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Characterizing functional connectivity (FC) in the human brain is crucial
for understanding and supporting clinical decision making in disorders of
consciousness. This study investigates FC using slidingwindowcorrelation (SWC)
analysis of electroencephalogram (EEG) applied to three connectivity measures:
phase-lag index (PLI) and weighted phase-lag index (wPLI), which quantify phase
synchronization, and amplitude envelope correlation (AEC), which captures
amplitude-based coactivation patterns between pairs of channels. SWC analysis
is performed across the five canonical frequency bands (delta, theta, alpha, beta,
gamma) of EEG data from four distinct groups: coma, unresponsive wakefulness
syndrome, minimally conscious state, and healthy controls. The extracted SWC
metrics, mean, reflecting the stability of connectivity, and standard deviation,
indicating variability, are analyzed to discern FC di�erences at the group level.
Multiclass classification is attempted using various models of artificial neural
networks that include di�erent multilayer perceptrons (MLP), recurrent neural
networks, long-short-term memory networks, gated recurrent units, and a
hybrid CNN-LSTM model that combines convolutional neural networks (CNN)
and long-short-term memory network to validate the discriminative power of
these FC features. The results show that MLP model 2 achieves a classification
accuracy of 96.3% using AEC features obtained with a window length of 16s,
highlighting the e�ectiveness of AEC. An evaluation of the model performance
for di�erent window sizes (16 to 20 s) shows that MLP model 2 consistently
achieves high accuracy, ranging from 95.5% to 96.3%, using AEC features. When
AEC and wPLI features are combined, themaximum accuracy increases to 96.9%
for MLP model 2 and 96.7% for MLP model 3, with a window size of 17 seconds
in both cases.
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1 Introduction

Functional connectivity (FC) has emerged as a transformative

concept in neuroscience, offering a deeper understanding of brain

function. FC allows researchers to explore brain’s adaptability

to external stimuli, cognitive challenges, and internal states

(Sastry and Banerjee, 2024; Anusha et al., 2025). FC provides

a more detailed picture of neural interactions by examining

the synchronization patterns between different brain regions.

This approach improves our understanding of the functional

organization and flexibility of the brain. The ability to capture

changes in FC is important for understanding complex cognitive

processes and the brain’s responses to ever-changing demands

(Sastry and Banerjee, 2024).

Technologies such as functional magnetic resonance imaging

(fMRI) (Mäki-Marttunen, 2014), electroencephalography (EEG)

(Duclos et al., 2021; Dey et al., 2023), magnetoencephalography

(MEG) (Jin et al., 2023), and functional near-infrared spectroscopy

(fNIRS) (Tang et al., 2021) have been instrumental in advancing

the study of functional connectivity. These neuroimaging

modalities, supported by advancements in sensor resolution and

computational techniques, enable the recording and analysis of

FC patterns with high precision. Each modality offers unique

advantages: fMRI detects blood oxygenation changes at a high

spatial resolution, enabling whole-brain connectivity mapping

(Mäki-Marttunen, 2014). EEG delivers exceptional temporal

resolution by capturing electrical activity from the scalp, tracking

rapid neural changes (Duclos et al., 2021). MEGmeasures magnetic

fields produced by neural activity (Jin et al., 2023) at good spatial

and temporal precision, while fNIRS uses near-infrared light to

monitor cortical blood flow, offering portability and robustness

to movement artifacts (Tang et al., 2021). These modalities have

been particularly effective in studying resting-state networks, such

as the default mode network and the salience network (Matsui

and Yamashita, 2023). The spontaneous fluctuations within these

networks illuminate baseline cognitive functions and introspective

processes. A commonly employed method to analyze FC is the

sliding window approach, which calculates connectivity metrics

within overlapping time windows (Mokhtari et al., 2019). This

technique allows researchers to track fluctuations in connectivity,

providing insights into brain networks over time. The sliding

window approach segments time series data into consecutive,

overlapping windows of a specified length. Within each window,

connectivity measures, such as the Pearson correlation coefficient,

are calculated between pairs of brain regions, or electrode pairs

(Saideepthi et al., 2023). Shifting the window across the data

set can generate a time-resolved representation of connectivity.

This method helps identify transient connectivity states and

understand the brain’s adaptability to various cognitive tasks and

resting conditions.

Functional connectivity has facilitated significant

advancements in medical research, particularly in the diagnosis

and monitoring of neurological disorders such as Alzheimer’s

disease (Matsui and Yamashita, 2023), epilepsy (Qin et al., 2024),

and stroke (Wu et al., 2024). Alterations in FC patterns have been

associated with cognitive impairments in Alzheimer’s patients,

providing biomarkers of disease progression (Arbabyazd et al.,

2023). In epilepsy, FC has offered critical insight into seizure

mechanisms, which has helped to develop targeted therapies (Li

et al., 2024b). It has also deepened our understanding of altered

states of consciousness, such as those induced by anesthesia (Miao

et al., 2023), psychedelics (Soares et al., 2024), and sleep (Xu

et al., 2024). Under anesthesia, studies using techniques such as

sliding window correlation (SWC) have revealed a reduction in

the repertoire of FC states, reflecting a loss of the characteristic of

dynamic flexibility of the brain of consciousness (Miao et al., 2023).

However, psychedelics such as psilocybin expand the repertoire

of FC and increase entropy, indicating heightened consciousness

(Soares et al., 2024). Similarly, sleep studies reveal that deep sleep

narrows the FC repertoire, reducing variability and diminishing

the capacity for consciousness (Xu et al., 2024).

Beyond altered states, FC has proven valuable in

neuropsychiatry (Matsui and Yamashita, 2023) by identifying

disrupted connectivity patterns in conditions such as

schizophrenia, depression, and anxiety. In schizophrenia,

disruptions in FC correlate with cognitive deficits (Cattarinussi

et al., 2023), while in depression, altered patterns are linked to

symptom severity and treatment response, enabling personalized

therapy. FC also elucidates developmental trajectories, showing

increased stability and adaptability during maturation and

reduced flexibility in aging and neurodegeneration, which reflects

declining neural plasticity. Advances in computational techniques,

including sliding window correlation, hidden Markov models, and

multivariate autoregressive models, have enhanced the precision of

FC analyses (Hutchison et al., 2013).

Beyond medical applications, FC contributes to cognitive

science by revealing network interactions in processes likememory,

attention, and learning. This knowledge informs strategies to

enhance cognitive performance and supports advancements

in brain-computer interfaces (BCIs). BCIs leverage FC to

decode brain activity, enabling communication for individuals

with disabilities, controlling prosthetic devices, and enhancing

immersive gaming experiences (Fallani and Bassett, 2019). FC

has also been used successfully in EEG-based biometrics (Kumar

et al., 2022). FC also informs neuroergonomics by optimizing

task environments to align with human cognitive capabilities,

reducing mental fatigue, and improving performance (Ismail and

Karwowski, 2020). It sheds light on social interactions by analyzing

synchronized FC patterns during communication, offering insights

into the neural basis of empathy and social connectivity. FC

has found transformative applications in understanding and

managing disorders of consciousness (DOC). In these cases,

FC differentiates between minimally conscious states (MCS)

and unresponsive wakefulness syndrome (UWS), since reduced

variability and connectivity integration are associated with lower

levels of consciousness. Stronger connectivity patterns in MCS

patients align with a relatively higher degree of awareness (Naro

et al., 2018). Clinically, FC assists in prognosis by identifying

recovery markers, such as restored corticothalamic connectivity,

and reveals covert awareness in unresponsive patients, guiding

personalized care and rehabilitation. While existing literature

highlights the potential of FC in understanding and managing

consciousness in DOC cohorts, significant ambiguity persists in

effectively distinguishing between various consciousness states and
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healthy controls. This lack of clarity hampers the development

of reliable diagnostic and prognostic tools, creating a need for

advanced analytical approaches.

This work investigates the classification of different states of

consciousness: coma, UWS, MCS, and healthy controls (HC) using

functional connectivity features derived from resting state EEG

data. By leveraging metrics such as wPLI and AEC, the study aims

to analyze brain connectivity patterns to differentiate between these

states. The performance analysis has been conducted for different

window sizes (16 to 20 s with a step size of 1 s). The analysis

incorporates sliding window correlation to explore the variability

in connectivity, providing insights into how brain network

characteristics vary across different levels of consciousness.

2 Materials and methods

2.1 Resting state EEG measurement

The resting state brain activity of the subjects recruited for the

study is acquired using the EEG machine with Galileo software

at NIMHANS, Banglore. The recording duration is chosen as

30 minutes. Electrodes are set according to the international

10/10 system, using a sampling rate of 256 Hz and ensuring that

impedance remains below 5 k�. The EEG data is referenced to the

left (A1) and right earlobes (A2). The dataset includes 16 patients

from coma, 20 subjects from UWS, MCS, and healthy controls.

EEG recordings are performed while participants are positioned

supine with their eyes closed, and methods are implemented to

reduce artifacts (Raveendran et al., 2023). Consultant neurologists

have recruited and classified the patients into various consciousness

categories based on established behavioral assessment methods of

CRS-R (coma recovery scaled-revised) and GCS (Glasgow coma

scale). Further details regarding patient recruitment, inclusion, and

exclusion criteria, as well as the signal acquisition protocol, are

available in Raveendran et al. (2024).

2.2 Data preprocessing

The resting-state EEG signals are visually inspected by expert

EEG technicians to detect bad channels, artifact-affected epochs,

and recorded annotations. Subsequently, appropriate channels are

selected and average referencing is applied to the signal. The

preprocessing steps applied include trimming the first and last

two minutes to remove initial setup artifacts and ending noise

followed by adding a standard 10-20 montage to ensure correct

spatial mapping of electrodes. A band-pass filter (1–48 Hz) is

applied to remove low-frequency drifts and high-frequency muscle

noise, followed by a notch filter at 50 Hz to eliminate power line

interference. Bad segments were automatically rejected based on

annotations. The five distinct EEG frequency bands were extracted

from the preprocessed signals using a zero-phase, non-causal FIR

bandpass filter. This filter was designed with a windowed time-

domain approach (firwin), setting the lower and upper cut-off

frequencies according to the respective EEG bands. A Hamming

window was applied, featuring a passband ripple of 0.0194 and

a stopband attenuation of 53 dB (Raveendran et al., 2024). To

maintain the same number of subjects in each group, 15 patients

are selected for analysis. The selection of the 15 subjects was

based on two key criteria. First, only subjects with available follow-

up data were included to ensure longitudinal consistency in the

analysis. Second, subjects with the longest EEG signal duration after

preprocessing were chosen to maximize the number of extracted

windows, thereby enhancing the reliability and robustness of the

analysis. A 20-s sliding window with 50% overlap is applied to each

record to generate analysis segments. Windows are extracted from

each channel and frequency band. 95 windows are extracted from

each signal of each patient, taking it to a total of 475 windows

from each subject. The total number of windows in each group is

7,125; making a data sample set of 28,500 for all four classes. For

analysis, the FC features wPLI and AEC are extracted from these

28,500 windows. The study also explores the impact of different

window lengths (ranging from 16 to 20 s) on data segmentation

and the overall dataset size. A 16 s window size results in 36,000

data samples, with each group contributing 9,000 samples.

3 Methodology

3.1 Feature extraction

3.1.1 Phase lag index (PLI)
The phase lag index (PLI) is a metric widely used in

neuroscience for quantifying functional connectivity between two

signals based on their phase relationships. PLI focuses on the

consistency of non-zero phase lags, making it robust against the

effects of common-source artifacts. This robustness is advantageous

in studying brain connectivity, where eliminating spurious

correlations is critical for uncovering genuine interactions. PLI

is equal to 0 when there is no consistent phase lag between

signals, indicating that the phase differences are symmetrically

distributed around zero, which can occur in cases of perfect

synchrony or random phase differences. When the phase difference

is consistently ±π (exactly 180 degrees out of phase), then the rate

of change or slope of phase difference with respect to frequency is

zero. Hence, PLI is zero.

The phase, which encodes information about the temporal

coordination of oscillatory activity, is extracted from the analytic

representation of a real-valued signal x(t) using its Hilbert

transform H(x(t)). The analytic signal z(t) of x(t) is expressed as:

z(t) = x(t)+ iH(x(t))

The amplitude envelope Ax(t) is the magnitude of the analytic

signal:

Ax(t) = |z(t)| =
√

x(t)2 +H(x(t))2

and its instantaneous phase is given by:

φx(t) = tan−1

(

Im(z(t))

Re(z(t))

)

For two signals x(t) and y(t), the instantaneous phase difference

is:

1φ(t) = φx(t)− φy(t)
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The PLI is derived from these phase differences and emphasizes

the asymmetry of consistent phase lags (Stam et al., 2007). It is

defined as:

PLI =
∣

∣E
[

sgn(sin(1φ(t))
]
∣

∣

Here, E[·] denotes the expectation (or average) over time,

sgn(sin(1φ(t))) is the sign of the sine of the phase difference. The

PLI quantifies the consistency of directional phase relationships

by focusing on whether one signal consistently leads or lags the

other. The normalized range between 0 and 1 makes it well-suited

for comparing connectivity patterns across different datasets and

experimental conditions, establishing it as a robust measure for

studying functional brain networks.

3.1.2 Weighted phase lag index (wPLI)
The weighted phase lag index (wPLI) extends the PLI by

incorporating the magnitude of phase lag asymmetry, providing

a more sensitive measure of functional connectivity. Like PLI,

the wPLI focuses on non-zero phase lags. However, by weighting

the contribution of phase differences based on the magnitude of

their imaginary components, the wPLI enhances sensitivity to true

underlying interactions, particularly in noisy data (Vinck et al.,

2011). With the instantaneous phases of the signals derived from

their analytic representations, the wPLI is calculated as:

wPLI =

∣

∣E
[

Im(1φ(t)) · sgn(Im(1φ(t)))
]
∣

∣

E
[
∣

∣Im(1φ(t))
∣

∣

]

where, Im(1φ(t)) is the imaginary part of the phase difference,

and sgn(Im(1φ(t))) is the sign function (Vinck et al., 2011). The

numerator emphasizes the magnitude of phase lag asymmetry,

while the denominator normalizes the result to bound wPLI

values between 0 and 1. A wPLI value close to 0 indicates no

consistent phase lag, while values close to 1 indicate strong phase

synchronization with consistent lag. The bounded range of wPLI

facilitates comparisons across datasets and conditions, making it a

reliable measure for studying functional brain networks.

Both PLI and wPLI quantify the consistency of phase

differences between signals; however they differ in their weighting

mechanisms. PLI is based on the sign of the imaginary component

of the cross-spectrum, measuring whether phase differences are

systematically positive or negative. PLI equally weights all samples,

including those where the phase difference is close to 0 or ±π

which can introduce noise and reduce sensitivity. wPLI addresses

this limitation by weighting the contribution of each sample

by the magnitude of the imaginary component of the cross-

spectrum. Consequently, wPLI provides a more reliable measure

of true brain interactions by emphasizing phase differences with

stronger imaginary components, thereby improving robustness

against common-source artifacts.

3.1.3 Amplitude envelope correlation (AEC)
While phase-based measures like wPLI assess temporal

coordination in oscillatory activity, amplitude-based methods such

as amplitude envelope correlation (AEC) provide complementary

insights by focusing on the co-variation of signal intensities (Bruns

et al., 2000). AEC specifically quantifies the linear relationship

between the amplitude envelopes of two signals over time,

capturing how their intensities fluctuate in tandem.

The amplitude envelopes required for AEC are obtained from

the same analytic signal derived using the Hilbert transform, as

described earlier. Given the amplitude envelopes Ax(t) and Ay(t)

of two signals x(t) and y(t), AEC is calculated as the Pearson

correlation coefficient between these envelopes over a specified time

interval T:

AEC =

∑T
t=1(Ax(t)− Āx)(Ay(t)− Āy)

√

∑T
t=1(Ax(t)− Āx)2

∑T
t=1(Ay(t)− Āy)2

where Āx and Āy are the respective mean values of Ax(t) and Ay(t)

over T.

AEC captures slow fluctuations in signal power, often

associated with large-scale brain network activity, such as in studies

of the resting state. AEC focuses on the comodulation of signal

envelopes, making it a functionally relevant metric. Although

AEC does not inherently eliminate volume conduction due to the

presence of zero-lag correlations, it provides valuable insights into

frequency-dependent connectivity beyond pure phase synchrony.

4 Sliding window correlation (SWC)

Sliding window correlation is a widely used method for

examining the time-varying relationships between two signals or

datasets. Traditional static correlation assumes that the relationship

between signals remains constant over time. However, these

relationships are often nonstationary and evolve in real-world

scenarios, such as neural activity, physiological signals, and

financial systems. Sliding window correlation has emerged as a

prominent method for capturing these time-varying dependencies.

SWC involves partitioning the signals into smaller temporal

windows, calculating the correlation within each window, and

observing how the correlation evolves as the window “slides” across

the signals. This method has been instrumental in understanding

functional connectivity, particularly in neuroscience, where

it provides insights into the temporal fluctuations of brain

network interactions.

SWC builds on the standard Pearson correlation coefficient, a

widely used metric for measuring the linear relationship between

two-time series. The Pearson correlation coefficient is defined as:

r =

∑T
t=1(Xt − X̄)(Yt − Ȳ)

√

∑T
t=1(Xt − X̄)2

∑T
t=1(Yt − Ȳ)2

where; Xt , Yt are the values of the two signals at time t and X̄,

Ȳ are the mean values of Xt and Yt over the time interval T. A

20-second sliding window with 50% overlap is applied to obtain

the windows of the input EEG signal. Within each window k, the

Pearson correlation is computed as:

rk =

∑tk+W−1
t=tk

(Xt − X̄k)(Yt − Ȳk)
√

∑tk+W−1
t=tk

(Xt − X̄k)2
∑tk+W−1

t=tk
(Yt − Ȳk)2
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Here tk is the starting time of the k-th window, X̄k and Ȳk

are the mean values of Xt and Yt within the k-th window. The

window is then shifted by a step size S and the process is repeated

until the entire signal is analyzed. The result is a time series of

correlation coefficients rk representing the temporal evolution of

the relationship between X and Y. The proposed methodology is

graphically depicted in Figure 1.

5 Choice of ANN models for
multiclass classification

The proposed work employs several advanced artificial

neural network (ANN) architectures to classify states of

consciousness–coma, UWS, MCS, and healthy subjects–using

functional connectivity features, namely PLI, wPLI and AEC. The

architectures include three variations of multilayer perceptron

(MLP), simple recurrent neural network (RNN), long short-term

memory network (LSTM), gated recurrent units (GRUs), and a

hybrid CNN-LSTM model, each tailored to optimize the learning

process for different data representations.

The preprocessed signal has 19 channels: F3, F4, C3, C4, F7,

F8, P3, P4, T7, T8, P7, P8, O1, O2, Fp1, Fp2, Fz, Pz, and Cz. Each

channel is divided into five frequency bands (delta, theta, alpha,

beta, and gamma). Thus each connectivity feature gives rise to a

symmetric feature matrix of size 19×19 for each frequency band.

Due to its symmetry, only the upper triangular elements, excluding

the diagonal, are used for classification. Hence, the number of

unique elements is 171 per frequency band. With 5 frequency

bands, the total feature vector for each window contains 5 ×

171 = 855 values. For 20 s window size, each subject generates

95 windows, resulting in a feature matrix of shape (95,855) per

subject. With 15 subjects per group, the total number of samples

per group is 15 × 95 = 1,425. Considering all four groups, the

dataset comprises 4 × 1,425 = 5,700 samples, each represented

by a feature vector of dimension 855. After reshaping the data

into a 2D array, the final input has a shape of (5,700,855). For a

window size of 19 s, each subject produces 103 windows, leading to

a feature matrix of shape (103, 855) per subject. Given 15 subjects

per group, the total number of samples per group is 1,545 (15 ×

103). Considering four groups, the input comprises 6,180 samples

(4 × 1,545). When the window size is 18 s, each subject generates

109 windows, resulting in a final feature matrix of shape (6,540,855)

for all the groups together (109 X 15 4 = 6,540). For 17 s window

size, each subject produces 115 windows, resulting in a dataset

of 6,900 feature vectors. With a window size of 16 s, each subject

generates 120 windows, finally resulting in 7,200 feature vectors.

5.1 MLP models

The MLP model 1 starts with an input layer that accepts

flattened input data of shape (X_train.shape[1]), where the number

of neurons corresponds to the total features in the dataset. This

ensures compatibility with fully connected layers and simplifies

computations. It employs a dense hidden layer with 128 neurons

and ReLU activation, followed by dropout regularization with a

rate of 0.5 to prevent overfitting. A second hidden layer contains

64 neurons, also with ReLU activation, and applies a dropout of

0.3 for additional regularization. The output layer has four neurons

(one for each class), with a softmax activation function to produce

class probabilities. The optimizer used is Adam with default

hyperparameters, and the loss function is categorical crossentropy,

suitable for multiclass classification. Training involves 50 epochs

with a batch size of 32, using 10% of the training data as a

validation split.

The MLP model 2 builds upon the first model and starts with

an input layer identical to model 1, where the number of neurons

matches the feature size (X_train.shape[1]). It incorporates a dense

hidden layer with 256 neurons and ReLU activation, followed by

batch normalization to stabilize and accelerate training. Dropout is

applied with a rate of 0.4. A second hidden layer with 128 neurons

employs ReLU activation, batch normalization, and dropout at 0.4.

A third hidden layer contains 64 neurons with ReLU activation

and dropout at 0.3. The second and third layers introduce kernel

regularization with L2 penalty (0.001) to further combat overfitting.

Like model 1, the output layer uses softmax activation with four

units, optimized by Adam with a learning rate of 0.001. Training

parameters are identical to those of model 1.

MLP model 3 resembles model 2 but maintains an identical

input layer, where the number of neurons is X_train.shape[1]. It

includes two hidden layers with 256 and 128 neurons, respectively,

both employing ReLU activation, batch normalization, dropout

(0.4), and L2 regularization (0.001). The output layer is configured

identically to the first two models, and the optimizer is Adam.

Early stopping and learning rate reduction callbacks are used to halt

training when validation performance stops improving, ensuring

optimal resource usage.

5.2 Sequential models: simple RNN, LSTM,
and GRU

The simple RNN model processes data as sequences, requiring

input to be reshaped into (time_steps, features). The first recurrent

layer employs 128 simple RNN units with tanh activation and

return_sequences = True to retain outputs for the next layer.

Dropout regularization is applied with a rate of 0.4. A second

recurrent layer with 64 simple RNN units has return_sequences =

False, followed by dropout at 0.3. Batch normalization is applied

after each layer to stabilize gradients. Dense layers are used post-

RNN, starting with a layer of 32 units, ReLU activation, and

dropout of 0.2, culminating in an output layer with four softmax-

activated neurons. Adam optimizer is used with a learning rate

of 0.0005, and categorical cross-entropy is the loss function. The

performance evaluation metrics include accuracy, precision, recall,

and F1-score.

The LSTM model leverages the long-term memory

capabilities of LSTM layers. The first LSTM layer has 128

units, return_sequences = True, and applies dropout at 0.4 to

reduce overfitting. The second LSTM layer, with 64 units and

return_sequences = False, uses dropout at 0.3. Batch normalization

is applied after each layer. Post-LSTM dense layers include a

32-unit layer with ReLU activation and dropout at 0.2, followed

by the output layer with four softmax-activated neurons. Adam
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FIGURE 1

Graphical depiction of the proposed methodology: FC-based multiclass classification of DOC patients.

optimizer with a learning rate of 0.0005 is used, along with early

stopping and learning rate reduction callbacks.

The GRU model is structured similarly to the LSTM

model but replaces LSTM layers with GRU layers, which are

computationally more efficient while retaining the ability to model

sequential dependencies. The first GRU layer has 128 units with

return_sequences = True and dropout at 0.4. The second GRU

layer, with 64 units and return_sequences = False, uses dropout at

0.3. Batch normalization follows each GRU layer. The dense layers

include a 32-unit layer with ReLU activation and dropout at 0.2,

followed by the output layer with four softmax-activated neurons.

Like the LSTM model, this configuration uses Adam optimizer

(learning rate 0.0005), categorical cross-entropy, and early stopping

to ensure optimal training performance.

A hybrid CNN-LSTM model integrates convolutional and

recurrent architectures for effective sequential learning. The

input data is structured as (time_steps, num_features), capturing

temporal dependencies. The model begins with two Conv1D

layers (64 and 128 filters) using ReLU activation, followed by

MaxPooling1D layers to downsample the feature maps. Batch

normalization is applied after each convolutional layer to stabilize

training. The extracted spatial features are then passed through

two LSTM layers (64 and 32 units) with tanh activation, modeling

sequential dependencies. Dropout (0.3 and 0.2) is used in LSTM

layers to prevent overfitting. A fully connected dense layer with

32 neurons (ReLU activation) and dropout (0.2) is followed by a

softmax-activated output layer for multi-class classification. The

model is trained using categorical cross-entropy loss and optimized

with the Adam optimizer (learning rate 0.0005). It is trained with

a batch size of 32 for 50 epochs, incorporating early stopping and

a learning rate reduction scheduler to enhance convergence and

performance. Table 1 describes the network configurations and the

model details.

Training and Evaluation: All models are trained using

standardized inputs to ensure consistency across features. Labels

are one-hot encoded to suit the categorical classification task.
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TABLE 1 Description of the implemented ANNmodels for classification.

Model Architecture
(layers)

Units summary Activation
functions

Optimizer
(LR)

Batch size Epochs

MLP model 1 Dense→ Dense→

Dense

128→ 64→ 4 ReLU, Softmax Adam (Default) 32 50

MLP model 2 Dense→ Dense→

Dense

256→ 128→ 64→ 4 ReLU, Softmax Adam (0.001) 32 100

MLP model 3 Dense→ Dense→

Dense

256→ 128→ 64→ 4 ReLU, Softmax Adam (0.001) 32 60

Simple RNN RNN→ RNN→

Dense

128→ 64→ 32→ 4 tanh, ReLU,

Softmax

Adam (0.0005) 32 50

LSTM LSTM→ LSTM→

Dense

128→ 64→ 32→ 4 tanh, ReLU,

Softmax

Adam (0.0005) 32 50

GRU GRU→ GRU→ Dense 128→ 64→ 32→ 4 tanh, ReLU,

Softmax

Adam (0.0005) 32 50

Hybrid

CNN-LSTM

Conv1D→ Conv1D

→ LSTM→ LSTM→

Dense

64→ 128→ 64→ 32

→ 4

ReLU, ReLU, tanh,

ReLU, Softmax

Adam (0.0005) 32 50

During training, 10% of the data is reserved for validation to

monitor overfitting. Metrics such as accuracy, weighted precision,

recall, and F1-score provide a holistic evaluation of model

performance, especially for imbalanced class distributions.

6 Results

Table 2 compares the six models using the performance

metrics of accuracy, precision, recall, and F1-score. The metrics

used compare the effectiveness of various artificial neural

network models–3 MLP models, simple RNN, LSTM, and

GRU–for classifying states of consciousness based on the

functional connectivity features of phase lag index, weighted

phase lag index, and amplitude envelope correlation. Table 2

demonstrates the distinct trends influenced by the choice of

features and model architectures in leveraging the FC data

to classify states of consciousness into coma, UWS, MCS,

and healthy subjects. The analysis has been conducted using

different window sizes to examine the impact of window size

on model performance. The applied sizes of the window are

16, 17, 18, 19, and 20 s, with a 50% overlap maintained to

capture variability.

6.1 Performance analysis on PLI features

For the PLI feature, MLP model 2 exhibits the highest

performance across all metrics, with an accuracy of 0.622, precision

of 0.626, recall of 0.622, and an F1-score of 0.624. These results

demonstrate that MLP model 2 achieves a slightly better balance

between precision and recall, leading to the highest F1-score among

all the evaluated models. MLP models 1 and 3 follow closely in

terms of performance, with MLP model 3 showing slightly better

results thanMLPmodel 1. The RNN-basedmodels perform poorer.

The simple RNN model achieves an accuracy of 0.52, precision

of 0.529, recall of 0.52, and an F1-score of 0.524. Among the

RNN-based architectures, the GRU model marginally outperforms

the simple RNN and LSTM models, with an F1-score of 0.544,

reflecting a slightly better precision-to-recall balance. The LSTM

model achieves slightly better than the simple RNN with accuracy,

precision, recall, and F1-score values of 0.533, 0.543, 0.533, and

0.537, respectively.

Table 3 presents the accuracy of different models for PLI

across varying window sizes (16–20 s) using an 80-20 fixed train-

test split. The results showed that larger window sizes (19 and

20 s) lead to better model performance, particularly for MLP

architectures. Among the models, MLP Model 2 consistently

achieves higher accuracy, peaking at 0.622 for the 20 s window,

followed closely by MLP Model 3 at 0.6183. Recurrent models

(simple RNN, LSTM, and GRU) exhibit lower overall performance.

Both LSTM and GRU models improve in performance as the

window size increases, reaching higher accuracy at 20 s (0.5325 and

0.5292, respectively).

Table 4 presents model performance results using group k-

fold cross-validation with PLI as the feature extraction method.

The results show that MLP-based models consistently outperform

RNN-based models, with MLP model 2 achieving the highest

accuracy and F1-score across all window sizes. An increase in

window size leads to improved performance, particularly for MLP

models, highlighting their ability to leverage longer temporal

dependencies more effectively. Among the cross-validation folds,

folds 10 and 8 produce better results, especially for MLP models

2 and 3, suggesting that these data splits are more favorable for

efficiently training the models. In contrast, recurrent models simple

RNN, LSTM, and GRU exhibit greater variability in performance

and underperform compared to MLP-based models.

Better results are obtained withMLP-basedmodels, particularly

models 2 and 3, using folds 8 and 10, and larger window sizes

(19 and 20 s). The performance highlights that PLI-based features

are better leveraged by MLP architectures rather than sequential

models, potentially due to their ability to learn complex, high-

dimensional representations more effectively.
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TABLE 2 Performance comparison of di�erent ANNmodels for multiclass classification with 20s window length and 80/20 train-test split (coma vs. UWS

vs. MCS vs. HC) using three di�erent features and a combination of two of them.

Performance
metrics

Feature MLP
model 1

MLP
model 2

MLP
model 3

Simple
RNN

LSTM GRU Hybrid
CNN-
LSTM

Accuracy PLI 0.548 0.622 0.618 0.52 0.533 0.529 0.571

Precision 0.553 0.626 0.619 0.529 0.543 0.559 0.572

Recall 0.548 0.622 0.618 0.52 0.533 0.529 0.571

F1-score 0.550 0.624 0.619 0.524 0.537 0.544 0.571

Accuracy wPLI 0.772 0.532 0.515 0.668 0.638 0.713 0.48

Precision 0.773 0.613 0.706 0.671 0.646 0.718 0.55

Recall 0.772 0.532 0.515 0.668 0.638 0.713 0.48

F1-score 0.773 0.570 0.596 0.669 0.642 0.716 0.513

Accuracy AEC 0.879 0.957 0.941 0.905 0.906 0.903 0.927

Precision 0.879 0.958 0.942 0.907 0.908 0.904 0.928

Recall 0.879 0.957 0.941 0.905 0.906 0.903 0.927

F1-score 0.879 0.958 0.942 0.906 0.907 0.903 0.928

Accuracy wPLI &

AEC

0.874 0.951 0.948 0.902 0.918 0.921 0.925

Precision 0.876 0.952 0.948 0.904 0.918 0.921 0.925

Recall 0.874 0.951 0.948 0.902 0.918 0.921 0.925

F1-score 0.875 0.951 0.948 0.903 0.918 0.921 0.925

TABLE 3 Accuracy with PLI features for di�erent window sizes with 80-20

fixed train-test split.

Model 16 s 17 s 18 s 19 s 20 s

MLP model 1 0.5376 0.5513 0.5547 0.5594 0.5479

MLP model 2 0.6156 0.5974 0.6128 0.6197 0.622

MLP model 3 0.6111 0.5958 0.607 0.6063 0.6183

Simple RNN 0.5165 0.5058 0.5083 0.5076 0.52

LSTM 0.4735 0.4722 0.4797 0.4688 0.5325

GRU 0.4874 0.4684 0.4622 0.4782 0.5292

Hybrid

CNN-LSTM

0.5502 0.5585 0.5608 0.561 0.5705

6.2 Performance analysis on wPLI features

For the wPLI feature, which captures phase-based connectivity

between brain regions, the performance shows significant

variability across models. MLP model 1 emerges as the highest-

performing model in terms of accuracy, achieving a value of

0.772. The high accuracy is supported by its precision of 0.773,

which shows that it has a good ability to correctly identify positive

predictions with relatively fewer false positives. Its recall value

matches its accuracy at 0.772, suggesting that the model captures a

large proportion of true positives. The F1-score of MLP model 1

is 0.773, reflecting a strong balance between precision and recall,

which is critical in cases where the dataset may have an uneven

class distribution or when both metrics are equally important for

evaluation. This performance highlights that MLP model 1 can

extract meaningful patterns from the wPLI feature set, leading to

high classification success.

However, MLP models 2 and 3 significantly underperform.

MLP model 2 achieves an accuracy of only 0.532. The

corresponding precision (0.613), recall (0.532), and F1-score

(0.570) further emphasize its struggle with generalization. MLP

model 3 performs even worse, with an accuracy of 0.515. Both

models exhibit poor adaptability to wPLI feature set, which

may stem from their inability to effectively process the complex

relationships embedded in the data.

The simple RNN model provides moderate performance, with

an accuracy of 0.668. While it does not match the highest-

performing MLP model 1 or GRU in accuracy, it surpasses MLP

models 2 and 3 by a significant margin. The precision of 0.671 and

recall of 0.668 are relatively balanced, and the F1-score of 0.669

confirms its consistent classification ability.

The LSTM network, a more advanced recurrent model,

achieves an accuracy of 0.638. While this value is lower than

that of simple RNN, its precision (0.646), recall (0.638), and F1-

score (0.642) suggest that its performance is stable across metrics.

However, LSTM does not perform as well as GRU, which surpasses

it in all the metrics. This relative underperformance could be

attributed to the additional complexity of LSTM, whichmay require

more data and fine-tuning to optimize its performance on the

wPLI feature set. LSTM’s slightly lower accuracy compared to

simple RNNhighlights the trade-off betweenmodel complexity and

effective learning, especially when working with limited datasets.

The GRU model stands out as a better performer in this

comparison.With accuracy, precision, recall, and F1-score of 0.713,
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TABLE 4 Best fold obtained using group k-fold cross validation and the performance matrix for each model using PLI.

16 s 17 s 18 s 19 s 20 s

MLP model 1

CV: 10

Accuracy 0.5545 CV: 5 0.5633 CV: 8 0.5646 CV: 8 0.5727 CV: 8 0.5779

Precision 0.5608 0.5653 0.567 0.5775 0.5822

Recall 0.5545 0.5633 0.5646 0.5727 0.5779

F1-score 0.5576 0.5642 0.5658 0.5751 0.58

MLP model 2

CV: 10

Accuracy 0.6151 CV: 8 0.6261 CV: 10 0.6258 CV: 8 0.6339 CV: 10 0.64

Precision 0.616 0.627 0.6263 0.6347 0.6408

Recall 0.6151 0.6261 0.6258 0.6339 0.64

F1-score 0.6474 0.6596 0.6582 0.6665 0.6730

MLP model 3

CV: 10

Accuracy 0.6145 CV: 8 0.6264 CV: 10 0.6283 CV: 8 0.6339 CV: 8 0.6418

Precision 0.6152 0.6275 0.6289 0.6345 0.6425

Recall 0.6145 0.6264 0.6283 0.6339 0.6418

F1-score 0.6145 0.6271 0.6299 0.6342 0.6431

Simple RNN

CV: 10

Accuracy 0.5218 CV: 10 0.5238 CV: 8 0.5275 CV: 10 0.5376 CV: 8 0.5365

Precision 0.5271 0.5296 0.5347 0.5449 0.5462

Recall 0.5218 0.5238 0.5275 0.5376 0.5365

F1-score 0.4819 0.4799 0.4850 0.4970 0.4933

LSTM

CV: 5

Accuracy 0.4807 CV: 10 0.491 CV: 5 0.4861 CV: 8 0.4914 CV: 8 0.4866

Precision 0.4869 0.4955 0.4912 0.4984 0.4892

Recall 0.4807 0.491 0.4861 0.4914 0.4866

F1-score 0.4641 0.4774 0.4688 0.4728 0.4642

GRU

CV: 10

Accuracy 0.4996 CV: 10 0.4953 CV: 5 0.5 CV: 8 0.5076 CV: 5 0.502

Precision 0.5065 0.4997 0.5058 0.5111 0.5059

Recall 0.4996 0.4953 0.5 0.5076 0.502

F1-score 0.5127 0.4996 0.5099 0.5176 0.5118

Hybrid

CNN-LSTM

CV: 10

Accuracy 0.562 CV: 8 0.5709 CV: 8 0.5711 CV: 10 0.5763 CV: 8 0.5822

Precision 0.5629 0.5735 0.572 0.577 0.5832

Recall 0.562 0.5709 0.5711 0.5763 0.5822

F1-score 0.5624 0.5722 0.5715 0.5766 0.5827

0.718, 0.713, and 0.716, respectively, GRU demonstrates a well-

rounded ability to classify instances in the wPLI feature set. Its

F1-score is notable, reflecting a fine balance between precision and

recall. This performance advantage is likely due to GRU’s simpler

architecture than LSTM, which allows it to efficiently capture the

patterns without overfitting or requiring excessive computational

resources. GRU’s high precision also suggests that it minimizes

false positives, making it a reliable choice for tasks where avoiding

incorrect classifications is critical.

When comparing the models holistically, MLP model 1

achieves the highest accuracy, since it excels in extracting patterns.

GRU, on the other hand, provides a more balanced performance

across all metrics. This makes GRU the most effective model for

the wPLI feature, since it leverages the dataset’s unique temporal

properties while maintaining strong generalization.

Accuracy across multiple deep learning models based on wPLI

and different window sizes (16–20 s) using an 80-20 fixed train-test

split is shown in Table 5. The results imply that increasing the

window size improved accuracy for the GRU and LSTM models.

However, MLP Model 1 has remained the most robust choice,

showing stable and high accuracy across all window sizes.

The group k-fold cross-validation results for models trained

using wPLI-based features demonstrate varying performances

across different architectures and window sizes is shown in Table 6.

MLP Model 1 consistently outperforms all other models, achieving

the highest accuracy of 0.785 at 20 s using fold 10, indicating its

robustness in capturing relevant patterns from the data. The simple

RNN model also performed well, reaching an accuracy of 0.7171 at

20 s, with Fold 8 yielding the best results in multiple cases.

Among the MLP models, models 2 and 3 exhibit moderate

performance, with model 2 reaching its peak accuracy of 0.5798 at

20 s (fold 8) and model 3 achieving 0.5703 at 20 s (fold 5). However,

these models show lower recall and F1-score than MLP Model 1,

suggesting that they do not generalize as effectively.
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Recurrent models, such as LSTM and GRU, demonstrate

varying performance across different folds. The LSTM model

performs the best at 19 s (fold 8) with an accuracy of 0.6378, while

TABLE 5 Accuracy with wPLI features for di�erent window sizes with

80-20 fixed train-test split.

Model 16 s 17 s 18 s 19 s 20 s

MLP model 1 0.7535 0.7649 0.7694 0.7625 0.7719

MLP model 2 0.5086 0.5119 0.5772 0.5604 0.5319

MLP model 3 0.4811 0.5265 0.5751 0.4979 0.5151

Simple RNN 0.6428 0.6388 0.6977 0.6819 0.6679

LSTM 0.5729 0.6175 0.5538 0.6157 0.6377

GRU 0.61 0.6296 0.6072 0.6382 0.7132

Hybrid

CNN-LSTM

0.4 0.445 0.465 0.475 0.48

the GRU model reaches its peak at 19 s (fold 8) with an accuracy

of 0.6515. This suggests that the performance of recurrent models

remains highly dependent on the data split.

6.3 Performance analysis on AEC features

Using the AEC features, MLP model 2 achieves the highest

overall performance, with an accuracy of 95.7%, precision of 95.8%,

recall of 95.7%, and an F1-score of 95.8%. These values demonstrate

the model’s exceptional ability to classify instances correctly,

minimize false positives, and identify true positives. The F1-score,

which harmonizes precision and recall, confirms that MLP model

2 maintains a balanced performance without overemphasizing one

aspect at the expense of the other. Its ability to leverage the AEC

feature set likely stems from its optimized architecture, enabling it

to capture intricate interconnections between features.

TABLE 6 Best fold obtained using group k-fold cross validation and the performance matrix for each model using wPLI.

16 s 17 s 18 s 19 s 20 s

MLP model 1

CV: 10

Accuracy 0.7622 CV: 10 0.7713 CV: 8 0.7769 CV: 10 0.7827 CV: 10 0.785

Precision 0.7631 0.7728 0.7781 0.7839 0.786

Recall 0.7622 0.7713 0.7769 0.7827 0.785

F1-score 0.7626 0.7720 0.7775 0.7833 0.7855

MLP model 2

CV: 8

Accuracy 0.5414 CV: 5 0.5509 CV: 10 0.5566 CV: 10 0.561 CV: 8 0.5798

Precision 0.6639 0.643 0.6597 0.6652 0.6759

Recall 0.5414 0.5509 0.5566 0.561 0.5798

F1-score 0.5964 0.5934 0.6038 0.6087 0.6242

MLP model 3

CV: 10

Accuracy 0.5399 CV: 10 0.5661 CV: 10 0.5558 CV: 8 0.5672 CV: 5 0.5703

Precision 0.6499 0.6651 0.6578 0.6643 0.6379

Recall 0.5399 0.5661 0.5558 0.5672 0.5703

F1-score 0.5898 0.6116 0.6025 0.6119 0.6022

Simple RNN

CV: 8

Accuracy 0.6773 CV: 10 0.7015 CV: 8 0.7048 CV: 10 0.7106 CV: 8 0.7171

Precision 0.6804 0.7042 0.7066 0.7123 0.7189

Recall 0.6773 0.7015 0.7048 0.7106 0.7171

F1-score 0.6788 0.7028 0.7057 0.7114 0.7180

LSTM

CV: 8

Accuracy 0.6131 CV: 8 0.6293 CV: 10 0.6256 CV: 8 0.6378 CV:10 0.6317

Precision 0.616 0.6326 0.6276 0.6416 0.6359

Recall 0.6131 0.6293 0.6256 0.6378 0.6317

F1-score 0.6145 0.6309 0.6266 0.6397 0.6338

GRU

CV: 5

Accuracy 0.614 CV: 10 0.6405 CV: 8 0.6383 CV: 8 0.6515 CV: 10 0.639

Precision 0.6198 0.6449 0.6421 0.6549 0.6443

Recall 0.614 0.6405 0.6383 0.6515 0.639

F1-score 0.6169 0.6427 0.6402 0.6532 0.6416

Hybrid

CNN-LSTM

CV: 10

Accuracy 0.4706 CV: 5 0.4621 CV: 10 0.4828 CV: 5 0.4874 CV: 8 0.4935

Precision 0.527 0.5173 0.5463 0.5642 0.5723

Recall 0.4706 0.4621 0.4828 0.4874 0.4935

F1-score 0.4972 0.4881 0.5126 0.5230 0.530
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TABLE 7 Accuracy with AEC features for di�erent window sizes with

80-20 fixed train-test split.

Model 16 s 17 s 18 s 19 s 20 s

MLP model 1 0.8851 0.8864 0.8765 0.8838 0.8788

MLP model 2 0.9626 0.9546 0.9624 0.9561 0.9572

MLP model 3 0.9514 0.9486 0.952 0.943 0.9412

Simple RNN 0.9049 0.9126 0.909 0.9026 0.9047

LSTM 0.8535 0.8467 0.8388 0.8303 0.9063

GRU 0.8506 0.8599 0.8524 0.8503 0.9028

Hybrid

CNN-LSTM

0.925 0.9293 0.9272 0.9242 0.9273

MLP model 3 also performs well, with an accuracy of 94.1%,

precision of 94.2%, recall of 94.1%, and an F1-score of 94.2%.

While its performance is lower than MLP model 2, the model

demonstrates a robust ability to process the AEC feature set. It

effectively generalizes across the dataset. The slight difference in

performance compared to MLP model 2 could be attributed to

architectural variations that make it less optimal in extracting

fine-grained patterns.

MLPmodel 1 achieves an accuracy of 87.9%, precision of 87.9%,

recall of 87.9%, and an F1-score of 87.9%. While these values

are not as high as those of MLP models 2 and 3, model 1 still

demonstrates an acceptable classification performance. It reliably

identifies patterns in the AEC feature set, although its simpler

architecture may limit its performance.

The simple RNN model performs well, achieving an accuracy

of 90.5%, precision of 90.7%, recall of 90.5%, and an F1-score of

90.6%. These results highlight simple RNN’s ability to generalize

effectively on the AEC feature set, despite its recurrent architecture

designed primarily for sequential data. Though its performance

surpasses that of MLP model 1, it does not match the performance

of MLP models 2 and 3, indicating that it does not exploit

the full potential of the AEC feature set as efficiently as the

MLP architectures.

The LSTM model exhibits a performance similar to simple

RNN, with an accuracy of 90.6%, precision of 90.8%, recall of

90.6%, and an F1-score of 90.7%. This shows that while LSTM is a

powerful model for sequential data, its complexity may not provide

substantial benefits when applied to static connectivity features

like AEC.

The GRU model achieves an accuracy of 90.3%, precision of

90.4%, recall of 90.3%, and an F1-score of 90.3%.While these values

are close to those of simple RNN and LSTM, the slightly lower

values suggest that it may be less suited for AEC than the other

recurrent models.

Table 7 presents the accuracy of different deep learning models

for AEC across various window sizes with an 80-20 fixed train-test

split. MLP Model 2 consistently achieves higher accuracy across

different window sizes, with values above 95%, making it the better-

performing model for AEC. Among recurrent models, simple RNN

performs better than LSTM and GRU, with its best accuracy at 17 s.

The group k-fold cross-validation results using AEC-based

features shown in Table 8 indicate that MLP models achieve higher

accuracy across all tested models, with MLP Models 2 and 3

performing better. MLP Model 2 records a high accuracy of 0.9648

at 20 s (fold 8), followed closely by MLP Model 3 at 0.9648 at 19 s

(fold 10). These results demonstrate the robust performance of

MLP models when leveraging AEC-based features, suggesting that

these models effectively capture the distinct patterns in the data.

MLP Model 1 also shows strong performance, achieving its highest

accuracy of 0.8895 at 16 s (fold 8), but is outperformed by the other

two MLP models.

Among RNN-based models, simple RNN exhibits the best

performance, achieving an accuracy of 0.9225 at 18 s (fold 5),

indicating that it effectively leverages AEC features. GRU and

LSTM follow, with GRU reaching its highest accuracy of 0.8705

at 20 s (fold 8), while LSTM peaks at 0.8595 at 17 s (fold 8). These

results highlight that RNN-based models, particularly simple RNN,

still perform well with AEC-based features, though they did not

surpass the MLP models in accuracy.

6.4 Performance analysis on combined
features

MLP model 2 performs the best with accuracy, precision,

recall, and F1-score values of 95.1%, 95.2%, 95.1%, and 95.1%,

respectively. The high accuracy value indicates that the model

reliably distinguishes between the classes, while the closely aligned

precision and recall values reflect its ability to minimize false

positives and false negatives effectively. However, these values are

marginally lower than the values achieved by using AEC alone as

the feature.

MLP model 3 performs slightly poorer than model 2. Model

3 achieves identical values of 94.8% for accuracy, precision,

recall, and F1-score. The model’s architecture appears well-

suited for capturing the intricate relationships between wPLI and

AEC features.

MLP model 1, with an accuracy of 87.4%, precision of 87.6%,

recall of 87.4%, and an F1-score of 87.5%, exhibits a noticeable drop

in performance compared to the other two MLP models. These

values suggest that while MLP model 1 can handle the combined

wPLI and AEC feature set, its simpler architecture might limit its

capacity to fully capture the relationships between the two types of

connectivity information.

Among the recurrent models, GRU achieves the highest

performance, with equal values of accuracy, precision, recall, and

F1-score of 92.1%. GRU’s architecture captures the patterns of

the combined wPLI-AEC features. LSTM performs poorer, with

equal values of accuracy, precision, recall, and F1-score of 91.8%.

The simple RNN model, while achieving an accuracy of 90.2%,

precision of 90.4%, recall of 90.2%, and an F1-score of 90.3%,

performs moderately well but falls short of the other recurrent and

MLP architectures.

Table 9 displays the accuracy of various models utilizing

AEC+wPLI for different window sizes (16-20 s) under an 80-20

train-test split. MLP-based models outperform recurrent models,

with MLP model 2 consistently achieving better accuracy across all

window sizes. Simple RNN performs better than LSTM and GRU

in most cases, though GRU shows the highest accuracy of 0.9209
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TABLE 8 Best fold obtained using group k-fold cross validation and the performance matrix for each model using AEC.

16 s 17 s 18 s 19 s 20 s

MLP model 1

CV: 8

Accuracy 0.8895 CV: 8 0.8885 CV: 8 0.8839 CV: 8 0.8876 CV: 8 0.8834

Precision 0.8933 0.8916 0.8883 0.891 0.8869

Recall 0.8895 0.8885 0.8839 0.8876 0.8834

F1-score 0.8914 0.8900 0.8861 0.8893 0.8851

MLP model 2

CV: 10

Accuracy 0.964 CV: 8 0.9644 CV: 8 0.9636 CV: 8 0.9642 CV: 8 0.9648

Precision 0.9645 0.9651 0.9644 0.9648 0.9654

Recall 0.964 0.9644 0.9636 0.9642 0.9648

F1-score 0.9642 0.9647 0.9640 0.9645 0.9651

MLP model 3

CV: 10

Accuracy 0.9639 CV: 10 0.9639 CV: 8 0.964 CV: 8 0.9648 CV: 10 0.9622

Precision 0.9644 0.9645 0.9644 0.9653 0.9631

Recall 0.9639 0.9639 0.964 0.9648 0.9622

F1-score 0.9641 0.9642 0.9642 0.9650 0.9626

Simple RNN

CV: 10

Accuracy 0.916 CV: 5 0.9192 CV: 8 0.9225 CV: 5 0.9189 CV: 10 0.9212

Precision 0.9169 0.9197 0.9233 0.9198 0.9223

Recall 0.916 0.9192 0.9225 0.9189 0.9212

F1-score 0.9164 0.9194 0.9229 0.9193 0.9217

LSTM

CV: 8

Accuracy 0.8576 CV: 8 0.8595 CV: 8 0.8567 CV: 10 0.8564 CV: 10 0.8587

Precision 0.8584 0.8602 0.8575 0.8573 0.8594

Recall 0.8576 0.8595 0.8567 0.8564 0.8587

F1-score 0.8580 0.8598 0.8571 0.8568 0.8590

GRU

CV: 8

Accuracy 0.8641 CV: 10 0.8645 CV: 5 0.8686 CV: 5 0.8627 CV: 8 0.8705

Precision 0.8649 0.8651 0.8694 0.863 0.8716

Recall 0.8641 0.8645 0.8686 0.8627 0.8705

F1-score 0.8645 0.8648 0.8690 0.8628 0.8710

Hybrid

CNN-LSTM

CV: 10

Accuracy 0.9283 CV: 8 0.933 CV: 5 0.9324 CV: 5 0.9293 CV: 10 0.9315

Precision 0.9292 0.9336 0.933 0.9304 0.9321

Recall 0.9283 0.933 0.9324 0.9293 0.9315

F1-score 0.9287 0.9332 0.9326 0.9297 0.9317

at 20 s, surpassing even LSTM. The best performance occurs at 18 s

for MLP and simple RNN, while LSTM and GRU peak at 20 s.

Table 10 shows that the best fold obtained using group k-fold

cross-validation across different models utilizing a combination

of AEC and wPLI features varies based on the evaluation

metrics. Among the models, MLP model 1 shows overall higher

performance, achieving an accuracy of 0.9453 in its best fold (CV:

10). It also achieves a better precision (0.9463), recall (0.9453),

and F1-score (0.9458). MLP Model 2 followed closely, with a best

accuracy of 0.9383 (CV: 8), while MLP Model 3 has a slightly lower

peak accuracy of 0.928 (CV: 8). Among recurrent models, GRU

outperforms simple RNN and LSTM, achieving a better accuracy

of 0.8581 (CV: 10), along with an F1-score of 0.8597, making it the

strongest RNN-based model. The simple RNN and LSTM models

display relatively lower accuracy, with the simple RNN peaking at

0.7518 (CV: 5) and LSTM at 0.756 (CV: 8), indicating that MLP

models perform significantly better in this setup. Smaller window

sizes (16-18 s) tend to yield better performance, especially for MLP

models, which consistently achieve higher accuracy in this range.

GRU models perform reliably across different window sizes but

achieve their high results with 16 s, indicating that this window

provides better informative features. Recurrent models (RNN and

LSTM) exhibit some variability, with LSTM performing best at 16 s,

while simple RNN shows slightly better results at 17 and 20 s.

The 95% confidence intervals are calculated for accuracy,

precision, recall, and F1-score to evaluate the performance of

different models using the four feature sets, namely PLI, wPLI,

AEC, and combined AEC and wPLI. Among the models, MLP

models 2 and 3 demonstrate higher accuracy, particularly with

AEC (0.964, 95% CI = 0.964–0.965), while MLP model 1 performs

slightly lower but improves significantly when using the combined

AEC and wPLI (0.931, 95% CI = 0.909–0.953). The recurrent
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models (Simple RNN, LSTM, and GRU) show varying results,

with GRU outperforming LSTM and RNN, particularly when using

AEC and wPLI combinedly (0.853, 95% CI = 0.846–0.86). The

TABLE 9 Accuracy with AEC+wPLI features for di�erent window sizes

with 80-20 train test split.

Model 16 s 17 s 18 s 19 s 20 s

MLP model 1 0.9083 0.8972 0.9167 0.9042 0.8735

MLP model 2 0.9685 0.9686 0.955 0.9639 0.9511

MLP model 3 0.9636 0.9671 0.9587 0.9584 0.9475

Simple RNN 0.9143 0.9099 0.9257 0.9076 0.9019

LSTM 0.8697 0.87 0.8564 0.8735 0.9177

GRU 0.8708 0.8771 0.8402 0.8756 0.9209

Hybrid

CNN-LSTM

0.9015 0.915 0.9175 0.9155 0.925

CNN-LSTM hybrid model achieves better performance, attaining

0.931 accuracy (95% CI = 0.928–0.933) with AEC and 0.918

(95% CI = 0.908–0.929) with AEC and wPLI combined, making

it comparable to the better-performing MLP models. Across all

models, AEC consistently yields the highest performance, while

the combination of AEC with wPLI further improves the results,

particularly for MLP and GRU models. Table 11 presents the

detailed confidence intervals for the implemented models.

6.5 Sliding window correlation analysis

The sliding window correlation analysis of weighted phase-lag

index and amplitude envelope correlation connectivity matrices

across four groups: coma, UWS, MCS, and healthy controls

provides critical insights into the brain’s functional connectivity

and its relationship to levels of consciousness. By examining the

variability of connectivity patterns across five frequency bands

TABLE 10 Best performing fold in group k-fold cross validation and the performance metrics for each model using combined AEC and wPLI features.

16 s 17 s 18 s 19 s 20 s

MLP

model 1

CV: 10

Accuracy 0.9453 CV: 10 0.9107 CV: 10 0.9437 CV: 10 0.9434 CV: 8 0.9118

Precision 0.9463 0.9136 0.9456 0.9449 0.9133

Recall 0.9453 0.9107 0.9437 0.9434 0.9118

F1-score 0.9458 0.9121 0.9447 0.9441 0.9125

MLP

model 2

CV: 10

Accuracy 0.9324 CV: 10 0.9051 CV: 10 0.9184 CV: 10 0.9336 CV: 8 0.9383

Precision 0.9345 0.9087 0.9212 0.9349 0.9391

Recall 0.9324 0.9051 0.9184 0.9336 0.9383

F1-score 0.9334 0.9069 0.9198 0.9342 0.9387

MLP

model 3

CV: 10

Accuracy 0.9256 CV: 8 0.9076 CV: 10 0.9172 CV: 8 0.928 CV: 5 0.9109

Precision 0.9273 0.9105 0.9199 0.9292 0.9144

Recall 0.9256 0.9076 0.9172 0.928 0.9109

F1-score 0.9264 0.9090 0.9185 0.9286 0.9126

Simple

RNN

CV : 10

Accuracy 0.7331 CV: 5 0.7518 CV: 10 0.7147 CV: 8 0.7364 CV: 8 0.7496

Precision 0.7403 0.7555 0.72 0.7396 0.7556

Recall 0.7331 0.7518 0.7147 0.7364 0.7496

F1-score 0.7367 0.7536 0.7173 0.7380 0.7526

LSTM

CV: 8

Accuracy 0.756 CV: 10 0.7339 CV: 10 0.7122 CV: 5 0.7137 CV: 8 0.7447

Precision 0.7616 0.7374 0.7152 0.7212 0.7497

Recall 0.756 0.7339 0.7122 0.7137 0.7447

F1-score 0.7588 0.7356 0.7137 0.7174 0.7472

GRU

CV : 10

Accuracy 0.8581 CV: 10 0.8499 CV: 5 0.855 CV: 8 0.8576 CV: 10 0.8449

Precision 0.8613 0.8537 0.8555 0.858 0.8465

Recall 0.8581 0.8499 0.855 0.8576 0.8449

F1-score 0.8597 0.8518 0.8552 0.8578 0.8457

Hybrid

CNN-LSTM

CV: 5

Accuracy 0.9047 CV: 10 0.9243 CV: 10 0.9189 CV: 5 0.9166 CV: 10 0.9266

Precision 0.908 0.9251 0.9214 0.9189 0.9277

Recall 0.9047 0.9243 0.9189 0.9166 0.9266

F1-score 0.9063 0.9247 0.9201 0.9177 0.9271
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TABLE 11 Confidence interval for the implemented models using di�erent features.

Model Performance metrics PLI wPLI AEC AEC+wPLI

MLP model 1 Accuracy 0.567 (0.555, 0.578) 0.776 (0.764, 0.787) 0.887 (0.883, 0.89) 0.931 (0.909, 0.953)

Precision 0.571 (0.559, 0.582) 0.777 (0.765, 0.788) 0.89 (0.887, 0.893) 0.933 (0.911, 0.955)

Recall 0.567 (0.555, 0.578) 0.776 (0.764, 0.787) 0.887 (0.883, 0.89) 0.931 (0.909, 0.953)

F1-score 0.569 (0.557, 0.58) 0.776 (0.765, 0.788) 0.888 (0.885, 0.892) 0.932 (0.91, 0.954)

MLP model 2 Accuracy 0.628 (0.617, 0.64) 0.558 (0.54, 0.576) 0.964 (0.964, 0.965) 0.926 (0.909, 0.942)

Precision 0.629 (0.617, 0.641) 0.662 (0.647, 0.676) 0.965 (0.964, 0.965) 0.928 (0.912, 0.943)

Recall 0.628 (0.617, 0.64) 0.558 (0.54, 0.576) 0.964 (0.964, 0.965) 0.926 (0.909, 0.942)

F1-score 0.661 (0.649, 0.673) 0.605 (0.59, 0.62) 0.964 (0.964, 0.965) 0.927 (0.91, 0.943)

MLP model 3 Accuracy 0.629 (0.616, 0.641) 0.56 (0.544, 0.575) 0.964 (0.963, 0.965) 0.918 (0.907, 0.929)

Precision 0.63 (0.617, 0.642) 0.655 (0.641, 0.669) 0.964 (0.963, 0.965) 0.92 (0.91, 0.93)

Recall 0.629 (0.616, 0.641) 0.56 (0.544, 0.575) 0.964 (0.963, 0.965) 0.918 (0.907, 0.929)

F1-score 0.63 (0.617, 0.643) 0.604 (0.592, 0.615) 0.964 (0.963, 0.965) 0.919 (0.909, 0.93)

Simple RNN Accuracy 0.529 (0.52, 0.538) 0.702 (0.683, 0.721) 0.92 (0.916, 0.923) 0.737 (0.719, 0.756)

Precision 0.536 (0.526, 0.547) 0.704 (0.686, 0.723) 0.92 (0.917, 0.924) 0.742 (0.724, 0.76)

Recall 0.529 (0.52, 0.538) 0.702 (0.683, 0.721) 0.92 (0.916, 0.923) 0.737 (0.719, 0.756)

F1-score 0.487 (0.478, 0.497) 0.703 (0.685, 0.722) 0.92 (0.917, 0.923) 0.74 (0.721, 0.758)

LSTM Accuracy 0.487 (0.482, 0.493) 0.628 (0.616, 0.639) 0.858 (0.856, 0.859) 0.732 (0.708, 0.756)

Precision 0.492 (0.486, 0.498) 0.631 (0.619, 0.643) 0.859 (0.857, 0.86) 0.737 (0.713, 0.761)

Recall 0.487 (0.482, 0.493) 0.628 (0.616, 0.639) 0.858 (0.856, 0.859) 0.732 (0.708, 0.756)

F1-score 0.469 (0.462, 0.477) 0.629 (0.617, 0.641) 0.858 (0.857, 0.86) 0.735 (0.711, 0.758)

GRU Accuracy 0.501 (0.495, 0.506) 0.637 (0.62, 0.654) 0.866 (0.862, 0.87) 0.853 (0.846, 0.86)

Precision 0.506 (0.501, 0.511) 0.641 (0.625, 0.657) 0.867 (0.862, 0.871) 0.855 (0.848, 0.862)

Recall 0.501 (0.495, 0.506) 0.637 (0.62, 0.654) 0.866 (0.862, 0.87) 0.853 (0.846, 0.86)

F1-score 0.51 (0.502, 0.519) 0.639 (0.622, 0.655) 0.866 (0.862, 0.871) 0.854 (0.847, 0.861)

Hybrid CNN-LSTM Accuracy 0.573 (0.563, 0.582) 0.479 (0.463, 0.495) 0.931 (0.928, 0.933) 0.918 (0.908, 0.929)

Precision 0.574 (0.564, 0.583) 0.545 (0.516, 0.575) 0.932 (0.929, 0.934) 0.92 (0.911, 0.93)

Recall 0.573 (0.563, 0.582) 0.479 (0.463, 0.495) 0.931 (0.928, 0.933) 0.918 (0.908, 0.929)

F1-score 0.573 (0.564, 0.582) 0.51 (0.489, 0.532) 0.931 (0.929, 0.934) 0.919 (0.909, 0.929)

(delta, theta, alpha, beta, gamma), the study captures the nature of

neural interactions that underpin different conscious states. Two

key metrics, mean SWC and standard deviation (Std. SWC), are

used to quantify these patterns. The mean SWC reflects the overall

similarity of connectivity across consecutive windows, while Std.

SWC captures the variability of these patterns over time, offering a

detailed view of the network dynamics.

6.5.1 SWC analysis for PLI
6.5.1.1 Group-level interpretation of mean SWC

In the delta band, mean SWC values of PLI rise steadily from

coma (0.0196) to healthy controls (0.0593), reflecting enhanced

functional connectivity as the brain transitions to more conscious

states. This pattern is consistent across other frequency bands,

such as theta (0.0208 in coma to 0.0540 in healthy controls),

alpha (0.0222–0.0602), beta (0.0363–0.0554), and gamma (0.0183–

0.0586). These increases suggest that higher levels of consciousness

are associated with stronger interactions within brain networks.

Among the groups, healthy controls consistently exhibit the highest

mean SWC values across all frequency bands, indicating robust

connectivity in fully conscious individuals. Conversely, coma

patients display the lowest values, signifying diminished network

interactions. UWS and MCS groups generally fall between these

extremes, with subtle differences observed particularly in theta and

beta bands.

6.5.2 Variability in connectivity
The standard deviation provides a measure of variability in

connectivity across groups and reveals distinct trends. Healthy

controls consistently show the highest variability across all
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frequency bands, with Std SWC values peaking in the delta

(0.1446), theta (0.1428), alpha (0.1431), beta (0.1381), and gamma

(0.1447) bands. This variability underscores the complexity and

adaptability of brain network interactions in fully conscious

individuals. In contrast, coma patients exhibit lower variability,

indicating more uniform connectivity values. UWS and MCS

groups show intermediate variabilities, with overlapping patterns in

theta and gamma bands. This suggests that while both states share

similarities in their connectivity, the greater heterogeneity in MCS

may reflect the emergence of more complex neural interactions.

6.5.3 SWC analysis for wPLI
6.5.3.1 Group-level interpretation of mean SWC

Across all frequency bands, healthy controls consistently

exhibit the highest mean SWC values, highlighting robust

connectivity. In the delta band, HC have a mean SWC of 0.034,

while coma patients have only 0.00003, showing diminished

connectivity. Similarly, in the theta band, mean SWC is

progressively higher across the groups: coma (0.0038), UWS

(0.0061), MCS (0.029), and HC (0.054), reflecting a gradual

recovery of stable network with improving consciousness levels.

This trend is consistent across the alpha band, where mean SWC

ranges from -0.0025 in coma to 0.035 in HC, and the beta band,

where values range from -0.0067 in coma to 0.034 in HC. The

gamma band, associated with high-frequency neural processes,

shows a slightly different pattern. While HC has a high mean SWC

of 0.030, the MCS group exhibits the highest mean SWC of 0.036,

potentially indicating a unique pattern of gamma connectivity

during partial recovery of consciousness. On the other hand, coma

patients show reduced mean SWC values in the gamma band

(0.0075), revealing a lack of high-frequency connectivity in them.

6.5.4 Variability in connectivity
High variability is often interpreted as an indicator of flexible

and adaptive neural networks, which are hallmarks of healthy brain

function. Here, healthy controls demonstrate significantly greater

Std. SWC values across most frequency bands. In the theta band,

HC show a Std. SWC of 0.236, compared to 0.178 in coma and

0.200 in UWS. Also in the alpha band, where HC have the highest

Std. SWC (0.243), indicating network flexibility, coma patients

exhibit the lowest Std. SWC (0.178). A similar pattern is seen

in the beta band, with Std. SWC values increasing progressively

from coma (0.178) to HC (0.241). In the gamma band, HC again

displays the highest Std. SWC (0.244); MCS follows closely with

0.188, potentially reflecting a recovery in high-frequency network

flexibility as consciousness is partially restored. Lower Std. SWC

in coma patients (0.175) suggests that their FC networks are less

capable of adapting, which is consistent with the rigidity observed

in severely impaired states.

6.5.5 SWC analysis for AEC
6.5.5.1 Group-level interpretation of mean SWC

Healthy controls exhibit the highest mean SWC values across

all frequency bands, underscoring their robust connectivity. HC

show a mean SWC of 0.6487, significantly higher than coma

(0.3093) and MCS (0.3098) in delta band. This indicates that low-

frequency connectivity in healthy brains is consistently more stable

than those in pathological states, reflecting a well-integrated and

synchronized network. UWS patients, with a mean SWC of 0.4406

in the delta band, occupy an intermediate position, suggesting

partial recovery of network compared to coma. In the theta band,

HC maintains the highest mean SWC (0.6609), compared to coma

(0.3458), UWS (0.4119), and MCS (0.3271). Theta oscillations

are critical for memory and attention, and the marked difference

in mean SWC between HC and pathological groups highlights

their diminished capacity for cognitive processes. The alpha

band, often associated with sensory processing and resting-state

connectivity, shows a similar progression. HC exhibit a mean SWC

of 0.6409, more than double that of coma (0.3072). UWS and

MCS show slightly closer values (0.3681 and 0.3267, respectively),

indicating some preservation of alpha connectivity in these groups,

albeit significantly disrupted compared to healthy individuals. In

the beta band, which supports higher-order cognitive functions,

HC has the highest connectivity, with a mean SWC of 0.6591,

compared to 0.3214 for coma, 0.3962 for UWS, and 0.3264 for

MCS. In the gamma band, critical for neural synchronization and

cognitive integration, HC (mean SWC = 0.6490) exhibit far more

connectivity than coma (0.3445) and MCS (0.3395).

6.5.6 Variability in connectivity
Healthy controls exhibit moderate variability in most bands,

with Std. SWC values consistently lower thanmean SWC, reflecting

an optimal balance between stability and flexibility. For instance,

in the delta band, HC have a Std. SWC of 0.1984, significantly

lower than their mean SWC of 0.6487, suggesting that low-

frequency networks in healthy individuals are highly stable with

low fluctuation. Coma and MCS groups exhibit slightly higher

variability in the delta band (0.2526 and 0.2506, respectively),

likely reflecting unstable network. UWS patients, with a Std. SWC

of 0.2396, exhibit intermediate variability, consistent with their

partial preservation of flexibility. In the theta band, HC show

a Std. SWC of 0.2064, again reflecting a stable yet adaptable

network. Comparatively, coma (0.2444) and MCS (0.2617) show

higher variability, possibly indicating disorganized connectivity

patterns. The UWS group exhibits variability comparable to

HC (0.2467), suggesting that theta-band networks retain some

flexibility in this group. The alpha band provides a clearer

differentiation between groups. HC, with a Std. SWC of 0.2120,

demonstrate the lowest variability, consistent with well-regulated

alpha connectivity. In contrast, coma and MCS groups have

significantly higher variability (0.2616 and 0.2560, respectively),

indicating erratic alpha connectivity. UWS patients again occupy

an intermediate position, with a Std. SWC of 0.2519, suggesting

partial preservation of alpha flexibility. In the beta band, HC

exhibit the lowest Std. SWC (0.1952), indicating that their high-

frequency FC is both stable and efficient. Pathological groups

show higher variability, with Std. SWC values of 0.2378 (coma),

0.2664 (UWS), and 0.2616 (MCS). The gamma band follows a

similar trend, with HC showing a Std. SWC of 0.2266, while

coma, UWS, and MCS have values of 0.2394, 0.2579, and

0.2541, respectively.
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TABLE 12 Comparison of our performance with the techniques in the literature.

References Features No. of subjects Classifier Accuracy (%) Precision (%)

Naro et al. (2018) dwPLI MCS 15, UWS 17 - - -

Di Gregorio et al. (2022) Dominant frequency, PCoh,

MI

DOC 33 LDA TBI: 80; Non-TBI: 83.3 77.7; 85.7

Duclos et al. (2021) wPLI, AEC Controls 9

(anesthetic-induced

unconsciousness)

SVM AEC: 83.7; wPLI: 69.4;

AEC + wPLI: 84.1

-

Li et al. (2024a,b) Microstate, dFC: MI MCS: 16 UWS: 16 CatBoost 96.2 -

Raveendran et al. (2024) VMDmode-based features:

kurtosis, skewness, spectral

entropy, sample entropy

Coma 15, UWS 15, MCS

15

Ensemble bagged tree UWS vs. MCS: 83.3

Coma vs. UWS vs.

MCS:76.0

84.2

78.9

Proposed method FC feature: AEC Coma 15, UWS 15, MCS

15, controls 15

ANNmodels 96.3 96.3

TBI, traumatic brain injury.

7 Discussion

The study analyses the classification ability of functional

connectivity features, namely PLI, wPLI, and AEC, using various

artificial neural network models. Across all feature sets, MLPmodel

2 consistently outperforms others in terms of accuracy, precision,

recall, and F1-score. With the wPLI feature, MLP model 2 achieves

an accuracy of 0.772. With the AEC feature, it delivers higher

performance, achieving an accuracy of 0.963. When combining

wPLI and AEC features, MLP model 2 gives a marginally higher

accuracy of 0.969.

Whereas, PLI feature performs poorly across all models and

metrics, consistently showing results inferior to other features.

On MLP model 1, it achieves an accuracy of only 0.559,

which is markedly lower than AEC (0.886) and wPLI (0.772).

Its performance remains poor in recurrent models like LSTM

and GRU, where it records accuracies of just 0.533 and 0.529,

respectively. Similarly, its F1-scores are weak, hovering around

0.544. These results indicate that PLI is less effective in capturing

connectivity patterns than wPLI and AEC in all evaluations.

These results highlight that MLP model 2 is the best-

performing model for this classification task, with the AEC feature

providing the best result across all performance metrics. This

emphasizes the strength of amplitude-based connectivity metrics

for distinguishing between consciousness states.

Table 12 presents a detailed comparison of our results with

the techniques in the literature for distinguishing states of

consciousness, including coma, UWS, MCS, and HC. Among

existing methods for classifying disorders of consciousness, Naro

et al. (2018) focused on phase-based connectivity and analyzed

debiased weighted phase lag index (dwPLI) feature in 15 MCI

and 17 UWS subjects. However, the absence of key performance

metrics like accuracy and precision limits the comparability of

their findings. Similarly, Di Gregorio et al. (2022) employed

dominant frequency and phase coherence features with a linear

discriminant analysis classifier to classify DOC subjects based on

traumatic brain injury status. The study achieved accuracies of

80% and 83.3% for TBI and Non-TBI groups, with precision

values of 0.777 and 0.857. While these results demonstrate the

utility of simple classifiers, reliance on linear methods constrains

their ability to capture complex relationships characteristic of

brain waves.

The study by Duclos et al. (2021) explored the application

of FC measures like wPLI and AEC to assess anesthetic-induced

unconsciousness and classify various altered consciousness states.

SVM classifier was employed to analyze the anesthetic-induced

unconsciousness in nine control subjects, reporting accuracies of

69.4% for wPLI, 83.7% for AEC, and 84.1% for their combination.

However, the study included only nine subjects. Ensemble

approaches, such as the CatBoost classifier used by Li et al. (2024a)

and the bagged tree model in Raveendran et al. (2024), demonstrate

improved adaptability but may lack the flexibility of ANN models

when processing diverse and complex feature sets.

The inclusion of both accuracy and precision metrics

strengthens the proposed method’s evaluation. Accuracy measures

the overall correctness of classification, while precision quantifies

the model’s ability to avoid false positives. This dual assessment

addresses a notable gap in existing studies, where a sole focus

on accuracy may obscure the clinical relevance of results. By

providing a balanced evaluation, the proposed method ensures

reliability and effectiveness, critical for clinical applications where

misclassification can have significant consequences.

Our findings support integrating FC features, since

combining wPLI and AEC features marginally improves the

classification performance.

7.1 Limitations and future directions

While this study provides valuable insights, several limitations

must be acknowledged. Firstly, the study relies on training and

testing data from a fixed set of participants, which limits the

generalizability of the findings. Despite demonstrating better

performance metrics, the models’ applicability to new datasets

or broader population remains uncertain. Further, the analysis

is restricted to three functional connectivity features: PLI,

wPLI, and AEC. The study assumes that input features are

standardized and preprocessed consistently across all states of
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consciousness. While this approach ensures comparability, it

may overlook subtle variations in feature distributions across

classes. To mitigate these limitations, future research will

consider integrating multiple connectivity features to enhance

classification performance.

7.1.1 Implications for clinical applications
The ability to accurately classify states of consciousness

has significant clinical implications for the diagnosis and

management of DOC. The study’s findings suggest that

MLP architectures using AEC as feature offer a reliable and

practical solution for clinical applications. The high accuracy

and balanced performance values achieved by these models

indicate their potential for automated diagnostic systems. For

applications focusing on phase-based features, GRU models

leveraging wPLI features provide a complementary approach.

By combining both approaches, a multimodal framework

can be developed that integrates amplitude and phase-based

connectivity measures to improve diagnostic accuracy and

patient outcome.

8 Conclusion

This study demonstrates the importance of aligning feature

selection and model design in classifying states of consciousness.

AEC’s superior predictive power highlights its utility as a

standalone feature, while wPLI quantifies the phase relationship

between channels. The findings emphasize the complementary

nature of these features and the necessity of tailoring ANN

architectures to their unique characteristics. By leveraging

these insights, researchers can develop more effective tools for

diagnosing and understanding disorders of consciousness, paving

the way for improved patient care and deeper insights into the

neural mechanisms underlying consciousness. Future work can

explore other features, advanced architectures, and independent

datasets to further refine these approaches and enhance their

clinical utility.
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