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Brain-computer interfaces (BCIs) are an advanced fusion of neuroscience

and artificial intelligence, requiring stable and long-term decoding of neural

signals. Spiking Neural Networks (SNNs), with their neuronal dynamics and

spike-based signal processing, are inherently well-suited for this task. This paper

presents a novel approach utilizing a Multiscale Fusion enhanced Spiking Neural

Network (MFSNN). The MFSNN emulates the parallel processing and multiscale

feature fusion seen in human visual perception to enable real-time, e�cient,

and energy-conserving neural signal decoding. Initially, the MFSNN employs

temporal convolutional networks and channel attention mechanisms to extract

spatiotemporal features from raw data. It then enhances decoding performance

by integrating these features through skip connections. Additionally, the MFSNN

improves generalizability and robustness in cross-day signal decoding through

mini-batch supervised generalization learning. In two benchmark invasive BCI

paradigms, including the single-hand grasp-and-touch and center-and-out

reach tasks, the MFSNN surpasses traditional artificial neural network methods,

such as MLP and GRU, in both accuracy and computational e�ciency.

Moreover, theMFSNN’smultiscale feature fusion framework is well-suited for the

implementation on neuromorphic chips, o�ering an energy-e�cient solution for

online decoding of invasive BCI signals.

KEYWORDS

BCI decoding, brain-inspired, spiking neural network, feature fusion, energy-e�cient

computing

1 Introduction

Simulating the human brain remains a key objective in neuroscience and artificial

intelligence. While Large Language Models (LLMs), such as GPT (Achiam et al., 2023),

aim to replicate the brain’s broad functionality on a general-purpose scale, and brain-

inspired neural networks (Schmidgall et al., 2024; Zhang et al., 2023; Zhao et al., 2023b)

focus on capturing its dynamic complexity, there is also a crucial need to understand

and model the brain’s inner workings on a microscopic level. Recent advancements in

invasive Brain-Computer Interface (BCI) technology allow for the direct recording of spike

signals at this microscopic scale. Deep learning models can map these microscopic spike

signals to macroscopic behavioral outputs through neural signal decoding. For example,

SGLNet (Gong et al., 2023) converts EEG signals into spike trains, utilizing Spiking

Neural Networks (SNNs) to extract topological information and spike-based LSTM units

to decode temporal dependencies. Similarly, hand gesture decoding has been achieved by
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decomposing high-density electromyography signals into motor

unit spike trains (Chen et al., 2020), which are classified to estimate

each gesture.

In the context of long-term invasive brain-computer interface

(BCI) recordings, a significant challenge is the phenomenon

of data distribution shifts, which can substantially impair the

generalization capabilities of decoding models. These shifts arise

from a combination of physiological and technical factors,

including electrode drift, inflammatory responses, and neural

plasticity (Pun et al., 2024; Kubben et al., 2024). Electrode

drift, a prevalent issue in chronic neural implants, refers to

the gradual displacement of electrodes within the brain tissue,

leading to alterations in the recorded neural activity patterns over

time. Inflammatory processes or the formation of fibrotic tissue

around the electrodes can degrade signal quality, introducing non-

stationarities into the data. Neural plasticity, the brain’s inherent

capacity to adapt and reorganize its functional architecture,

can result in dynamic changes in the neural representations of

identical behaviors across different time points (Wen et al., 2023).

Collectively, these factors contribute to substantial variability in

neural signals, even for the same task performed by the same subject

on different days. Consequently, models trained on data from a

specific day often exhibit diminished performance when applied to

data acquired on subsequent days, rendering cross-day decoding a

formidable challenge in BCI research.

Addressing stable cross-day decoding is thus a critical goal

in BCI research. For instance, a DRNN (Ran et al., 2019)

demonstrated high accuracy and robustness in decoding arm

velocity during a macaque monkey’s reaching task. Attention-

based models, such as the Temporal Attention-aware Timestep

Selection (TTS) (Yang et al., 2021), have improved RNN-based

neural decoders by selecting key timesteps to enhance accuracy

and efficiency. To overcome data limitations, the spatiotemporal

Transformer model NDT2 (Ye et al., 2024) leveraged pre-

training across sessions, subjects, and tasks, using cross-attention

mechanisms and the PerceiverIO architecture to adapt quickly to

new sessions with mini-batch labeled data, effectively analyzing

diverse neural recordings.

Despite achieving high decoding accuracy, traditional ANN

models often suffer from high energy consumption. In contrast,

the human brain operates with remarkable energy efficiency. This

paper is driven by the need to explore brain-inspired mechanisms

formore efficient information processing. As depicted in Figure 1A,

the human brain employs parallel processing pathways, specifically

the dorsal and ventral streams, to handle visual inputs (Kandel,

2000). These pathways process signals hierarchically in lower-

level brain regions, extracting and integrating multiscale features.

The functional differentiation between the pathways allows

simultaneous extraction of diverse features, which are integrated in

higher-level brain regions to form a unified visual perception. This

approach contributes to the brain’s exceptional signal processing

efficiency (Roy et al., 2019). Furthermore, the brain transmits

neural signals through discrete action potentials, or “spikes”,

leading to low energy consumption. SNNs mimic this spike-based

communication, where synaptic connections are activated and

adjusted only when spikes occur, offering high biological realism.

Consequently, SNNs are more energy-efficient in decoding neural

signals compared to ANNs (Zhang et al., 2023). In the BCI

domain, SNNs play a crucial role in reducing energy consumption,

enabling high-throughput invasive BCI systems to achieve high

performance while being more compact and extending battery

life. Such advancements are essential for the clinical application

and commercialization of implantable or portable BCI devices

(Makarov et al., 2022).

Inspired by the brain’s parallel processing architecture and

multiscale feature fusion mechanisms, this paper proposes a

method for energy-efficient, invasive cross-day decoding. The main

contributions of our work are summarized as follows:

Main contributions:

• We propose a Multiscale Fusion enhanced Spiking Neural

Network (MFSNN) that emulates the parallel processing

mechanisms of the human visual pathways to achieve efficient

signal fusion and feature extraction, thereby significantly

enhancing cross-day decoding performance. The MFSNN

uses channel attention mechanisms, temporal convolutional

networks, and skip connections to capture and integrate

the spatial and temporal characteristics of neural signals,

demonstrating greater robustness against signal variations

caused by electrode drift, inflammation, and neural plasticity.

• Our SNN-based model decodes high-throughput invasive

brain signals with reduced energy consumption, offering a

practical solution for invasive BCI systems.

• In two invasive BCI paradigms (single-hand grasp-and-touch

and center-and-out reach tasks), the MFSNN demonstrates

the feasibility and robustness of cross-day decoding through

mini-batch supervised generalization learning. This approach

enables the model to rapidly adapt to new data distributions

with minimal fine-tuning, thereby further enhancing the

MFSNN’s cross-day generalization capability.

2 Related works

2.1 Brain-inspired computing

The human brain is the only biological system that

demonstrates advanced general intelligence with ultra-low power

consumption. Insights from the brain have the potential to propel

a narrow AI toward a more general one. Brain-inspired computing

(BIC) embraces this concept, introducing a new paradigm of

computation and learning, inspired by the fundamental structures

and information processing mechanisms of the human brain

(Liu et al., 2024). It has been found that the parallel processing

and multiscale feature fusion are prevalent in brain information

processing (Zeki, 2016), and various parallel subsystems extract

different aspects of signal features, with feature fusion occurring

both within and between subsystems. For example, the human

visual system employs complex and organized strategies of parallel

processing, hierarchical fusion, and modularity to transform

and interpret visual information (Nassi and Callaway, 2009). In

the olfactory system, olfactory perception is processed through

two parallel pathways within the olfactory bulb (Vaaga and

Westbrook, 2016). Similarly, in the pain system, two parallel
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pathways, medial and lateral, are responsible for transmitting and

processing nociceptive and emotional information, respectively

(Wang et al., 2003). Beyond integrating different signal features,

the parallel structures in the brain also help reduce operational

energy consumption.

With the rapid development of BCI decoding technology,

the demand for processing multi-channel and high-sampling-

rate signals is increasing. Research has shown that parallel

network structures inspired by brain mechanisms have significant

advantages over traditional single-network architectures in signal

processing and feature extraction. In visual perception (Katsuki

and Constantinidis, 2014) and parallel networks in artificial

intelligence, the introduction of channel attention mechanisms

has become a key approach for handling high-throughput multi-

channel signals (Zhao et al., 2023a). This mechanism enhances

efficient feature extraction by identifying the relative importance of

each parallel channel.

In recent years, channel attention mechanisms have been

successfully applied to optimize the performance of Spiking

Neural Networks (SNNs). For example, the Multi-dimensional

Attention (MA) module proposed by Yao et al. integrates

temporal, channel, and spatial attention into SNNs, significantly

improving network performance and energy efficiency (Yao

et al., 2023). Attention mechanisms enable SNNs to dynamically

adjust their responses to different inputs, thereby enhancing

the robustness and generalization ability of the network. Cross-

Modality Attention (CMA) and other attention mechanisms, have

also been successfully applied in SNNs, demonstrating significant

advantages in tasks such as image classification and event-

based action recognition (Zhou et al., 2024). This paper will

further investigate the application advantages of channel attention

mechanisms based on SNNs in BCI decoding.

2.2 SNNs in BCI

BCIs are primarily categorized into non-invasive systems,

which place electrodes on the scalp but suffer from low signal-

to-noise ratios due to transmission losses (Johnson, 2006), and

invasive systems, which record directly from the inner brain and

have demonstrated remarkable effectiveness in decoding motor

signals in animals (Velliste et al., 2008). The integration of CNNs

and RNNs has significantly improved the accuracy of decoding

invasive signals (Xie et al., 2018; Śliwowski et al., 2022). Emerging

methods based on Transformers, such as swin-transformer (Chen

et al., 2024) and other transformer alternatives (He, 2021), have

shown great potential in managing complex temporal dynamics

in large datasets. However, increasing model complexity to handle

high-sampling and multi-channel invasive BCIs usually results

in substantial computational demands and power consumption,

which poses challenges for clinical deployment on chips.

Spiking Neural Networks (SNNs) have garnered significant

attention due to their brain-inspired architecture and efficient

spatiotemporal processing capabilities. Unlike traditional Artificial

Neural Networks (ANNs), SNNs transmit information via binary

spike signals, mimicking the behavior of biological neurons. This

event-driven characteristic enables SNNs to achieve low power

consumption and rapid response times, making them suitable

for real-time applications and neuromorphic computing systems

(Zhang and Xu, 2021). SNNs have demonstrated broad application

prospects in BCIs, effectively processing and decoding neural

signals for tasks such as motor control, sensory processing, and

cognitive functions (Parameshwara et al., 2021; Guo et al., 2023).

For instance, in neurorehabilitation, SNNs can provide real-time

feedback to assist in rehabilitation training (Elbasiouny, 2024).

In the field of neuroprosthetics, they can control prosthetics

with high precision and low latency (Beaubois et al., 2024). In

affective computing, SNNs can decode facial expression states

to facilitate more intuitive human-machine interactions (Barchid

et al., 2023). Additionally, SNNs have shown great potential in the

broader field of neuromorphic computing related to BCIs. The

Neural Engineering Framework (NEF), a prominent method for

neural signal decoding, has been widely applied in neuromorphic

computing (Hazan and Ezra Tsur, 2021). The NEF provides a

theoretical framework for representing and processing neural

signals using spiking neurons, converting high-dimensional neural

data into low-dimensional representations to facilitate the design of

efficient neuromorphic systems.

This study proposes an SNN-based bio-inspired model for the

decoding of invasive BCI signals. This model maintains efficient

decoding capabilities while achieving lower power consumption

and reducedmodel complexity, paving the way for the development

of efficient and accurate BCI systems.

3 Method

In this section, we provide a detailed description of our

proposed method, including the model structure and its

operational workflow.

3.1 Overall architecture

Figure 1B presents the overall architecture of our MFSNN

algorithm. The input, a recorded spike train with Nc channels from

an invasive BCI, is divided into Ns sub-path signals for parallel

processing. Each sub-path is then processed by its corresponding

sub-encoder for specialized analysis. Each sub-encoder comprises

three key components: a linear transformation module for initial

signal modification, a channel attention module for enhancing

salient features across channels, and a temporal convolution

network for extracting temporal dynamics. The outputs from these

modules are designated as LTout , CAout , and TCNout , respectively.

These outputs are integrated to produce the fusion feature Ei for

the ith sub-encoder. The outputs from all sub-encoders, denoted

as E1 through ENs , are then concatenated to form Eout . This

consolidated feature vector is passed through a spiking classifier,

transforming it into a spiking fusion feature and decoding it to yield

the classification result Netout .

In the subsequent sections of this paper, we will provide

a comprehensive explanation of the functional roles and

contributions of each module within the MFSNN framework,

highlighting their synergistic impact on the network’s overall

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2025.1551656
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Song et al. 10.3389/fnins.2025.1551656

FIGURE 1

(A) The diagram depicts the human brain’s visual perception pathway, highlighting its parallel processing mechanisms and multiscale feature fusion.

(B) The overall MFSNN architecture, where the input consists of multi-channel neural signals from an invasive BCI in monkeys, and the final output

represents monkey behavior categories. (C) The channel attention module, which includes a bottleneck structure composed of spiking convolutional

layers. (D) The temporal convolutional network, which incorporates causal and dilated convolutions.

performance in addressing cross-day decoding challenges with

high-fidelity neural signal decoding for invasive BCI systems.

3.2 Sub-encoder

3.2.1 Linear transformation (LT)
The given input neural signal is denoted as Input ∈ R

C×1×T ,

where C represents the channel dimension, jointly determined by

the number of raw data channels Nc and the number of sub-

encoders Ns, shown as following equations:

C = Nc/Ns. (1)

At the outset of our processing procedure, a learnable matrix

Ml for linear transformation (LT) is implemented. This LT reduces

the sequence length from T to T
′

, generating the output LTout ∈

R
C×1×T′

.

LTout = Input ∗Ml. (2)

This critical step here is to capture the representative features

at the raw data level of the sequence, thereby establishing a

foundation for the subsequent multiscale feature fusion within the

network’s architecture.

3.2.2 Channel attention (CA)
In invasive BCI neural signals, each channel captures the

activity of different neuronal populations, which contribute

variably to the same task. The sub-encoder employs a spiking

Channel Attention (CA) module to extract spatial features from

the sub-path signal. As depicted in Figure 1C, the CA module first
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provides adaptive global average pooling Fap(·) to the Input ∈

R
C×1×T to capture spatial features fs ∈ R

C×1×1 across channels.

fs[C, 1, 1] = Fap(Input) =
1

T

T∑

i=1

Input[C, 1,T] . (3)

Subsequently, a bottleneck structure, composed of two

spiking convolutional layers SConv2d(·) and modified with Leaky

Integrate-and-Fire (LIF) neuron-based activation functions LIF(·),

is incorporated to compress features first and then expand to derive

the channel weight distribution w̃c.

SConv2d(·) = LIF(Conv2d(·))

w̃c = SConv2d(SConv2d(fs)).
(4)

This mechanism allows the model to focus on some specific

channels those are more critical for decoding target tasks while

effectively suppressing redundancy and noise in the signals.

Consequently, this approach enables more precise channel

selection, thereby enhancing the accuracy of predictions.

3.2.3 Temporal convolution network(TCN)
Invasive BCI signals are temporal sequences, making the

features along the time dimension particularly important. The

sub-encoder utilizes a Temporal Convolution Network (TCN) to

effectively capture long-term dependencies along with the time

dimension through causal convolution and dilated convolution.

As shown in Figure 1D, taking a single channel from the Input ∈

R
C×1×T for example, the temporal sequence X = (x1, x2, ..., xT)

is subjected to a time convolution with a kernel size of k = 3, a

dilation rate of d = 2, and padding defined as (k− 1)× d+ 1 = 4.

The output dimension of the hidden layer remains unchanged. For

any moment x′t in the hidden layer output X′ = (x′1, x
′
2, ..., x

′
T)

and its corresponding convolution kernel Ft = (w1,w2,w3), the

following equation holds:

x′t = b+

3∑

i=1

wi × xt−(3−i)×d

Then, an average pooling operation with a window size of p,

denoted as Fap(·), is applied to X′ to obtain the module output

Y = (y0, ..., yT′ ) for the temporal sequence of a single channel.

Y(y0, ..., yT′ ) = Fap(X
′(x′1, x

′
2, ..., x

′
T))

yt =
1

p

t∑

i=t−p+1

x′t , p =
T

T′
.

(5)

By performing the aforementioned temporal convolution

simultaneously across theC channels of the sub-path signal Input ∈

R
C×1×T , the module output is obtained as TCNout ∈ R

C×1×T′

.

Compared to traditional models for processing temporal

signals such as RNN, GRU, and Transformer, the proposed TCN

offer superior parallel processing capabilities. All convolutional

operations can be computed simultaneously, thereby enhancing

computational efficiency and processing speed.

3.2.4 Feature fusion
We integrate the raw data-level features LTout ∈ R

C×1×T
′

generated by the LT module, the spatial features w̃c ∈ R
C×1×1

produced by the CA module, and the temporal features TCNout ∈

R
C×1×T′

derived from the TCN module to obtain the integrated

features of ith sub-encoder Ei ∈ R
C×1×T′

.

Ei = LTout + w̃c ∗ TCNout . (6)

Subsequently, we concatenate the outputs of all Ns sub-

encoders to form the output of the entire signal encoder. The

resulting output is represented as Eout ∈ R
Nc×1×T′

.

Eout = Concat(Ei) (i = 1, 2, 3, ...,Ns). (7)

3.3 Spiking classifier

The spiking classifier is composed of a LIF neuron layer

and a fully connected layer, which takes the fused feature

Eout as the input current, leading to fluctuations in membrane

potential and the generation of spikes. Utilizing a spiking layer

to extract sparse spike features, the classifier then decodes to

achieve the classification result Netout . Moreover, the spiking

classifier can generalize with fine-tuning on small samples after pre-

training. Its advantages include reduced computational costs and

enhanced model adaptability, making it particularly suitable for

addressing cross-day decoding issues and for future deployment on

neuromorphic chips.

4 Experiments

4.1 Experimental setting

4.1.1 Data details
Dataset 1: The experimental paradigm is depicted in Figure 2A.

The macaque monkeys are used as subjects, with each trial divided

into four phases. Baseline–the task initiation is marked by the

monkey pulling the joystick for 1 s until the appearance of a cue.

Preparation–following the cue, the target object appears between

0.1 and 0.5 seconds, after which the monkey releases the joystick.

Reach–themonkey releases the joystick and reaches for the position

of the ball within approximately 0.5–1 s. Task action–the task

concludes upon completion of the touch or grasp action, which

lasts over 1 second. Each trial lasts 2–4 s in total. The tasks are

categorized into four types: right-hand touch, right-hand grasp,

left-hand touch, and left-hand grasp, with each trial conducted

independently. Concurrently, 128-channel neural signals from the

monkey’s motor cortex (M1) are recorded during the trial at a

sampling rate of 30 kHz. The experimental data were collected over

eight separate days, from 01/26/2022 to 03/09/2022, with an average

of approximately 300 trials per day.

Dataset 2: The experimental paradigm is depicted in Figure 3A.

The dataset from the research conducted by Churchland et al.

(2012), pertains to the collection of neural signals extracted

from two rhesus monkeys, identified as J and N, during their
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performance of the center-and-out task to eight directions. The

signals were recorded using a pair of 96-channel electrode arrays

implanted in the M1, with an average of 2,000 trials per day.

4.1.2 Implementation details
All training and testing were conducted on two NVIDIA

GeForce RTX 4060 graphics cards. Within the MFSNN network,

the spiking neuron model employs the LIF neuron model, with a

time window set to 20 ms. During the training process, we train

the MFSNN with the Adam optimizer and a batch size of 32. The

learning rate was dynamically adjusted using the cosine annealing

learning rate schedule, starting from 0.01 and ranging down to

0.0001. In comparative experiments, we adopted a similar training

strategy for MLP and GRU.

4.2 Neural signal decoding

4.2.1 Single-hand grasp-and-touch task
In the study of neural signal decoding for single-hand grasp-

and-touch task, we focus our analysis on decoding signals from the

“Task action" phase. Acknowledging the variability of neural signal

characteristics over time, we employ two testing methods: single-

day and cross-day decoding. The single-day decoding uses training

and testing sets from the same day with an 8:2 ratio; the cross-

day decoding uses sets from different days. The data includes eight

days spanning from January 26 to March 9, 2022. The single-day

decoding experiments were conducted daily, amounting to a total

of eight sets.

The cross-day decoding experiment is further divided into two

parts: one part trained with data from January 26 and tested with

data from January 30 to February 9. The left data were trained with

data from March 3 and tested with data from March 6 to 9. Each

part consisted of three experiments, making a total of six cross-day

decoding tests. During the cross-day decoding process, the model

utilized a mini-batch of data for fine-tuning to rapidly adapt to

new sessions.

We compare the performance of three algorithms(MLP, GRU,

and MFSNN) under the two testing paradigms. As shown in

Figure 2B, the average accuracy of the three algorithms under

single-day decoding is comparable and notably high(>95%),

attributed to the stability of neural signal feature distribution within

the same day. That is also why the accuracy rates of single-day

decoding are higher than those of cross-day decoding. In cross-

day decoding, despite the same fine-tuning apply to MLP and

GRU as MFSNN, MFSNN still show a higher accuracy rate(>80%),

demonstrating its superior decoding capability in the face of cross-

day changes in neural signal characteristics.

Furthermore, we conduct gradient testing on the ratio of fine-

tuning data for MFSNN in cross-day decoding to analyze its impact

on performance. As shown in Figure 2C, when the fine-tuning data

ratio reaches 7.8%, the model performance could be stabilized and

good enough(>80%). This slightly higher fine-tuning ratio may be

due to the minimal differences among the four types of actions in

the task, resulting in more similar neural signals, thus requiring

more fine-tuning data to achieve good generalization.

4.2.2 Center-and-out task
In the center-and-out task experiments conducted on monkeys

J andN, we test both single-day and cross-day decoding. The single-

day decoding task is similar to the single-hand grasp-and-touch

task. For cross-day decoding, the model is trained on the first day’s

data and test on the remaining days. For example, monkey J had

data from four days. The network will be trained on the first day

and tested on the second, third, and fourth days.

The results, shown in Figure 2B, indicate that all three models

achieved very high accuracy rates (≥95%) in single-day decoding,

with no significant differences among them. In cross-day decoding,

under the same fine-tuning conditions, average accuracy rate of

MFSNN is significantly higher than that of MLP and GRU, and the

results are more concentrated, indicating stronger generalization

and higher robustness.

We also conduct a gradient test of the fine-tuning data ratio

for MFSNN on both monkeys to assess its impact on performance.

As shown in Figure 3C, with a fine-tuning data ratio of only 3.2%,

stable and effective generalization is achieved in both monkeys.

In summary, comparing the results of the two experiments,

we find that due to the short time span of single-day data, the

distribution of neural signal features do not change significantly,

resulting in high and similar accuracy rates for all models. However,

in cross-day decoding, the significant changes in the distribution of

neural signal features due to the longer time span led to a decrease

in the average accuracy rate of all models. Nevertheless, MFSNN,

with its excellent multi-level feature fusion mechanism, can stably

capture the distribution of neural signals on different days, and with

a small sample (<8%) of fine-tuning, it can achieve efficient and

robust decoding performance. In practical BCI systems, taking the

first task as an example, there are on average 300 trials per day,

with each trial lasting 2-4s. With a fine-tuning data ratio of 8%,

the total duration amounts to only 48-96s. This indicates that the

model can rapidly adapt to the neural signal data distribution of

a new session within an extremely short time, thereby achieving

long-term stable neural signal decoding and demonstrating highly

efficient adaptability.

4.3 Energy consumption

We estimate the theoretical energy consumption of

MFSNN and Multiscale Fusion enhanced Artificial Neural

Network(MFANN) by the following two equations (Mark, 2014;

Yao et al., 2024):

SOPs(l) = Rate× T × FLOPs(l)

EMFSNN = EAC ×

16∑

i=1

(SOPiLT + SOPiCA + SOPiTCN). (8)

SOPs(l) means synaptic operations (the number of spike-based

accumulate(AC) operations) of layer l, Rate is the average firing rate

of input spike train to layer l, T is the time window of LIF neurons,

and FLOPs(l) refers to the floating point operations (the number of

multiply-and-accumulate (MAC) operations) of layer l. We assume
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FIGURE 2

(A) The single-hand grasp-and-touch experimental paradigm. (B) MLP, GRU, and MFSNN single-day and cross-day decoding experiments on neural

signals of monkey S. (C) The accuracy under di�erent fine-tuning ratios.

that the MAC and AC operations are implemented on the 45nm

hardware (Mark, 2014), with EMAC = 4.6pJ and EAC = 0.9pJ.

Under the cross-day decoding test paradigm of dataset 2

with monkey J, the computational energy consumption on 45nm

hardware for a single spike train is simulated for MFANN and

MFSNN. The results, as shown in Figure 4, indicate that the energy

consumption of MFSNN is reduced by 90.9% compared to that of

the similarly structured MFANN.

4.4 Ablation study

In the ablation study conduct on the cross-day decoding

experiment of monkey J from dataset 2, we scrutinize the roles

of the CA, TCN, and LT modules within the MFSNN. Analysis

of Figure 5 reveals that all three modules significantly contribute

to the model’s performance. Particularly, the contributions of LT

and TCN are substantial. Given the temporal nature of neural

signals, the feature extraction along the temporal dimension

by TCN is of paramount importance. LT, on the other hand,

focuses on extracting deep features from the raw data, capturing

nuances that may be overlooked by temporal and spatial features.

These two modules serve as two critical tiers in the multi-level

feature fusion strategy of the MFSNN, essential for the model’s

overall performance.

Upon examining Figure 5, it is observed that the performance

distribution of MFSNN without the CA module is represented by

a violin plot that is wider at the bottom and narrower at the top,

whereas the inclusion of the CA module reverses this, presenting

a plot that is narrower at the bottom and wider at the top. This

indicates that although the CA module has a limited effect on

enhancing the average accuracy, it effectively elevates a number of

cross-day decoding outcomes from below to over 80%, a change

that holds significant practical implications.

In summary, the results of the ablation study demonstrate that

the CA, TCN, and LT modules, which target different aspects of

feature extraction, collectively underpin the efficacy of theMFSNN.

5 Conclusion

Stable and long-term decoding of neural signals is crucial for

BCIs, which represents an advanced fusion of neuroscience and

artificial intelligence. In this paper, we propose the Multiscale

Fusion enhanced Spiking Neural Network (MFSNN) framework,

which emulates the parallel processing and multiscale feature

fusion mechanisms of human visual perception, enabling real-

time and energy-efficient neural signal decoding. Our experiments

demonstrate that the MFSNN achieves robust cross-day decoding

performance in two invasive BCI paradigms involving macaque

monkeys performing simple motor tasks (grasp-and-touch and
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FIGURE 3

(A) Center-and-out experimental paradigm. (B) MLP, GRU, and MFSNN single-day and cross-day decoding experiments on neural signals of monkey

J and N. (C) The accuracy under di�erent fine-tuning ratios.

FIGURE 4

Energy consumption for processing a single data entry.

center-and-out tasks). However, while the results are promising, the

model’s transferability to human neural data or more complex real-

world scenarios remains untested. Future work should validate the

MFSNN’s efficacy in human subjects and extend its application to

diverse behavioral contexts, such as neuroprosthetics or affective

computing, to assess its broader applicability.

To maintain high cross-day decoding accuracy, the MFSNN

requires fine-tuning with 8% of the new session’s data (equivalent

to 48-96 seconds of neural recordings). While this represents

a minimal calibration effort compared to full retraining, it

may still pose practical challenges for long-term implantable

systems where frequent recalibration is infeasible. Reducing

reliance on fine-tuning through self-supervised adaptation or

leveraging invariant neural representations could enhance the

model’s autonomy. Additionally, the energy-efficient architecture

FIGURE 5

The ablation experiments of MFSNN.

of the MFSNN, which reduces computational costs by 90.9%

compared to ANN-based counterparts, positions it as a viable

candidate for deployment on neuromorphic hardware, further

supporting long-term usability.

Finally, we propose a future direction inspired by the neural

manifold hypothesis (Gallego et al., 2020; Zhao et al., 2024),

which posits that high-dimensional neural signals are inherently

embedded within low-dimensional latent spaces. The neural

manifold, represented in these low-dimensional spaces, encodes

the stable behavioral features underlying naturalistic actions.

Integrating manifold learning into the MFSNN framework could
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involve two stages: 1. dimensionality reduction of raw spike trains

to extract invariant neural manifolds, and 2. decoding macroscopic

behaviors from these manifolds. This approach may enhance

the model’s ability to generalize across sessions and subjects by

isolating task-relevant neural dynamics from non-stationary noise.

Combining multiscale fusion with manifold-based decoding could

unlock new avenues for designing stable, long-term BCI systems.
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