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How do neurons live long and
healthy? The mechanism of
neuronal genome integrity

Dai Ihara, Nur Rasyiqin Rasli and Yu Katsuyama*

Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga,

Japan

Genome DNA of neurons in the brain is unstable, and mutations caused

by inaccurate repair can lead to neurodevelopmental and neurodegenerative

disorders. Damage to the neuronal genome is induced both exogenously and

endogenously. Rapid cell proliferation of neural stem cells during embryonic

brain development can lead to errors in genome duplication. Electrical

excitations and drastic changes in gene expression in functional neurons cause

risks of damaging genomic DNA. The precise repair of DNA damages caused

by events making genomic DNA unstable maintains neuronal functions. The

maintenance of the DNA sequence and structure of the genome is known as

genomic integrity. Molecular mechanisms that maintain genomic integrity are

critical for healthy neuronal function. In this review, we describe recent progress

in understanding the genome integrity in functional neurons referring to their

disruptions reported in neurological diseases.
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1 Introduction

The integrity of genomic DNA including DNA sequence and chromatin structure, is

essential for cell survival and normal physiological function. Additionally, biochemical

modifications such as DNA methylation, histone-associated epigenomic modifications,

and other three-dimensional DNA structures play significant roles in maintaining genomic

integrity. The genomic integrity must be preserved especially in stem cells, which produce

the differentiated cells that constitute each organ, to maintain the physiological functions

of each organ and for the health of individuals.

Genomic instability can occur even under normal physiological conditions. DNA

damage which can be caused by mutations affect physiological cellular function and

systemic health deterioration (Aguilera and García-Muse, 2013). For example, genomic

integrity is disrupted in cancer cells, which results in the inability to maintain normal

cellular function, as well as uncontrolled proliferation and metastasis. Therefore,

the mechanisms that maintain genomic integrity, such as chromatin regulation and

DNA repair systems, are crucial for maintaining normal cellular function. A better

understanding of these mechanisms, along with strategies for repairing genomic damage,

will be essential for disease prevention and treatment (Scheijen and Wilson, 2022).

It has been suggested that genomic integrity is not preserved in mature

brain neurons (Zolzaya et al., 2024). 13–41% of human cortical neurons

exhibit copy number variants (CNVs) of genes (McConnell et al., 2013), and

recent next-generation sequencing studies have revealed that many smaller

DNA sequence variants occur in the neuronal genome (Lodato et al., 2018;

Luquette et al., 2022). Given that neurons in the brain have an extremely
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long lifespan and the production of new neurons from neural

stem cells is limited, the mechanism preserving the normal

function of neurons from genome instability is essential for healthy

brain function.

2 Instability of the neuronal genome

Neurons must maintain high metabolic activity to transmit

information effectively within the nervous system. The brain

consumes approximately 25% of the body’s glucose to produce

the energy needed for this activity (Steiner, 2019; Trigo et al.,

2022). Mature neurons produce 4.7 billion molecules of adenosine

triphosphate (ATP) per second in their mitochondria. During this

process, 1–3% of the oxygen is converted to reactive oxygen species

(ROS), which can destabilize the genomic DNA (Salehi et al., 2018).

As a result, neurons face higher risks of genome instability than

other somatic cells (Zhu et al., 2012; Magistretti and Allaman,

2015). Above all, genomic DNA damage can also occur as a part of

normal physiological brain functions. For example, double-strand

breaks (DSBs) increase in the entorhinal cortex, parietal cortex,

and dentate gyrus during the exploration of a novel environment

(Suberbielle et al., 2013). Additionally, DSBs increase in the primary

visual cortex when the eyes are illuminated for 15min (Suberbielle

et al., 2013) and in the hippocampus during memory formation in

mice (Castro-Pérez et al., 2016).

In addition to physiological activity, neuronal genomics is

highly susceptible to damage from drug toxicities (Sanchez-Aceves

et al., 2024; Torre et al., 2021; Calls et al., 2021). Alcohol

administration has been shown to cause DSBs accumulation in

neurons (Rulten et al., 2008). Repeated cocaine administration to

mice causes histone hyperacetylation at 1,696 loci in the nucleus

accumbens (Renthal et al., 2009), resulting in DNA damage in

multiple brain areas (de Souza et al., 2014). Methamphetamine, an

indirect adrenergic receptor stimulator, also induces genomic DNA

damage in neurons (Johnson et al., 2015; Tokunaga et al., 2008).

Neuronal activity induces the expression of immediate early

genes (IEGs) which play important roles in neuronal plasticity

(Yap and Greenberg, 2018). Dysregulation of IEGs leads to various

neurological disorders (Ebert and Greenberg, 2013). The rapid

regulation of IEGs is mediated by physical contact between the

enhancer and promoter by single-strand breaks (SSBs) or DSBs in

genomic DNA (Madabhushi et al., 2015; Wu et al., 2021; Delint-

Ramirez et al., 2022). However, repeated SSBs andDSBsmay induce

physiological dysfunction of neurons when the 3D structure of the

genome is altered (Dileep et al., 2023).

Epigenomic modifications in neurons are required for memory

and learning functions in the brain (Zovkic et al., 2013). DNA

methylation is modified to cytosines on CpG islands during brain

development. The DNA methyltransferase DNMT1 is responsible

for the methylation of newly synthesized strands after DNA

replication (Li et al., 1992), while DNMT3A regulates gene

expression in response to cellular conditions (Wei et al., 2021;

Li et al., 2022). DNMT3B, on the other hand, is involved in

methylation of X-chromosome-specific genes (Yagi et al., 2020).

Proteins that bind to methylated DNA can induce chromatin

structural transformation, repressing transcription of downstream

genes. Because DNA methylation patterns are disrupted in various

malignancies of cancers, DNMT mutations can destabilize the

genome (Valencia and Kadoch, 2019). For example, contextual

fear conditioning increases DNMT expression in hippocampal

neurons, and DNMT inhibition reduces conditioned memory

and suppresses long-term potentiation (LTP) in Schaeffer’s lateral

branch (Levenson et al., 2006). Therefore, DNA methylation

regulation plays an important role in neuronal plasticity.

Additionally, differences in DNA methylation levels are observed

among neurons with different projection sites in the central

nervous system (Zhang et al., 2021; Zhou et al., 2023).

The regulatory process of epigenomic modification involves

DNA repair with base substitutions by the ten-eleven translocation

(TET) enzyme family, TET1, TET2, and TET3. TET enzyme is

important to activate the demethylation of DNA involving the

process of 5-methylcytosine oxidation to 5-hydroxymethylcytosine

(Zhang et al., 2023). It has been shown that spatial learning and

short-term memory are impaired in TET1 knockout mice (Zhang

et al., 2013), suggesting that maintenance of genomic integrity

by regulation of epigenomic modifications is essential for normal

neuronal function.

In most organs, malfunctioning cells are removed through

apoptosis or phagocytosis, with the replacement of lost cells

by regenerative mechanisms. However, in the brain, postnatal

neurogenesis is limited only to a few regions, such as the dentate

gyrus of the hippocampal formation. Microglia can phagocytose

degenerated neurons (Butler et al., 2021), however, the mechanism

of removal of neurons as a response to mutations in their genome

remains unclear. Genomicmutations inmany cell types often result

in aberrant cellular characteristics, typically either undergoing

apoptosis in a p53-dependent manner or being eliminated by

the immune system (Attardi, 2005; Szybińska and Leśniak, 2017).

However, mutated cells that break through these protective

systems can become proliferative, ultimately leading to cancer.

In contrast, neurons rarely acquire proliferative potential. Thus,

it is likely that abnormal neurons will continue to reside in the

brain contributing to neural activity, throughout the individual’s

neuronal lifespan.

Age-related genomic instability accumulates in neurons. For

example, comparative genomic DNA sequencing of the prefrontal

cortex and hippocampal neurons of individuals aged 4 months to

82 years reveals an age-dependent mutation (Lodato et al., 2018).

Neurons in the brain with age-related neurodegeneration exhibit

more mutations than those in healthy brains (Li et al., 2023).

The accumulation of genomic DNA damage in neurons results in

various neurodegenerative diseases (Rass et al., 2007). Neurons of

Alzheimer’s disease patients, for example, exhibit an increase in

DSBs accumulation in the early stages, as observed in postmortem

brain studies (Suberbielle et al., 2013; Wu et al., 2021; Madabhushi

et al., 2015; Reid et al., 2021). Multiple reports have suggested

that age-related loss of genomic integrity presumably contributes

to Alzheimer’s pathogenesis (Weissman et al., 2009; Kruman et al.,

2004; Iourov et al., 2009; Herrup et al., 2013).

Mutations in the main component of DNA damage response

(DDR) molecules are associated with human chromosomal

instability syndromes (McKinnon, 2017; Shiloh, 2003). For

example, telangiectatic ataxia is caused by mutations in ATM
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FIGURE 1

Factors a�ecting genomic integrity and regulatory mechanisms. Neurons have a lot of events that give damage to genome DNA. These damages

cause genomic DNA aberrations and genomic instability. Neurons have many mechanisms to maintain their genomic integrity. When these

mechanisms are failed, they lead to diseases such as neurodegenerative and neurodevelopmental disorders.

gene, which is a DDR molecule in DSBs (Shiloh and Rotman,

1996). Mutations in the MRE11, which act in SSBs detection have

also been reported to occur in telangiectasia ataxia-like syndrome

(Stewart et al., 1999). Similarly, mutations in the XRCC1 gene

involved in SSBs repair cause oculomotor palsy, axonal neuropathy,

and progressive cerebellar ataxia (Hoch et al., 2017; O’Connor et al.,

2018).

3 Protection mechanisms of neuronal
genome integrity

As described above, functional neurons are frequently damaged

by cellular metabolism, neurotransmission, and the regulation

of gene expression, which are responsible for the physiological

function of a healthy brain. To ensure the long-term maintenance

of genomic integrity and neuronal functionality, neurons may

rely on specific maintenance mechanisms [57]. Recent evidence

from disease associations and experimental studies has shown that

DNA structures such as R-loops, G-quadruplexes, and “long genes”

influence the neuronal genomic integrity, and these structures are

tightly regulated by enzymes such as topoisomerases and helicases

(Figure 1).

3.1 R-loop

During gene expression, a DNA:RNA hybrid is formed between

the template genomic DNA and the nascent RNA transcript,

leaving non-template DNA single-stranded. This structure is

called R-loop. If R-loop is not properly deleted by Senataxin

or RNase H, it causes aberrant of replication forks and lead to

DNA damage accumulation. In addition, R-loops affect various

biological processes, including transcription, translation, and DNA

repair mechanisms. Dysregulation of R-loop is involved in several

neurological diseases (Groh and Gromak, 2014; Skourti-Stathaki

et al., 2011; Sollier and Cimprich, 2015; Loomis et al., 2014).

Abnormal accumulation of R-loop contributes to disorders such

as telangiectatic ataxia (Groh and Gromak, 2014; García-Muse

and Aguilera, 2019), amyotrophic lateral sclerosis (ALS; Salvi and

Mekhail, 2015), ataxia-oculomotor apraxia (Fogel et al., 2014;

Becherel et al., 2015), and spinal muscular atrophy (Kannan et al.,

2018; Hensel et al., 2020). Recent studies have shown that R-loop

contributes to the regulation of NPAS4 expression in response

to chronic psychosocial stress or cocaine exposure (Akiki et al.,

2024). Thus, R-loop also functions in the immediate response of

neural activity, and other physiological functions of R-loop will be

elucidated in the future.
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The single-stranded DNA within R-loop is vulnerable to

SSBs due to its susceptibility to nucleases (Allison and Wang,

2019). Additionally, R-loops create regions of negative and

positive supercoiled DNA structures near transcription start sites,

forming barriers to transcription elongation (Zardoni et al., 2021),

participating in epigenomic regulation (Ginno et al., 2012), and

influencing the DNA repair pathway (Keskin et al., 2014). To

overcome this barrier, cells transiently cleave and rejoin DNA

strands by topoisomerases to relieve torsional stress (Saunders et al.,

2006; Le et al., 2019).

In fission yeast (Ohle et al., 2016) and human immortalized

cell lines (RPE-hTERT cells; Yasuhara et al., 2018), RAD52

recognizes the R-loop as a landmark for repair, while XPG helicase

removes it to activate homologous recombination repair (HRR).

However, neurons lack efficient HRR mechanisms for DNA repair.

For example, DSBs repair is reduced in sporadic ALS due to

abnormal subcellular localization of TDP-43 in motoneurons.

TDP-43 is rapidly accumulated at sites of DSBs in neurons

and assembles factors that act on DNA repair, particularly non-

homologous end-joining (NHEJ; Orii et al., 2006; Mitra et al.,

2019). This observation suggests that the molecular machinery

is one of the DNA repair mechanisms in R-loop metabolism

in neurons.

3.2 G-quadruplex

G-quadruplex (G4) is the higher-order structure of nucleic

acids which is formed in Hoogsteen hydrogen bonds of guanine

(Monsen et al., 2022). These structures have high structural stability

and play important functions in the regulation of transcription,

replication, DSB site determination, genome stability, and RNA

metabolism (Hänsel-Hertsch et al., 2017; Fay et al., 2017).

Especially in the neurons, G4 functions to regulate the expression

of downstream molecules of genes, such as the promoter of

Tyrosine hydroxylase, the rate-limiting enzyme for catecholamine

neurotransmitter biosynthesis (Banerjee et al., 2014). In fact,

selective disruption of these G4 by mutating promoter DNA

sequences affects Tyrosine hydroxylase transcription (Banerjee

et al., 2014). Immunohistochemical analysis using adult mouse

brains reveals that G4 is widely distributed in neurons throughout

the brain regions, including the olfactory bulb, pyramidal cells in

the hippocampus, granule cells in the dentate gyrus, and Purkinje

cells in the cerebellum (Asamitsu et al., 2020; Comptdaer et al.,

2024). Interestingly, G4 distribution in the nucleus of neurons

is highly dynamic. G4 immunostaining revealed a lower positive

number of G4 in glial cells than in neurons, suggesting that

G4 formation is particularly active in neurons (Asamitsu et al.,

2020).

Structural analysis indicated that DHX36 helicase, which

belongs to the DExD/H box family, resolves the G4 structure

(Chen et al., 2018). Genome-wide detection of G4 structure

by G4-DNA sequencing, DHX36 unravels the G4 structure and

restores the expression of genes suppressed during fear memory

in mice exposed to electric shocks paired with sound stimuli,

followed by the subsequent fear memory induced upon exposure

to sound stimuli alone (Marshall et al., 2024). However, in

neuronal progenitor cells, G4 stabilization promotes apoptosis

due to DNA damage (Watson et al., 2013). Similarly, in rat

neurons, G4 stabilization suppresses Brca1 gene expression, which

is essential for DNA repair, and causes the accumulation of

DSBs (Moruno-Manchon et al., 2017). Mutations in the ATRX

gene stabilize G4 and accumulate DNA damage (Wang et al.,

2019). G4 can be detected by gel-shift assay. ATRX helicase

binds togenomic DNA and has been suggested to play a role in

resolvinggenome-wide G4 and alleviating their adverse effects of

G4 (Law et al., 2010).

3.3 “Long gene”

Defects in MECP2, a protein that represses gene expression

by binding to methylated DNA, result in impaired synaptic

function and cause Rett syndrome. Studies using mouse models

and brains of Rett syndrome patients have revealed that theMECP2

deficiency increased the expression of “long genes” spanning more

than 100 kilobases across the genome, which encode synapse-

related genes (Sugino et al., 2014; Gabel et al., 2015). Notably,

neurons exhibit significantly higher expression of “long genes”

than other cell types (Gabel et al., 2015). “Long genes” are

strongly expressed in the frontal lobe and amygdala, which are

associated with neurodevelopmental disorders such as autism

(Gabel et al., 2015). Also, the expression of “longer genes” is

specific to neurons among the cells that compose the brain

(Zylka et al., 2015).

“Long genes” have also been implicated in other

neurological diseases. TDP-43 and FUS/TLS loci are the genes

responsible for amyotrophic lateral sclerosis and transcribe

RNA products exceeding 100 kilobases in length (Lagier-

Tourenne et al., 2012; Polymenidou et al., 2011). Similarly,

CNTNAP2, another “long gene,” has been implicated in autism

(Peñagarikano and Geschwind, 2012). Topoisomerase inhibitor

topotecan treatment reverses overexpression of “long genes”

in Rett syndrome models (Mabb et al., 2014; King et al.,

2013).

In Drosophila neurons, aging causes an accumulation

of R-loop in the “long gene” and this topological stress is

resolved by Top3B (Jauregui-Lozano et al., 2022). “Long

genes” make particularly complex DNA and RNA tangles

in the regulation of the genome which is a characteristic

of neurons. To maintain the genomic integrity of neurons,

topoisomerase and various helicase complexes work

together regulating “long gene” inducing SSBs and DSBs

(Zagnoli-Vieira and Caldecott, 2020).

3.4 Topoisomerase

Topoisomerase (Top) works extensively to stabilize the genome

and relieve topological stress on the DNA strand. A significant

amount of research highlights the Top function in resolving

DNA strand breaks during DNA replication to eliminate the
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super helix structure. Top inhibitors are widely studied for

their anticancer effects because they produce DNA breaks that

are lethal to proliferative cells (Pommier et al., 2022). Even in

non-proliferative neurons, the Top is important for genomic

integrity that works to resolve R-loop and G4 structures formed

during gene expression. Dysregulation of various Top enzymes is

involved in neurodegenerative and neurodevelopmental disorders

such as autism, intellectual disorder, schizophrenia, and dementia

(Katyal et al., 2014; Neale et al., 2012; Stoll et al., 2013; Tiwari

and Wilson, 2019; Fragola et al., 2020; Milano et al., 2024;

Crewe and Madabhushi, 2021). For example, Top3B mutations

are associated with autism (Stoll et al., 2013; Iossifov et al.,

2012), mental disorders (Ahmad et al., 2017a; Stoll et al.,

2013), schizophrenia (Xu et al., 2012), and cognitive dysfunction

(Kaufman et al., 2016).

Topoisomerase 2β (Top2B) also plays a unique role in

neurogenesis. While deletion of Top2B does not affect neuronal

production, it disrupts axon outgrowth of ventral horn motor

neurons in the spinal cord (Yang et al., 2000). Consistently, Top2B

deficient embryonic stem cells show no defects in proliferation

or neuronal differentiation (Tiwari et al., 2012). Top2B inhibitor

treatment increases the expression of 18% of genes expression in

cerebellar granule cells (Tsutsui et al., 2001). In stimulated neurons,

Top2B regulates gene expression by inducing DBS into IEGs

(Delint-Ramirez et al., 2022). Therefore, regulation of genomic

DNA structure by Top is essential for neuronal differentiation

and functions.

Topoisomerase 1 (Top1) plays roles during transcription

by resolving DNA supercoil, which promotes R-loop formation

(Drolet et al., 1995; El Hage et al., 2010). However, Top1 deficiency

also increases topological stress and promotes R-loop formation,

suggesting that the Top enzyme acts in both R-loop formation

and resolution (Promonet et al., 2020). Top3B, which is classified

as a Type I Top like Top1, is unique as it can act on both

DNA and RNA (Ahmad et al., 2017a,b; Saha et al., 2020). It

is known that the functional inhibition of Top3B impairs the

R-loop, resulting in a decrease in neuronal function, whereas

overexpression of Top3B results in an increase in neuronal

function (Skourti-Stathaki and Proudfoot, 2014). Mutant Top3B

with reduced enzyme activity causes R-loop accumulation in

the genome (Huang et al., 2018). Once engaged with R-loop,

Top3B interacts with DDX5 to dissolve the structure (Saha et al.,

2022a).

Top enzymes also interact with DNA via cleavage of

complexes. For example, Top1 covalently binds to the 3′

phosphate terminus of DNA when DNA is untwisted, and

this reaction intermediate (complex with DNA) is called Top1

cleavage complex (Topoisomerase1 cleavage complex; Top1cc),

and the complex of Top2 and DNA is called Top2cc (Wojtaszek

and Williams, 2024). If unresolved during DNA repair, these

complexes can lead to additional DNA damage. Top1cc is

removed from DNA by the enzymatic activity of tyrosyl

DNA phosphodiesterase 1 (TDP1), and mutations in TDP1

cause spinocerebellar degeneration (El-Khamisy et al., 2005;

Takashima et al., 2002). Similarly, mutations in TDP2 which

remove Top2cc, are also linked to spinocerebellar degeneration

(Gómez-Herreros et al., 2014).

3.5 Helicase

Helicase is an enzyme that cuts the hydrogen bonds between the

bases of DNA and RNA chains in an ATP-dependent manner and

dissociates the nucleic acid strands. In neurons, specific helicases

such as DHX36 and ATRX are responsible for the G4 structure

in the genome, while DDX5 works to resolve the R-loop (Saha

et al., 2022a). Notably, reduced expression of DDX21 in primarily

cultured cortical neurons has been shown to accumulate G4 and

genomic DNA damage (Lyu et al., 2022). DDX21 also plays a

role in eliminating R-loops (Song et al., 2017). Since helicases

can unwind both DNA-DNA and DNA-RNA hybrids, they are

important factors for maintaining genomic integrity. However,

the functional specificity of approximately 100 helicases in the

human genome is still largely unknown. Many helicases work in

cooperation with Top, suggesting that these complexes form to

preserve genomic integrity (Tsukada et al., 2024; Tan et al., 2023;

Saha et al., 2022b; Gupta et al., 2022; Yang et al., 2020). Unique

and/or specific functions of each helicase should be unraveled in

the future.

4 Conclusion

The genomic integrity that sustains neuronal function must be

maintained for the healthy brain. However, genomic destabilization

is an ongoing challenge, arising from daily stress, the physiological

activity of neurons, and the accumulation of DNA damage (Zolzaya

et al., 2024). Mutations can also occur in the genomes of neurons

in normal growth and aging of individuals. In other words,

the repair of the neuronal genomic DNA is often incomplete,

causing unavoidable genomic damage and possible effects on

neuronal function. This ongoing struggle with long-lived neurons

during the growth and aging process contributes to the risk of

neurodegenerative and psychiatric diseases, where repeated DNA

damage and structural genomic changes impair neural function.

Recent studies have suggested that the protective mechanism

for neuron-specific genomic integrity may be the action of a

large molecular network of topoisomerases, helicases, and factors

involved in DNA repair in response to changes in the genomic

DNA structure of neurons, including R-loop, G4, and “long gene”

regulation. Technological innovations have made it possible to

analyze the function of these molecules in a whole genome,

and advances in mass spectrometry-based methods have made it

possible to identify larger molecular networks comprehensively.

By analyzing molecules essential for genomic integrity, we can

examine how the molecular networks are responsible for neuronal

function throughout the genome, thereby revealing the dynamism

of the neuronal genome and linking malfunctions of this network

to a variety of neurological diseases.
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