
TYPE Original Research

PUBLISHED 06 March 2025

DOI 10.3389/fnins.2025.1557287

OPEN ACCESS

EDITED BY

Mei Liu,

Multi-scale Medical Robotics Center Limited,

China

REVIEWED BY

Chuandong Li,

Southwest University, China

Tingwen Huang,

Shenzhen University, China

*CORRESPONDENCE

Bin Hu

huu@scut.edu.cn

RECEIVED 10 January 2025

ACCEPTED 12 February 2025

PUBLISHED 06 March 2025

CITATION

Li J, Hu B and Guan Z-H (2025) AM-MTEEG:

multi-task EEG classification based on

impulsive associative memory.

Front. Neurosci. 19:1557287.

doi: 10.3389/fnins.2025.1557287

COPYRIGHT

© 2025 Li, Hu and Guan. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

AM-MTEEG: multi-task EEG
classification based on impulsive
associative memory

Junyan Li1,2, Bin Hu1,2* and Zhi-Hong Guan3

1School of Future Technology, South China University of Technology, Guangzhou, China, 2Guangdong

Artificial Intelligence and Digital Economy Laboratory, Guangzhou, China, 3School of Artificial

Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China

Electroencephalogram-based brain-computer interfaces (BCIs) hold promise

for healthcare applications but are hindered by cross-subject variability and

limited data. This article proposes a multi-task (MT) classification model, AM-

MTEEG, which integrates deep learning-based convolutional and impulsive

networks with bidirectional associative memory (AM) for cross-subject EEG

classification. AM-MTEEG deals with the EEG classification of each subject as

an independent task and utilizes common features across subjects. The model

is built with a convolutional encoder-decoder and a population of impulsive

neurons to extract shared features across subjects, as well as a Hebbian-

learned bidirectional associative memory matrix to classify EEG within one

subject. Experimental results on two BCI competition datasets demonstrate

that AM-MTEEG improves average accuracy over state-of-the-art methods

and reduces performance variance across subjects. Visualization of neuronal

impulses in the bidirectional associative memory network reveal a precise

mapping between hidden-layer neuron activities and specificmovements. Given

four motor imagery categories, the reconstructed waveforms resemble the real

event-related potentials, highlighting the biological interpretability of the model

beyond classification.
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1 Introduction

The brain-computer interface (BCI) can be defined as a system that translates a user’s

brain activity patterns into messages or commands for interactive applications (Lotte

et al., 2018). Efficient BCI systems can promote interactions between the brain and

physical devices and have broad applications in medical rehabilitation and neuroscience

research (Lebedev and Nicolelis, 2017). Most of the current BCI data comes from neural

electrical signals recorded by electroencephalogram (EEG), which enables researchers to

measure and decode human brain activity. A classic BCI paradigm for motor imagery

(MI) is consisted of five parts: EEG acquisition, EEG preprocessing, feature extraction,

classification, and task execution (Lotte et al., 2015). One crucial step is to extract features

of EEG signals and classify them into the motion categories. To date, the EEG classification

tasks are still constrained by the following limitations.

• Since the EEG data has large variability and the representation of neural activity

changes over time (Degenhart et al., 2020), EEG classificationmodels trained on given

sample datasets are difficult to generalize to other samples.
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• With the development of biosignal sensors for use in home

environments (Zhang et al., 2023), processing models for

biosignals require increasingly robust performance. However,

most EEG classification models have low cross-subject

classification accuracy (Lawhern et al., 2018), where models

are only trained and tested on a single subject’s data (Hu et al.,

2019b), resulting in low generalization in cross-subject tasks.

• Because BCI experiments are time-consuming (Shen et al.,

2022), and are limited by the energy and time of the subjects,

the amount of EEG data collected by a single subject is

relatively small, detrimental to the training of computational

models.

Data-driven deep learning has achieved remarkable

achievements in image classification, speech recognition, and

natural language processing, among others (Ma et al., 2020).

Due to the above-mentioned limitations, however, current deep

learning models cannot be directly applied to deal with the EEG

classification tasks, particularly for the cross-subject issue. In view

of the ethical and safety considerations, the healthcare field has

raised high requirements on the interpretability of deep learning

models (Adadi and Berrada, 2018). Most of the existing models

have poor interpretability given the end-to-end scenario, limiting

their application in BCI. It is thus in demand to build new machine

learning models to fix the cross-subject variability of EEG by data

sharing, and enhance the neuroscience interpretability for wide

application to BCI systems.

This article resorts to the multi-task learning (MTL) to cope

with the large variability in the EEG data. The EEG classification

of each subject is defined as a task, common features are extracted

among samples from various subjects to guarantee cross-subject

training, and these features are mapped into categories of each

subject. Differing from the closely-related methods (Zheng et al.,

2019; Wang et al., 2024; Lawhern et al., 2018), we incorporate

associative memory to multi-task learning and propose the AM-

MTEEG model by mixing Hebbian learning with deep learning

(Figure 1). The AM-MTEEG combines a deep convolutional model

with an impulsive associative memory network, as inspired by the

memory principle of human brains (Seitz, 2010), which can learn

accurate mappings from very few demonstrations. AM-MTEEG

includes a deep learning encoder-decoder counterpart trained

across various samples, replacing the encoding mechanism of the

brain. The model further incorporates a layer of impulsive neurons

to encode the necessary neural signals for associative memory

formation. For each subject, a bidirectional associative memory

network is built to map impulsive signals to the motion categories.

The original EEG signals can be reconstructed by decoding the

impulsive signals associated with specific category labels, thereby

enhancing the interpretability beyond the classification process.

The main contributions of this article are summarized as

follows.

• To deal with the cross-subject variability, a multi-task EEG

classification model is proposed, termed as AM-MTEEG,

which integrates a deep learning-based convolutional encoder

with a Hebbian-type bidirectional associative memory (AM)

network. The convolutional encoder captures shared features

across different samples, while the AM network alleviates the

data variability for classification by directly mapping latent

features to motion categories.

• AM-MTEEG achieves an average accuracy of 86% on the

BCI Competition IV IIa dataset, surpassing state-of-the-

art (SOTA) methods and exhibiting minimal performance

variance across different samples. The decoder can reconstruct

EEG signals from neural activities in the AM network, which

resembles the real event-related potentials (ERPs) of each

motion, thereby demonstrating the model interpretability.

• For any motor imagery EEG, impulsive neurons in AM-

MTEEG exhibit specific firing patterns characterized by high

synchrony. This firing synchrony suggests that neuronal

activity is governed by a low-dimensional latent manifold,

a feature consistent with the neural coding mechanisms

observed in hippocampal neurons (Levy et al., 2023). This

alignment indicates the neuro-inspired characteristic of the

model, reflecting the biological plausibility.

2 Related work and research
motivation

In EEG-based BCI tasks, one common approach is to utilize

common spatial patterns (CSP) for feature extraction (Blankertz

et al., 2007), followed by classification algorithms like LDA

(linear discriminant analysis) and SVM (support vector machine).

Although CSP helps to extract EEG features, traditional machine

learning models are not adequate to recognize complex EEG

patterns. Current deep learning models have demonstrated greater

flexibility in EEG classification for complex BCI tasks (Lawhern

et al., 2018; Altaheri et al., 2022). For example, Lawhern et al.

(2018) proposed EEGNet, which applies separable two-dimensional

convolutions to EEG classification problems. Liu et al. (2023)

combine the same spatiotemporal convolution with filter banks

and propose FBMSNet, which mixes deep convolution to extract

temporal features at multiple scales and then performs spatial

filtering to mitigate volume conduction. Altaheri et al. (2022)

introduced ATCNet, a convolutional neural network with temporal

attention mechanisms for EEG classification. ATCNet achieved an

average accuracy of 85.4% on the BCI Competition IV IIa dataset,

setting a new state-of-the-art performance on this dataset.

The accuracy of BCI decoding across subjects is constrained

by the variability of emotion and experience between subjects

(Huang et al., 2023). Waytowich et al. (2016) presented a spectral

transfer model using information geometry to sort and combine the

prediction results of information geometry classifier sets to achieve

unsupervised transfer learning for single test detection. Zhi et al.

(2024) proposed a generalization network using domain alignment

and class regularization blocks of deep correlation alignment

to establish domain-independent supervised contrastive learning.

Another solution comes from multi-task learning, which allows

different tasks to share common features. Compared to single-task

learning models, MTL leverages more data from different tasks

(Zhang and Yang, 2021), enabling the learning of more generalized

representations. Moreover, MTL can be used to alleviate large high

subject variability and limited sample size in EEG-based BCI tasks.
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FIGURE 1

The architecture of the associative memory multi-task EEG (AM-MTEEG) model. There are two stages in the model. Stage 1 includes a convolutional

encoder, an impulsive neural population, a decoder of transposed convolutions. Stage 2 is a bidirectional associative memory (BAM) classifier. Both

the convolution and transposed convolution layers use a convolution kernel of length 5 and are activated through the ReLU function. The impulsive

neural population is built with 200 leaky integrate-and-fire (LIF) neurons. The encoder, population and decoder are trained by backpropagation (BP)

with joint loss, while the BAM module is optimized by Hebbian learning.

Zheng et al. (2019) developed an effective algorithm where each

subject’s sample is treated as a separate task, utilizing regularized

tensors. In addition to MTL, the use of ensemble learning can also

reduce the variability of EEG. For example, Qi et al. (2022) used a

dynamic ensemble Bayesian filter to assemble models to cope with

variability in signals.

Spiking neural networks (SNNs), inspired by neural systems

in the brain, offer computational advantages such as low

power consumption and high interpretability, making them

widely applicable across various tasks. Diehl and Cook (2015)

implemented an SNN using unsupervised STDP learning for

handwritten digit classification, achieving 95% accuracy on the

MNIST dataset. Xu et al. Ma et al. (2020) used a spiking

recurrent neural network to extract features and presented a

neuromorphic approach for classifying electromyography (EMG)

signals. Xu et al. (2023) proposed a spiking convolutional neural

network for electromyography pattern recognition, which can

be used in prosthesis control and human-computer interaction.

The effectiveness of SNNs in multi-task learning has also been

demonstrated. For instance, Cachi et al. (2023) proposed TM-

SNN, which uses different spiking thresholds to represent different

tasks while sharing the same structure and parameters across tasks.

Convectional spiking networks cannot be used for EEG-based BCI

tasks, since the training process would be hampered by the limited

data and large variability across subjects.

Previous studies suggest that hybrid models that integrate

associative memory networks with deep learning could perform

better than conventional convolutional or spiking networks across

tasks. Hu et al. (2019a) proposed that spiking neural networks

using Hebbian learning can provide stable and fault-tolerant

associative memory. Miconi et al. (2018) combined Hebbian rule-

based associative memory with traditional backpropagation neural

networks, achieving efficient learning on small-sample image

datasets. Wu et al. (2022) applied a similar structure to spiking

neural networks, where the network weights are updated through

both global learning via backpropagation and local Hebbian

learning. This hybrid method performed well in fault-tolerant

learning and few-shot learning. The associative memory networks

(Hu et al., 2019a; Kosko, 1988) could yield a short training time

by directly mapping the spike representations to motion categories,

thus reducing the calibration time of BCI systems on new subjects.

Based on these observations, this article develops a hybrid

model of deep convolutional network and impulsive associative

memory network, for the purpose of extracting cross-subject

features. The training of the AM network has a linear time

complexity for reducing the training time, while deep convolutional

networks have flexible feature extraction capabilities. Moreover, the

AM network can enhance the interpretability of BCI performance

across different subjects, while the shared features extracted

through multi-task learning improve classification stability across

subjects. As a by-product, the proposed hybrid model enables to

share data across subjects and reduce the time to adapt to new

subjects, which could be useful for dealing with limited data. When

used for EEG-based BCI systems, the combination of AM and deep

learning helps to cut the calibration time onto new subjects and

lessen the amount of data required for a single subject within a

cross-subject dataset.

3 The AM-MTEEG model

Figure 1 demonstrates the proposed associative memory multi-

task EEG (AM-MTEEG) model, consisting of an impulsive

encoder and an associative memory classifier. The impulsive

encoder utilizes a one-dimensional convolutional neural network

to extract signal features, which are then fed into a population
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of spiking neurons, encoding the input into low-dimensional

spiking representations. A convolutional neural network decoder is

employed to reconstruct the EEG signals. The associative memory

classifier assigns an associative memory matrix (AMM) to each

classification task, mapping the encoded spikes to multi-task

categories. The training of the AM-MTEEG model entails the

following two stages.

• Stage 1: The impulsive encoder and decoder modules

combine self-supervised learning with label-guided training to

optimize the parameters. Multi-channel EEG signals are used

simultaneously as both input and target, training the spiking

encoder to reconstruct the one-dimensional EEG signals.

• Stage 2: The spiking encoder employs the pre-trained

parameters from Stage 1. Only the associative memory

network is trained for different tasks. The input and category

label are represented as an input-output pattern pair {xi, yi},

where xi ∈ Rnt is the low-dimensional spiking representation

vector from the spiking encoder, n is the number of neurons,

t is the length of time series from the convolution encoder,

and yi is the one-hot target vector. The associative memory

network matches the input patterns to the corresponding

output patterns by bidirectional hetero-associative memory.

3.1 Convolutional feature extractor

As shown in Figure 1, the convolutional module consists

of an encoder E and a decoder D built with one-dimensional

convolutions. The convolution kernel length of the convolutional

layer is 5 and the ReLU (Rectified linear unit) function is used

as activation. Unlike the existing EEG classification models based

on 2D convolution (Lawhern et al., 2018; Altaheri et al., 2022),

to achieve EEG data classification while maintaining the structure

of the original EEG signal as much as possible, we only used

1D convolution for feature extraction. Therefore, the convolution

kernel parameters to be trained are reduced from c × n2 to c × n,

where c is the number of signal channels and n is the convolution

kernel size, which allows us to use larger convolution kernels. In the

motor imagery task, we used the CNNmodel architecture as shown

in Table 1.

The input signal x ∈ Rct is downsampled to 1/4 of the original

length by two one-dimensional maximum pooling in the encoder

to obtain the hidden signal

h = E(x), h ∈ Rnt/4. (1)

The encoded signal is directly input into the spiking neuron

as the current through the fully connected layer, recording the

spike sequence Sp ∈ Rnt/4 emitted by the neuron. In the

decoder stage, the hidden layer spike are mapped by the fully

connected layer and then upsampled to the original length by two

one-dimensional deconvolutions.

x′ = D(Sp), x
′ ∈ Rct . (2)

In this process, the encoder-decoder module and the impulsive

neural population obtain a low-dimensional representation of EEG

activity through autoregressive learning.

3.2 Impulsive neural population

Let the encoder output signal be the current I, which is to be

input into the leaky integrate-and-fire (LIF) neuronal population.

The purpose is to convert the encoder output into a discrete spike

train s. By the LIF mechanism (Ward and Rhodes, 2022), the

membrane potential u(t) evolves as

τ
du

dt
= −u+ RI(t), (3)

where R is a constant resistance. When the membrane potential is

greater than a given threshold uth, the neuron generates a spike,

and then the membrane potential would be reset to 0. In computer

simulation, we use the following differential form

ut = (1− τ )ut−1 − st−1uth +
∑

i

(wiI
t−1
i ),

st = step(ut − uth),

(4)

where τ is the decay constant, wi is the synaptic weight of the

synapse i, st ∈ {0, 1} is the spike fired at t, and It−1
i represents the

input current of the synapse i at time t − 1. When the membrane

potential is greater than uth, the neuron generates a spike, and the

membrane potential is set to 0 at the next time t + 1. As shown in

Equation 4, This process uses the unit step function

step(x) =

{

1, x ≥ 0,

0, x < 0.

While training the encoder using backpropagation, calculating

the gradient of the step function poses a challenge. Since the

step function is discontinuous, its gradient results in an impulse

response

δ(x) =

{

+∞, x = 0,

0, x 6= 0.

The gradient of membrane potential is calculated as

∇ut−1 =
∂ut

∂ut−1
∇ut +

∂st−1

∂ut−1
∇st−1

= (1− τ )∇ut + δ(ut − uth)∇st−1

= ∇ut[(1− τ )+ uthδ(u
t − uth)].

(5)

Note that, the term δ(ut − uth) makes it difficult to train

the encoder. As shown in Figure 2, we use the surrogate gradient

method (Neftci et al., 2019) to replace the impulse function with a

rectangular window function

rect(x) =

{

1, |x| ≤ 0.5,

0, |x| > 0.5.
(6)

Then, using the surrogate gradient, the membrane potential

gradient can be approximated by

∇ut−1 =
∂ut

∂ut−1
∇ut + (

∂st−1

∂ut−1
)′∇st−1

= (1− τ )∇ut + rect(ut − uth)∇st−1

= ∇ut[(1− τ )+ uthrect(u
t − uth)].

(7)
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TABLE 1 The output size of each module in AM-MTEEG.

Blocks Layer Nconv Size Stride Activation Output

Encoder

Input (C,T) (C,T)

Conv1D block 5 5 1 ReLU (128,T)

AvgPool1D 2 2 (128,T/2)

Conv1D block 5 5 1 ReLU (256,T/2)

AvgPool1D 2 2 (256,T/4)

Conv1D block 3 5 1 ReLU (256,T/4)

Neural Population

FC (256, 200) (200,T/4)

LIF neurons 200 (200,T/4)

FC (200, 256) (256,T/4)

Decoder

Conv1D block 5 5 1 ReLU (128,T/4)

ConvTranspose1D 8 2 (128,T/2)

Conv1D block 5 5 1 ReLU (128,T/2)

ConvTranspose1D 8 2 (128,T)

Conv1D block 3 5 1 ReLU (C,T)

Classifier AMM (200× T/4,Nclass) Nclass

At each time t, each signal processed by the convolutional

neural network is treated as an input current (Figure 1), which is

passed through a fully connected layer into multiple LIF neurons

in the hidden layer. The hidden layer generates spikes, and these

spike sequences encode essential information from the original

EEG signal. Subsequently, we employ a self-supervision approach,

using a convolutional neural network decoder to reconstruct the

EEG signal. To ensure the identifiability of the impulses in signal

reconstruction, the hidden layer neurons are linked to an auxiliary

classifier for preliminary classification. Here, we use a trainable fully

connected layer, with a joint loss function of reconstruction-type

Lreg and classification-type Lcls. The reconstruction loss is defined

by mean square error (MSE): Lreg(x, x̂) = 1
n

∑

i(xi − x̂i)
2, where

x is the vector of original EEG signals of all subjects and x̂ is

the reconstructed one. The classification loss uses cross-entropy

loss, i.e., Lcls(x, label) = −
∑

i labelilog(xi), where label is the

motion categories of the MI task. The joint loss function has the

following format:

L = Lreg + λLcls, (8)

where λ > 0 is a mixing factor. In computer simulation, one has

λ = 0.1, and the Lcls is calculated by the hidden layer spike through

the auxiliary classifier. Lreg makes the model more expressive, while

Lcls enhances the identifiability of the latent space. When trained

with by the joint loss (Equation 8), AM-MTEEG can perform the

classification and reconstruction tasks simultaneously.

3.3 Associative memory classifier

In order to promote efficient training and accurate

classification, we build a bidirectional associative memory

network as a classifier to map the impulse activities into labels

of the EEG data. Let the input-output pattern (or task) pair be

FIGURE 2

The step function, impulse function, and surrogate gradient

function.

{xk, yk}, where xk ∈ Rn is the input column vector, yk ∈ Rm is

output one-hot vector, and k is the task index. In the memory

retrieval stage, the iterative process of the pattern pair {xk, yk} is

performed as Kosko (1988)

yt+1
k

= sgn(Wkx
t
k),

xt+1
k

= sgn(WT
k y

t
k),

(9)

where Wk =
(

wij
)

∈ ℜm×n is the associative memory matrix

(AMM), sgn(z) =

{

−1 z ≤ 0

+1 z > 0
, and t is the time.
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In the following, the index k is omitted for simplicity. The

Equation 9 can be written as the sum of all elements:

yt+1
i =

n
∑

j=1

wijxtj ,

xt+1
j =

m
∑

j=1

wjiyti .

(10)

When the associative memory network is stable, one has yt+1 =

yt , xt+1 = xt . Then, the above process is actually optimizing the

energy function of the system (Kosko, 1988)

Et = −
(

yt
)T
Wxt

=
∑

i

∑

j

−yitw
ijx

j
t . (11)

The gradient of Et regarding w
ij is ∂E

∂wij = −yixj, and the energy

function achieves its minimum by taking wij = sgn(yixj).

During the training stage, the associative memory matrixWk of

the task k is

Wk =
∑

j

y
j

k
x
jT

k
. (12)

This equation suggests that the bidirectional associative

memory fits into the correlation-based Hebbian learning. When

the pre and post-synaptic neurons emit spikes simultaneously, the

synaptic connection would be strengthened. This process is similar

to the long-term synaptic plasticity mechanism of hippocampal

neurons (Kelso et al., 1986).

Next, we prove the convergence of the bidirectional associative

memory network. Let 1x
j
t ,1yit be the changes of xj, yi at time t.

Then, the time difference of the energy function Et is

1Et =
∑

j

∂Et

∂x
j
t

1x
j
t +

∑

i

∂Et

∂yit
1yit . (13)

From Equation 11, it follows that

∂Et

∂x
j
t

=
∑

i

−yitw
ij,

∂Et

∂yit
=

∑

j

−x
j
tw

ij.

(14)

Substituting Equation 14 into Equation 13, one can get

1Et = −
∑

j

(
∑

i

wijyit)
2 −

∑

i

(
∑

j

wijx
j
t)
2, (15)

where

(
∑

i

wijyit)
2 ≥ 0,

(
∑

j

wijx
j
t)
2 ≥ 0.

(16)

Therefore, 1E ≤ 0 holds, and the dynamic changes of the

system will cause E to continue to decrease. Considering the

use of the sgn function, the system will gradually converge to a

stable value.

One-hot encoded yj is used as the output pattern. After

applying the sgn function, the maximum value is set to 1, while

the remaining values are set to -1. This system stabilizes after a

single iteration. Therefore, during the testing phase, for a given task

sample xi, the classification result is obtained using the associative

memory matrix

labeli = argmin
i

(Wixi). (17)

Considering all the pattern pairs {xk, yk} to be stored, for any

input xi in the prediction phase, it follows that

yi =
∑

k

ykx
T
k xi,

The above process is equivalent to taking the cosine similarity

between the current input xi and xk in all pattern pairs as the

average output yk of the weighted calculation.

4 Experimental results

The proposed AM-MTEEG model is validated on

two public datasets, fitting the classic motor imagery

BCI paradigm. In the following experiments, we

utilize the BCI Competition datasets and achieve an

average accuracy over 94% and 86% on two of its

subsets, respectively.

4.1 Dataset description

BCI Competition III Iva is a binary classification dataset,

including right-hand and foot movement imagery tasks performed

by 5 subjects. Each task includes 118 channels of EEG signals

obtained at a sampling rate of 100 Hz within 3 s (Dornhege et al.,

2004).

BCI Competition IV IIa is a four-category dataset, including

motor imagery tasks of the left hand, right hand, feet, and tongue

performed by 9 subjects. Each task includes 22 channels of EEG

signals and 3 channels of EOG signals obtained at a sampling rate

of 250 Hz within 3 s (Brunner et al., 2008).

4.2 Performance evaluation

4.2.1 Comparative studies
As shown in Tables 2, 3, we compare the AM-MTEEG model

with other cross-subject (CS) or inner-subject (IS) models. In

contrast to SOTA methods, AM-MTEEG achieves comparable

accuracy and surpasses the current SOTA in terms of average

accuracy on the BCI Competition IV IIa dataset. Compared

to other multi-task models, the proposed model exhibits the

smallest standard deviation in accuracy across different subjects,

indicating its ability to provide stable classification performance

across subjects. Additionally, when extending to new tasks, AM-

MTEEG only requires retraining the associative memory matrix,
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TABLE 2 Accuracy comparisons on BCI competition IV IIa, including cross-subject (CS) model and inner-subject (IS) model.

Model Tensor-based MTL TFTL EEGNet ATCNet Ours

Source Zheng et al. (2019) Wang et al. (2024) Lawhern et al. (2018) Altaheri et al. (2022) \

Type CS CS IS IS CS

1 0.840 0.826 0.858 0.885 0.810

2 0.573 0.673 0.615 0.705 0.793

3 0.549 0.951 0.886 0.976 0.879

4 0.959 0.797 0.749 0.810 0.831

5 0.912 0.743 0.559 0.830 0.948

6 0.826 0.757 0.521 0.736 0.897

7 0.792 0.736 0.896 0.931 0.862

8 0.835 0.882 0.833 0.903 0.879

9 0.819 0.923 0.795 0.910 0.844

AVG 0.790 0.810 0.745 0.854 0.860

STD 0.131 0.066 0.139 0.086 0.045

Bold represents the highest accuracy or lowest standard deviation of each row.

TABLE 3 Accuracy comparisons on BCI competition III Iva, including

cross-subject (CS) model and inner-subject (IS) model.

Model EEGNet EDPNet Tensor-based
MTL

Ours

Source Lawhern

et al. (2018)

Han et al.

(2024)

Zheng et al. (2019) \

Type IS IS CS CS

aa 1.000 1.000 0.911 0.958

al 0.688 0.884 1.000 0.975

av 0.582 0.704 0.768 0.838

aw 0.795 0.835 1.000 0.975

ay 0.516 0.679 0.929 0.950

AVG 0.716 0.820 0.921 0.942

STD 0.176 0.118 0.084 0.052

Bold represents the highest accuracy or lowest standard deviation of each row.

and the Hebbian learning used in this process is highly efficient,

demonstrating its good scalability.

4.2.2 Ablation studies
We evaluate the AM-MTEEG model on the BCI Competition

III Iva dataset and compare the full model with two simplified

models: (a) a model where spiking neurons were replaced with

the tanh function, and (b) a model where the associative memory

matrix was replaced by a fully connected layer trained via gradient

descent. The results, as shown in Figure 3, demonstrate that the

full model outperforms the simplified models in terms of accuracy

on most samples. These findings suggest that both the spiking

computation and the bidirectional associative memory classifier

used in AM-MTEEG contribute to the improved performance.

FIGURE 3

Ablation experiments on the BCI Competition III Iva binary

classification dataset. (a) The full AM-MTEEG model; (b) Model with

spiking neurons removed; (c) Model with a fully connected network

using gradient descent instead of the associative memory classifier.

These accuracy histograms show that the classification

performance can be improved by incorporating the spiking neurons

and the bidirectional associative memory networks in the

AM-MTEEG model.

4.3 Model interpretability

Due to the reversibility of bidirectional associative memory,

the classification label is fed into the associative memory matrix

to obtain the characteristic impulse sequence corresponding to any

motion category. Define

xlabeli = sgn(WT
i y

label). (18)

Figure 4 shows the impulse sequences obtained through the

associative memory network, on the BCI Competition III Iva
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FIGURE 4

Spike raster plot of neuronal activities corresponding to the two categories of motions. 50 neurons are randomly selected from the AM network. The

spikes of neurons exhibit a high degree of synchrony over time, while the synchronous behavior represents a fixed category. Red represents the spike

emission with a right hand movement, and blue shows the spike emission related to a foot movement. Yellow means no spike, i.e., neurons stay in

the resting state.

FIGURE 5

Characteristic waveforms of four types of motor imagery tasks restored using the inverse AMM and transposed convolutional decoder on BCI

Competition IV IIa. To be interpretable, the waveforms generated by the model should be similar to the real event-related potentials.

dataset. Here, we visualize the spiking neuronal activities from

subject aa performing a motor imagery task with the right hand

and foot, which reflects the neural coding behind the movements

(Shen et al., 2023). It can be observed that the spikes exhibit a high

degree of synchrony over time, and this synchronous behavior of

neurons corresponds to a fixed category. This finding suggests that

the impulsive neuronal population in the hidden layer fires within

a similar pattern to that measured in the hippocampus of human

brains (Levy et al., 2023).

In addition, the established decoder is used to reconstruct

the original EEG data corresponding to the labels in the

BCI Competition IV IIa dataset, obtaining characteristic

waveforms for the four motor imagery categories. As shown

in Figure 5, the reconstructed EEG signals reveal distinct

waveforms for each of the four categories. When comparing

these waveforms with the ERP from the dataset, as illustrated in

Figure 6, one can observe a similarity between the reconstructed

waveforms and the ERP. The greater the similarity between
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FIGURE 6

Event-related potentials of four types of motor imagery tasks on BCI Competition IV IIa.

these two waveforms, the higher the confidence in the model’s

precise classification. The R-square index is calculated by

quantifying the normalized sum of squared differences

between the characteristic waveforms and the ERP. Given the

four MI tasks on the BCI Competition IV IIa dataset, the

R-square satisfies

R2 = 1−

∑

i(ŷi − yi)
2

∑

i(ȳ− yi)2
= 0.808, (19)

where ŷi is the reconstructed waveform, yi is the ERP, and

ȳ is the average. The value of R2 approaches optimum 1,

indicating that the reconstructed waveforms of the model

can reflect the ERP of the four motor imagery tasks to a

high degree.

4.4 Discussion

The AM-MTEEG model shows effectiveness in the

EEG classification task under the cross-subject variability,

as demonstrated through the above experiments on BCI

Competition datasets. By incorporating the bidirectional

associative memory network, the AM-MTEEG model enables

rapid adaptation onto new subjects once the encoder is

pre-trained. For practical BCI systems, the proposed model

could fit into new subjects using only a small number

of samples, facilitating the application of BCI devices for

wide users.

With the development of neuromorphic computing,

specialized chips have been developed for deploying spiking

neural networks (Davies et al., 2018; Pei et al., 2019).

Compared to CPUs and GPUs via the Von Neumann

architecture, neuromorphic circuits can be implemented

using in-memory computing digital or analog circuits. Such

neuromorphic circuits offer advantages such as high parallel

efficiency, low energy consumption, and compact size. As

indicated in Figure 1, both the two stages of AM-MTEEG

entail spiking neural networks. This impulsive neuronal

attribute make AM-MTEEG potential candidate for edge-

computing scenarios in the healthcare field. Hence, it is a

doable approach to developing the domestic and miniaturized

uses of BCI devices by embedding the proposed model onto

neuromorphic circuits.

5 Conclusion

This article has developed AM-MTEEG, a multi-task EEG

classification model based on deep learning and impulsive

associative memory. The model integrates impulsive neural

representations from deep learning with bidirectional associative

memory networks to alleviate challenges in BCI, such as

high variability and limited data in EEG, and the lack of

interpretability in end-to-end deep learning. By resorting to

the multi-task learning, AM-MTEEG proceeds each subject’s

classification task as an independent task and leverages

cross-subject training to extract shared features and facilitate

feature sharing across subjects. Experimental results show

the AM-MTEEG model surpasses state-of-the-art methods

on the BCI Competition IV IIa dataset, while minimizing

classification performance variance across different samples.

Altogether, the AM-MTEEG model holds effectiveness in

extracting common EEG features, capturing data variability,

and handling cross-subject classification tasks. Future work will

focus on integrating associative memory networks with deep

convolutional networks as to treat single-subject multi-task or

multi-subject multi-task BCI scenarios, as well as exploring the

joint learning of Hebbian rules and gradient descent for few-shot

EEG decoding.
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