3 populations with

average movement properties of the larvae in the first, second and

third stage of their development (L1, L2, and L3). So, considering

the full collection of trajectories, we show in Figure 11A the mean

square displacement (MSD)—normalized by the body length—in

each of the mentioned three consecutive stages. Clearly, the

diffusion rate (given by the slop of the MSD) increases as the

population maturates, i.e., evolving from day 1 to day 3 or

equivalently from L1 to L3, with a particularly considerable greater

diffusivity enhancement for L3. We hypothesized that behaviorally,

shorter neural activity waves, frequent in L1, could translate into
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FIGURE 11

Some relevant statistical features of the larvae (straight) movement characteristics. (A) Normalized (by the body size) MSD. (B) Normalized velocities.

(C) Distribution of the number of body segments (wavelengths) contracting during locomotion (ANOVA F(17,207) = 899, R2 = 0.99, P < 0.0001,

Bonferroni post-hoc test for each length, ** means P < 0.01). (D) Time duration boxplot for the full size graphs of neuromotor activity (i.e., of length

11, thus all ROIs); L1 mean: 6.80 s, L3 mean: 8.31 s, KS = 0.47, P < 0.0001. (E) Time duration boxplot for the full forward locomotor waves (i.e.,

involving 11 body segments, so related to locomotion behavior); L1 mean: 1.97 s, L3 mean: 1.19 s, KS = 0.875, P < 0.001.

muscles contraction waves that might not travel the full length of

the larvae’s body. This should reduce the ability of propelling the

larvae (either forward or backward) as effectively as when crawling

waves transverse the full extend of the larvae’s body. To test such

supposition, we analyzed the waves of segment contraction in L1

and L3 crawling larvae. We depict in Figure 11C the resulting

distribution of the number of body segments (so wavelength,

as explained in Section 2.3) contracting during straight forward

locomotion. The majority of the peristaltic waves propagate along

the entire body in both L1 and L3 larvae. Shorter waves are

infrequent and stereotyped, occurring in the anterior half of the

body and helping to realign the front of the larva after a sharp

turn. Further, short aborted waves, starting in A8 and advancing

two segments, are very rare (Figure 11C). Therefore, there seems to

have little relationship between the shorter wavelengths described

in Figure 8 and the behavior of the larvae inmore persistent straight

locomotion, where proprioceptive inputs are likely to guarantee

the correct propagation of peristaltic waves of neuromotor activity

(Hughes and Thomas, 2007). We also investigated the distribution

of time durations of full graphs (so, of length 11) of neural activity

and full locomotor waves (so, comprising 11 body segments),

respectively, in Figures 11D, E. Conceivably, their variability could

be responsible for differences in crawling speed and dispersion.

The average time duration of full graphs is longer for L3 than

for L1. This probably reflects the dramatic increase in size of

the VNC. On the other hand, this trend is reversed for the

average time for a complete forward peristaltic wave (A8–T1),

now with L3 faster than L1 (Figure 11E). In addition, there were

clear differences in the number of forward waves executed per

minute: 32.9 ± 2.2 w/min for L1 and 50.26 ± 3.5 w/min for L3

(P < 0.0001). These facts support the idea that developmental

changes in larval speed are not solely dependent on changes in

the VNC, but relies on the interaction with the muscles and

proprioceptive inputs. For example, the shorter times needed

to execute a full forward locomotor contraction wave for L3

may point to a more efficient control of the basic movement

steps, even considering that the full neural signals of L3 tend

to be longer.
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FIGURE 12

Asymmetries in neural waves and in movement patterns. (A) Intensity di�erence for neuronal activity per segment in L1 larvae. (B) Activity phase per

segment in L1 larvae. (C) Intensity di�erence for neuronal activity per segment in L3 larvae. (D) Activity phase per segment in L3 larvae.

Representative example of a (E) L1, (F) L2 and (G) L3 larvae curved trajectory. Note that each larva has a tendency to turn more in one direction, but

as a full population there is little handedness if any (Wosniack et al., 2022).

We furthermore quantified phase and intensity differences

between the left and right sides of segment activity. Figures 12A,

C displays the intensity differences across segments, while

Figures 12B, D depicts the phase differences. They are much more

pronounced in anterior segments, for both L1 and L3 larvae. On the

other hand, the distributions are similar for forward and backward

propagating graphs, meaning that while backward waves initially

exhibit distinct phase and intensity mismatches between the left

and right sides, these discrepancies tend to dissipate as the wave

propagates. This indicates a kind of activity synchronization as

the neural signal propagates and that the phases and intensity

differences are an inherent property of the segmental ROIs.
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FIGURE 13

Statistical distributions of asymmetric graphs (hence related to unbalanced segments sides). (A) Graph length distribution for partially asymmetrical

graphs. (B) Graph length distribution for strictly asymmetrical graphs. (C) Segment distribution of asymmetries in partially asymmetrical graphs. (D)

Segment distribution of asymmetries in strictly asymmetrical graphs.

Actually, the observation that phase and intensity differences

between sides are concentrate in the anterior segments might point

to directional navigation mechanisms, once these are the ones

that tend to control the movement direction in living larvae. In

fact, a possibility is that they should cause in a biased impulse

propelling the larvae’s body forward, as one side of each segment

would contract more than the other (at different times). Notably,

there seems to be a directional bias on phase and intensity toward

the left side of the VNC. A consistently non-symmetric pattern

of crawling activity would result in a certain degree of circularity

into the larvae’s locomotion, which indeed was observed in the

trajectory recordings, as shown in Figures 12E–G. Although it has

been proposed that circular trajectory patterns in animals can arise

from asymmetries in body structure (Sadeghi et al., 2000), the data

suggest that these patterns could instead be driven by asymmetries

in neurological activity itself.

The lengths of asymmetric (partial or strict) neural activity

graphs are shown in Figures 13A, B. It is relevant that strictly

asymmetric activity appears only near the thoracic segments.

Also, even in partially asymmetrical waves, the asymmetrical

portions also tend to concentrate in this anterior region. So,

as illustrated in Figures 13C, D, asymmetry is predominantly

localized in the front segments of the VNC, thus agreeing with

the expectation that turning movements primarily involve anterior

body regions.

3.4 Developmental changes in individual
neurons

Having employed our graph construction approach to describe

the characteristics of neuromotor activity, here we shall test it on

an identified interneuron. We chose A27h, a premotor neuron

thought to be part of the central pattern generator for crawling

(Fushiki et al., 2016). A27h is particularly relevant to our study

as it receives proprioceptive inputs that are necessary for the gap-

junction coupling with M neurons and for the maturation of the

crawling central pattern generator (Zeng et al., 2021). We analyzed

A27h forward activity at the soma level fromA2 to A7, Figures 14A,

B. Our analysis of the activity patterns, comparing L1 with L3,

shared some trends observed for the neuromotor activity. In L1

many waves are initiated in distinct segments along the VNC,

while in L3 they are concentrated in A7 (Figure 14C). The distinct
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FIGURE 14

Analysis of a central pattern generator neuron, A27h. Representative calcium imaging traces of (A) L1 and (B) L3 VNCs. (C) Distributions for segments

initiating forward waves. (D) Graph length distribution for Gj ’s representing forward propagation. (E, F) Heat maps in which the horizontal axes marks

the origin of the activity chains, thus corresponding to the locations of the spontaneous segments (or vertices). The propagation occurs along each

row (as shown by arrows). The color intensity indicates how frequently a given segment contributes to the associated propagation chain.

starting point of forward waves induces more distributed variable

graph lengths (Figure 14D). Once waves are initiated, they tend

to progress along the entire ventral nerve cord (Figures 14E, F).

Therefore, our graph model has revealed that the disorganized

spontaneous activity we observed in motorneurons in L1 is also

present in certain central neurons, like A27h. The intersegmental

propagation is very little affected in A27h (Table 3). This suggests

that connectivity of other central pattern generator interneurons,

like GDL (Fushiki et al., 2016) must be responsible for the

defect in propagation observed at the neuromotor level in L1.

In a future work, the present method will be used to reveal the

interneurons involved.

4 Discussion and concluding remarks

In this study, we explored the developmental changes in

neuromotor activity patterns of Drosophila melanogaster larvae

by employing calcium imaging techniques alongside a novel

mathematical framework grounded in graph theory. By comparing

first instar (L1) and early third instar (L3) larvae, we addressed

how neural activity propagation correlates with locomotor behavior

during development.

Our findings revealed significant differences between L1 and L3

larvae in terms of neural activity initiation and propagation. For

instance, L1 larvae exhibited a higher frequency of spontaneous

neural activity events that ended up failing to trigger successful

activity chains. The starting points of these “broken” signals were

fairly uniformly distributed across the ventral nerve cord (VNC).

This is reminiscent of the developmental patterns of muscle

contraction during the embryonic stage, when bursts of activity,

displaying motifs resembling forward or backward crawling, begins

at any segment. Therefore, the patterns of neuromotor activity

we recorded in L1 suggest a less developmentally mature and

coordinated neuromotor network (Pereanu et al., 2007)

Conversely, L3 larvae displayed spontaneous activity

concentrated in specific segments associated with the initiation

of forward and backward neural waves, and indication of a

more developed and organized neuromotor system. Actually,

propagation of neural activity was more efficient in L3 than in

L1, with higher probabilities of successful forward and backward

propagation across most segmental ROIs. However, there is little

evidence that this fact might lead to higher larval dispersion in L3

than in L1, even though during crawling, most forward peristaltic

waves start in A8, propagating all the way until reaching the

thorax. Rather, these results point toward a role of proprioception

for the uninterrupted propagation of neuromotor activity.

Proprioception is known to play a role for the coordination of

activity in adjacent legs or along the body segments (Hess and

Büschges, 1999; Wen et al., 2018; Suster and Bate, 2002; Hughes

and Thomas, 2007). In L1, isolating the nervous system from

the body and its sensory inputs dramatically affects the ability

of waves to successfully propagate, therefore suggesting that the

intersegmental connectivity required for propagation has not

yet completely matured. It has been shown that during larval

development the size, number of terminal dendritic branches,
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TABLE 3 Probability (in %) of a segmental A27h neuron, once excited, to

also excite a next one during forward wave propagation, averaged over

each populations.

Mean % (SD) MNE (SD)

L1 92.48 (4.99) 33.80 (17.14)

L3 98.24 (1.99) 71.62 (21.35)

SD is the standard deviation, T test, P = 0.008. The mean number of observed propagation

events (MNE) is also shown.

and total number of synaptic inputs increases many folds while

preserving cell type-specific connectivity (Gerhard et al., 2017).

It is possible that the strength of intersegmental connections is

still not sufficient to support the intersegmental propagation of

neuronal activity.

The A27h results indicate that not all interneurons that are part

of the central pattern generator (Fushiki et al., 2016) have seemingly

immature connections in L1. Notably, A27h which, in coordination

with the M neuron, requires early proprioception inputs for the

development of the larval central pattern generator for locomotion

(Zeng et al., 2021), is mature enough to induce mostly successful

propagation of activity, even when the overall neuromotor activity

produces truncated waves. In L3, the intersegmental propagation

must rely on central connectivity in the VNC, while proprioception

controls other aspects as speed, intensity of muscle contraction and

maneuverability (Hughes and Thomas, 2007; Pulver et al., 2015;

Gebehart and Büschges, 2024).

The increase in locomotor dispersion observed in older larvae

is likely to be related to the speed of activity propagation

along the entire VNC in the intact animal. In fact, from a

behavioral point of view, there is an ∼65% rise in the speed

of the peristatic wave of segments contraction along the whole

body from L1 to L3. We also identified a growing frequency in

the number of forward segment peristaltic waves generated per

minute. Such waves often start before the ending of the previous

one. Furthermore, it was shown that the increased size of the

larvae makes each step bigger, leading to longer displacements

(Almeida-Carvalho et al., 2017). In comparison, in the isolated

nervous system (i.e., in dissected larvae), the time duration of full

neuromotor activity waves (see Figures 11D, E) are longer in older

L3 larvae, probably as a consequence of the greater length of the

VNC. This latter apparent contradiction reveals the importance of

the body proprioception and muscle development for change in

speed of the actual larvae. Physiologically, at the neuromuscular

junctions, motoneurons enlarge their presynaptic axon terminals

in size and strength (Schuster et al., 1996) and increase glutamate

release (Rasse et al., 2005). While within the central nervous

system, motoneurons enlarge their postsynaptic dendritic arbors

inducing synaptic strengthening that enhances neuronal activity

(Zwart et al., 2013). These mechanisms guarantee the effective

contraction in the remarkably bigger L3 muscle, and may as well

alter the speed and strength of fibers contraction necessary for

speed magnification.

During symmetrical activity, we observed phase and intensity

differences between the left and right sides of the VNC, particularly

in the anterior segments. These may contribute to the curved

trajectories commonly seen in larval movement (Gomez-Marin

and Louis, 2014; Almeida-Carvalho et al., 2017). Further, such

differences suggest that neural activity patterns, rather than

structural asymmetries in the body (Sadeghi et al., 2000), might

underlie certain locomotor behavior like turning and circular

movement patterns (Souman et al., 2009). By its turn, asymmetrical

neural activity was predominantly observed in anterior segments

and is probably associated with turning behaviors, enabling

larvae to better navigate through the environment. Also, the

concentration of asymmetrical activity in these segments points to

developmental maturation which enhances directional changes and

maneuverability.

Lastly, from a broader point of view, by introducing a

quantitative graph-based model to represent neural activity

propagation, the present work provided a systematic framework to

analyze and compare neuromotor patterns across developmental

stages. For example, it allowed to identify specific motifs and

propagation probabilities, offering insights into the evolvement of

neural circuits responsible for locomotion. Potentially, the present

methodology can be useful in the concrete characterization of

distinct spontaneous patterns of neuronal activity. This includes

neurons that are central, as the here discussed A27h, and others

that generate distinct “tasks,” like: rolling (Cooney et al., 2023), self-

righting (Picao-Osorio et al., 2015), hunching (Francis et al., 2024),

etc. It also could help to typify the consequences of precise neuronal

manipulations affecting speed (Kohsaka et al., 2014; Hiramoto

et al., 2021), left right coordination (Heckscher et al., 2015) or more

generally any changes in regionally coordinated neuronal activity

(Masson et al., 2020; Gerhard et al., 2017).

Future research could employ our mathematical formalism to

model patterns of segment contraction during movement, trying to

correlate them with neuronal activity. So, we believe this method

provides a more generic perspective of how neural networks form

and organize to create coordinated behaviors. This should have

consequences not only for developmental biology but also for

understanding motor control and neural coordination in more

complex organisms.
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