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This study aimed to directly compare electroencephalography (EEG) whole-

brain patterns of neural dynamics with concurrently measured fMRI BOLD data.

To achieve this, we aim to derive EEG patterns based on a spatio-spectral

decomposition of band-limited EEG power in the source-reconstructed space.

In a large dataset of 72 subjects undergoing resting-state hdEEG-fMRI, we

demonstrated that the proposed approach is reliable in terms of both the

extracted patterns as well as their spatial BOLD signatures. The five most robust

EEG spatio-spectral patterns not only include the well-known occipital alpha

power dynamics, ensuring consistency with established findings, but also reveal

additional patterns, uncovering new insights into brain activity. We report and

interpret the most reproducible source-space EEG-fMRI patterns, along with

the corresponding EEG electrode-space patterns, which are better known from

the literature. The EEG spatio-spectral patterns show weak, yet statistically

significant spatial similarity to their functional magnetic resonance imaging

(fMRI) blood oxygenation level-dependent (BOLD) signatures, particularly in the

patterns that exhibit stronger temporal synchronization with BOLD. However,

we did not observe a statistically significant relationship between the EEG

spatio-spectral patterns and the classical fMRI BOLD resting-state networks (as

identified through independent component analysis), tested as the similarity

between their temporal synchronization and spatial overlap. This provides

evidence that both EEG (frequency-specific) power and the BOLD signal

capture reproducible spatio-temporal patterns of neural dynamics. Instead

of being mutually redundant, these only partially overlap, providing largely

complementary information regarding the underlying low-frequency dynamics.

KEYWORDS

EEG-fMRI integration, EEG-informed fMRI, spatio-spectral decomposition, electrical

source imaging, independent component analysis, resting-state networks
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1 Introduction

Finding a reliable link between electroencephalography (EEG)

and functional magnetic resonance imaging (fMRI) data measured

during resting brain activity seems to be just as difficult as fulfilling

the “to rest” instruction for the volunteering subject. Yet, there

is a variety of strong reasons for attempting to fuse the two

modalities. First, finding a relation may help in understanding

the origin and character of each type of signal. Second, by

using simultaneous EEG-fMRI measurements, we can mitigate the

limitations of each modality when applied separately, allowing for

a more accurate study of both healthy brains and brain disorders.

The third motivation is to search for aspects of the EEG signal

that could reproduce the well-documented features of the BOLD

signal - the resting-state network (RSN) dynamics. Discovering

such relationships could potentially enable the replacement of

costly fMRI measurements with more affordable EEG experiments

in a greater number of scenarios in the future. This could ultimately

provide more affordable diagnostics and treating methods (Vega

et al., 2022), increase the ecological validity of experiments as well

as enable a wider range of experiment designs.

Since Logothetis et al. (2001) experimentally showed a delayed

hemodynamic response of the Blood-oxygen-level-dependent

(BOLD) fMRI signal to the measured local field potential (LFP)

signal envelope, questions concerning the details of the relation

of electrophysiological signal and fMRI have been around and

are still far from satisfactorily answered, particularly when one

moves outside of the well-controlled situation of a controlled

task experiment and localized intracortical EEG recording. The

standard non-invasive EEG signal can be naturally described in

terms of three domains: temporal, spatial, and frequency domains.

Initial resting-state studies aimed to find the BOLD correlate

of the most prominent resting-state EEG feature, that is, the

occipital alpha activity (Berger, 1929). In those studies, the spatial

domain mainly was reduced by selecting the occipital subset of

electrodes. Similarly, the frequency domain was limited to the

alpha frequency band by utilizing a band-limited power (BLP)

regressor for BOLD signal prediction (Goldman et al., 2002;

Moosmann et al., 2003; Feige et al., 2005). Other studies varied

in terms of the used electrode subsets (Laufs et al., 2003a) or

frequency bands (Laufs et al., 2003b), and also the potential use

of multiple frequency specific regressors in the same statistical

general linear model (GLM) (Tyvaert et al., 2008; de Munck

et al., 2009). Despite a very similar experimental design, the

initial studies generally identified two distinct spatial BOLD fMRI

correlation patterns associated with the alpha regressor. Namely, a

widespread bilateral frontoparietal correlation pattern was reported

by Laufs et al. (2003a), while (Goldman et al., 2002; Moosmann

et al., 2003) observed an occipitoparietal pattern. Thus, while

both patterns showed a negative relationship between the EEG

alpha BLP regressor and the BOLD signal (which was in line

with the intuitive interpretation of alpha as the idling rhythm

corresponding to low metabolism requirements), the localization

of these anticorrelations differed substantially between the studies,

creating confusion concerning which brain areas were actually

most involved in this idling. Later, by reanalyzing their data, Laufs

et al. (2006) showed that both these alpha correlates can be observed

within the same dataset when considering different subsets of

subjects. Similarly, Gonçalves et al. (2006) showed that the alpha

correlate shows a high level of inter- as well as intrasubject

variability.

Other studies moved the focus of the field to other frequency

bands than alpha: Scheeringa et al. (2012) showed that frontal theta

rhythm power fluctuation positively correlates with hubs of the

default mode network (DMN). Further, Mantini et al. (2007) found

that the BLP time series within standard EEG frequency bands,

calculated as an average signal across all electrodes, correlates

with the time series of multiple BOLD independent components

(ICs), specifically resting-state networks (RSNs). This, along with

previous findings, suggests that the dynamics of RSNs may be

reflected in EEG as a combination of multiple frequency and

spatial patterns. The first EEG-fMRI data-driven method that did

not impose any a priori assumptions on the spatial, temporal, or

frequency domains was introduced in a study by Miwakeichi et al.

(2004) and later in a simultaneous EEG-fMRI study by Martınez-

Montes et al. (2004), where the three-dimensional (3D) spatio-

temporal-frequency array was factorized using parallel factor

analysis (PARAFAC) (Harshman and Lundy, 1994) to obtain

spatio-temporal-frequency components. In line with the study

by Goldman et al. (2002), the authors discovered a single alpha

band occipital component that exhibited a statistically significant

temporal correspondence with the BOLD signal in the occipital

lobe. The authors also reported a frontal theta component in

accordance with the study by Scheeringa et al. (2012), which did

not show a statistically significant correlation with the BOLD

signal. A similar analysis was conducted by Mareček et al. (2017);

Marecek et al. (2016), where several components representing brain

rhythms and artifacts were identified. Although these trilinear

decomposition methods represent a truly data-driven approach

for identifying EEG spatio-temporal-frequency patterns, they may

struggle to identify spatially and frequency-wise distinct BLP

fluctuations. This is because each component in the model has only

one spatial signature across all frequency bands and vice versa.

Therefore, it appears more convenient to use a model that

permits different frequency bands (or their combinations) to

exhibit distinct spatial signatures within a single component.

One such method, called spatio-spectral decomposition (Bridwell

et al., 2013), is based on a concatenation of spatial and

frequency domains. A matrix decomposition, such as independent

component analysis (ICA) (Hyvärinen and Oja, 2000), is then

applied to this joint spatio-spectral dimension. Bridwell et al.

(2013) introduced this idea for simultaneous EEG-fMRI data and

associated the resulting components with the BOLDRSNs. Bridwell

et al. (2018) further validated several blind source separation

algorithms (BSS) using both realistic and simulated data. Labounek

et al. (2018) reported robust spatio-spectral patterns (SSPs) across

three datasets from different paradigms, and later (Labounek et al.,

2019) established a temporal relationship between SSPs and the

BOLD signal in various hubs of BOLD resting state networks

(RSNs). Additionally, a statistically significant relationship between

several SSPs and the stimulus types across different paradigms

was also found by Labounek et al. (2021). A potential drawback

of this method is that the spatial domain is defined by the

electrode-space, making the spatial signatures difficult to interpret
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or directly compare with fMRI BOLD maps. Readers will notice

that we review only studies within the so-called EEG-informed

fMRI integration approach (Abreu et al., 2018) as well as studies

that primarily derive BLP features from EEG data to predict the

BOLD signal. For a broader overview of integration approaches and

EEG feature extraction methods, readers are encouraged to refer to

the comprehensive review articles by Jorge et al. (2014); Abreu et al.

(2018); Murta et al. (2015).

Recently, there has been an effort to make high-density EEG

(hdEEG) a true neuroimaging tool, especially when compared to

standard low-density EEG, where the few recording electrodes

hardly provide an image of brain activity in the computer science

sense; the methods applied correspondmuchmore to its time series

character. In a recent resting-state study, Liu et al. (2017) obtained

a comprehensive set of RSNs using precisely source-localized BLP

ICA decomposition, similar to what is typically performed on the

BOLD signal. In a study by Liu et al. (2018), the authors highlighted

the significance of accurately conducted source localization steps,

such as precise electrode localization (Marino et al., 2016), a

multilayer individual head model to establish a dependable forward

model (Taberna et al., 2021), and the density of electrode coverage.

In a study by Marino et al. (2019), the authors recently obtained

EEG source-reconstructed DMN that was spatially and temporally

related to the BOLD-derived DMN from simultaneous resting-

state EEG-fMRI recordings. In contrast, a different analysis aimed

at obtaining DMN characteristics from EEG was presented in a

study by Prestel et al. (2018), where the authors highlight that the

component with a high temporal correspondence to the DMN was

associated with eye movement artifacts.

Besides the above-mentioned studies, there are other recent

studies investigating the link between resting-state EEG and fMRI

in the EEG source-reconstructed space. In a study by Sockeel et al.

(2016), the authors concatenated temporal and frequency domains

to perform a matrix decomposition to obtain separate temporal

dynamics for each of the five frequency bands. They reported not

only a correspondence between EEG and fMRI RSNs but also

substantial mismatches. A similar analysis was also performed

by Li et al. (2018). In a study by Abreu et al. (2020), despite

having a dataset with only 10 subjects, the authors report a high

spatial correspondence between the EEG and fMRI RSNs and

also a statistically significant match between the EEG and fMRI

dynamical functional connectivity (dFC) states. Another study

by Yuan et al. (2016) aimed to obtain the full set of EEG RSNs

and compare them spatially and temporally with BOLD RSNs.

They found a spatial correspondence but, at the same time, very

low temporal correspondence between EEG and fMRI RSNs. In a

study by Meyer et al. (2013), the authors claim that the correlation

between EEG BLPs and BOLD RSNs is unstable over time.

The goal of this study is to integrate the literature on spatio-

spectral decomposition with reliable source localization techniques

and to introduce a spatio-spectral decomposition in the source-

reconstructed space that leverages the data-driven nature of spatio-

spectral decomposition and cortical sources in the spatial domain.

This approach allows us to directly examine the relationship

between these modalities in a way that was previously impossible.

In a large simultaneous EEG-fMRI dataset, we explore the stability

of decomposition in both EEG source- and electrode-spaces, as well

as how the EEG patterns correspond to BOLD activation patterns

and BOLD RSNs. These are all questions currently at the center of

hot debate in the literature.

Throughout this manuscript, we emphasize using robust

evaluation methods that offer an unbiased perspective on

intermodal relationships. Specifically, we start by examining the

stability of EEG decomposition itself in Sections 2.6, 3.1.1 to

ensure the algorithmic stability of the EEG decomposition. Next, we

provide a biased perspective on EEG feature reproducibility testing

in the Section 2.9.1 and advocate for more advanced evaluation

methods that take into account not only EEG patterns but also their

relationship with fMRI BOLD data. To address this, we introduce

EEG-fMRI integration reproducibility analysis (Sections 2.9.2,

3.1.2), which assesses the reproducibility of derived EEG patterns

and their association with fMRI data. Next, we identify the

most reproducible EEG-fMRI patterns (Sections 2.10, 3.2). Finally,

employing the source localization methods, we directly test three

hypotheses regarding spatio-temporal relationships between EEG

and BOLD data: (1) Are EEG patterns co-localized with their

corresponding fMRI BOLD activation maps? (Methods Section ??);

(2) Do EEG patterns that explain a greater portion of BOLD data

variability exhibit higher colocalization? (Methods Section ??); and

(3) Are EEG patterns spatio-temporally associated with BOLD

resting-state networks? (Methods Section 2.11.3). The results of

these hypothesis tests are presented in Section 3.3. We believe

that addressing these questions is essential for developing a more

reliable understanding of the EEG/fMRI relationship.

2 Methods

2.1 Participants and experimental design

For this study, we used two datasets. The primary

dataset includes simultaneous EEG-fMRI recordings

along with various types of structural images essential

for creating individual models of the brain. The second

dataset comprises out-of-scanner EEG recordings without

functional MRI data, and it illustrates its robustness

concerning changes in the dataset, preprocessing, and

the absence of MRI artifacts. Both are described in the

following subsections.

2.1.1 EEG-fMRI dataset
We used a dataset from a single study obtained over a 4-

year period at the Central European Institute of Technology

(CEITEC) in Brno, Czech Republic. We analyzed 72 healthy

participants (mean age: 31.4, range: 18.3–50.6; 36 males and

36 females) with consistent data acquisition parameters. All

participants underwent a 20-min eyes-closed resting-state EEG-

fMRI recording session with instructions to lie still, avoid falling

asleep, and not think about anything in particular. The study was

approved by the ethics committee of Masaryk University and was

conducted in accordance with the Declaration of Helsinki. All

participants provided written informed consent to participate in

the study.
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2.1.2 Out-of-scanner EEG dataset
To relate the EEG patterns extracted from the combined EEG-

fMRI dataset to the patterns obtainable when applying common

processing steps to out-of-scanner EEG, we utilized the following

out-of-scanner EEG dataset. The EEG data from healthy subjects

were acquired at the National Institute of Mental Health (NIMH,

Klecany, Czech Republic) as part of the multimodal prospective

database of the first episodes of psychotic illness project. The dataset

consists of 50 healthy participants (mean age: 29.9, range: 19.1–

43.0; 21 males and 29 females). Each participant underwent a

15-min resting-state paradigm (first 5 min with eyes open and

the last 10 min with eyes closed). The 10 min of resting-state

recording with eyes closed were preprocessed and analyzed. The

study received approval from the local ethics committee of the

NIMH and was carried out in accordance with the Declaration

of Helsinki. All participants provided written informed consent to

participate in the study. The differences in acquisition parameters

and processing steps between this out-of-scanner dataset and the

previously mentioned EEG-fMRI dataset are briefly discussed at

the end of each of the following subsections. In both research

and clinical practice, the same acquisition and processing steps

typically cannot be guaranteed. Therefore, some differences should

be expected in most subsequent studies that aim to apply the

proposed methodology for EEG SSP extraction to datasets from

other EEG experiments. Thus, this out-of-scanner dataset is not

meant for testing replicability under optimal conditions; instead, it

serves as an illustrative example that clarifies the degree to which

the results observed in the EEG-fMRI dataset are robust when

applied to another dataset with established standards, albeit with

slightly different processing.

2.2 Data acquisition

The magnetic resonance imaging was performed using a

3T Siemens Prisma magnetic resonance scanner equipped with

a 64-channel radiofrequency (RF) receiving head coil (Siemens

Healthineers, Erlangen, Germany). The functional magnetic

resonance imaging was performed with a multiband multiecho

two-dimensional (2D) echo-planar imaging (EPI) sequence with

the following parameter settings: Multiband factor: 6; number

of echos: 3; PAT factor: 2 (PAT) factor: 2; repetition time

(TR) = 650 ms; echo time (TE) = 14.60/33.56/52.52 ms; 48 axial

slices with 3 mm slice thickness; slice: 64 × 64 matrix, 194 × 194

mm; number of volumes: 1,840; and flip angle (FA) = 30◦. Two

structural MRI images were acquired. The first one was obtained

without an electrode net with the T1 Magnetization Prepared –

RApid Gradient Echo (MPRAGE) sequence and the following

parameters setting: TR = 2,300 ms; TE = 2.34 ms; inversion time

(TI) = 900ms; 240 sagittal slices with 1mm slice thickness; slice: 260

× 256 matrix, 260 × 256 mm; FA = 8◦; PAT factor: 2. The second

structural MRI image with T1 MPRAGE sequence was acquired

with the electrode net put on for precise electrode localization and

the parameter setting: TR = 2,300 ms; TE = 2.33 ms; TI = 900 ms;

240 sagittal slices with 1 mm slice thickness; slice: 224 × 224

matrix, 224 × 224 mm; FA = 8◦; and PAT factor: 7. The EEG

data with a sampling frequency of 1,000 Hz were recorded with an

EGI Hydrocell MR-compatible 256-channel high-density electrode

net plugged into the EGI GES 400 signal amplifier (Electrical

Geodesics, Inc., Eugene, Oregon, USA). To obtain the ECG signal,

one additional channel was recorded. A breathing belt was also

attached to the participant’s chest to record breathing cycles.

The out-of-scanner EEG data acquisition was performed with

the very same recording set up with the only difference of having

the non-magnetic resonance (MR)-compatible version of the 256-

channel high-density electrode net. The individual structural T1

MRI MPRAGE image was also provided with the following

acquisition parameters: Voxel size of 1 × 1 × 1 mm, 224 sagittal

slices, TE = 4.63 ms, TR = 2,300 ms, TI = 900 ms, FA = 10◦, and

time of acquisition (TA) = 5:30, and field of view (FOV) = 256 mm.

2.3 EEG data preprocessing

The raw EEG data were preprocessed by a fully automated

pipeline introduced in Marino et al. (2019); Liu et al. (2017,

2018). The preprocessing pipeline utilizes built-in and in-house

MATLAB (MathWorks, Natick, MA, USA) functions as well as

SPM (Penny et al., 2011), Fieldtrip (Oostenveld et al., 2011),

and EEGLAB (Delorme and Makeig, 2004) toolboxes. The

preprocessing steps are summarised in the following paragraph.

The first step involved gradient artifact removal using the FMRI

Artifact Slice Template Removal (FASTR) method (Niazy et al.,

2005) in EEGLAB, followed by the removal of ballistocardiogram

artifacts through the adaptive optimal basis set method introduced

in Marino et al. (2018). The channels with poor signal quality

were identified based on low correlation with all other channels

in across a frequency band (1—80 Hz) and the variance in EEG

non-physiological frequency band 200—250 Hz. The latter metric

serves as a noise variance indicator. In case when at least one

criterion marked an outlier in distribution across channels, the

channel time course was subsequently interpolated by the time

courses of neighboring channels based on the weighted average

(electrode distances) scheme implemented in Fieldtrip (Oostenveld

et al., 2011). Subsequently, EEG data were filtered in the 1—

80 Hz frequency band. ICA was applied to remove movement and

other biological artifacts including electrooculographic (EOG) and

electromyographic (EMG) artifacts from the EEG recordings. For

that purpose, FastICA (Hyvärinen and Oja, 2000) algorithm based

on a deflation approach and hyperbolic tangent as the contrast

function was applied and artifactual components were detected

based on three parameters, namely the correlation values between

ICs time course and reference EOG and EMG signals, the similarity

of ICs power spectrum with a 1/f function, and kurtosis of ICs

timecourse (Mantini et al., 2008). The artifact-suppressed EEG data

were subsequently filtered into several frequency bands: delta (δ,

1—4 Hz), theta (θ , 4—8 Hz), alpha (α, 8—12 Hz), low beta (β1,

12—15 Hz), middle beta (β2, 15—18 Hz), high beta (β3, 18—

30 Hz), and gamma (γ , 30—44 Hz). Although the EEG data were

comprehensively preprocessed, we decided to exclude all cheek

electrodes and the two lowest layers of the neck electrodes from

further analysis since there is a concern in current literature that

sensors placed at those electrode sites contain disproportionally

more artifacts (Vorderwülbecke et al., 2020). Therefore, for all
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further analyses we utilized 195 out of 257 electrodes. As the last

step of the preprocessing, we rereferenced the EEG data to average

reference.

The out-of-scanner EEG data were preprocessed manually by

the expert with the following steps: EEG data were preprocessed

in BESA version 7.0 software (MEGIS, Munich, Germany) by

removing noisy epochs followed by a semi-automated ECG and eye

movement-related artifact correction by the signal-space projection

method (Uusitalo and Ilmoniemi, 1997).

2.4 MRI data preprocessing

The functional MRI data were preprocessed in MATLAB

utilizing a combination of SPM12 (Penny et al., 2011) pipelines

and in-house scripts. At first, the fMRI volumes were spatially

realigned, followed by a fusion of three echos by a weighted

averaging based on a temporal signal-noise-ratio (tSNR). To regress

out cardiac and breathing artifactual signals from the BOLD signal,

the RETROICOR method (Glover et al., 2000) informed by the

ECG and breathing signals was employed. Then, a coregistration

of the structural MRI was followed to the average functional image,

and a structural MRI was normalized to MNI space based on an

image segmentation of gray and white matter. Functional data

were subsequently transformed to MNI space using the combined

transformation matrices from the previous step. All volumes were

also resampled into 3 × 3 × 3 mm isotropic voxels. Individual

fMRI volumes were then spatially smoothed by a Gaussian filter

(full width at half maximum [FWHM] 5 mm). To further mitigate

the risk of spurious correlations that can cause common artifacts

appearing over the entire volume and having a non-physiological

nature, the signal from the gray matter was orthogonalized to

the following proxies of contributing artifactual signals: a bank of

sinusoidal signals with low frequencies (periods slower than 128 s),

the first PCA component from the voxel signals of white matter

mask, the first PCA component from the voxel signals of CSF

mask, set of 24 rotation and translation parameters of estimated

head motion, namely the estimated motion parameters themselves,

their first differences, squares, and squared first differences. Finally,

we applied a low-pass filter to the BOLD data with a cut-off

frequency 0.09 Hz, which is a typical filtering step for resting-state

connectivity analyses. The resulting preprocessed data were utilized

for subsequent analyses.

2.5 EEG source localization

To estimate the sources of brain activity as reliably as possible,

we implemented a source localization pipeline using individual-

level data. Each step is briefly described in the following paragraphs.

Head tissue segmentation of structural T1 images without the

electrode net was performed by the automated 12-compartment

segmentation tool (Taberna et al., 2021), which consists of image

preprocessing, tissue probability mapping, and tissue segmentation

steps. Subsequently, we followed a source localization pipeline

based on the Fieldtrip toolbox (Oostenveld et al., 2011) functions.

Based on all 12 compartments of the segmented T1, the

hexahedral mesh was generated, and compartment conductivities

were assigned based on Liu et al. (2018) to define a head model.

A precise electrode localization for the head model, provided by

the Multimodal and Functional Imaging Laboratory of the Central

European Institute of Technology (Brno, Czech Republic), was

obtained semi-automatically from the acquired T1 image with the

electrode net on, see Section 2.2. Electrode locations were manually

marked on rendered head surface where the electrode artifact was

prominent. After the electrode location definition, structural T1

image with electrode net was coregistered to the second structural

T1 without electrode net and resulting transformation matrix was

also applied to the electrode positions. Electrodes were projected

to the closest surface point of the head model. The source model

was generated in the brain gray matter and cerebellar gray matter

compartments with a grid size of 6 mm. The finite element method

(FEM) SimBio (Vorwerk et al., 2018) solver was used to compute

the leadfield matrix. The sources were estimated by the eLORETA

inverse algorithm (Pascual-Marqui et al., 2011). Furthermore, we

established a template source model utilizing the MNI-template

anatomy from SPM (Penny et al., 2011) and themethodology stated

above. This template source model was subsequently designated as

the reference for all subsequent analyses. Results obtained from

the source space of the EEG-fMRI dataset, out-of-scanner EEG

dataset, and fMRI were interpolated to this reference model using

the nearest neighbor method. The source localization pipeline for

out-of-scanner EEG data generally followed the same structure

with the following differences: The source model resolution was

10 mm instead of 6 mm, the inverse warped source model grid

from the MNI to the individual space was used instead of a

regular grid directly generated in the individual space, the standard

5-layer head model in the Fieldtrip toolbox (Oostenveld et al.,

2011) was used instead of the advanced 12-layer model in the

MRTIM toolbox (Taberna et al., 2021), an electrode template

was co-registered with an individual head structure and projected

onto a head surface instead of individual electrode positioning,

as discussed in Section 2.1.2. Here, we followed a well-established

Fieldtrip toolbox (Oostenveld et al., 2011) pipeline, mimicking a

typical standard processing setup.

2.6 Electrode-space spatio-spectral
decomposition

In the present study, we assume that the electrical activity

expressed as the EEG signal envelope measured at the electrode

locations on the scalp is a linear mixture of source signals

representing brain activity. We further assume that the brain

electrical activity power may have a different spatial profile across

different EEG frequency bands, which is a substantial difference

between the spatio-spectral models (allowing thus estimation of a

much richer structure) and the trilinear models (Marecek et al.,

2016; Mareček et al., 2017) where the spatial mode is assumed

to be the same across the whole frequency range, only with a

different strength. The schematic flowchart of the spatio-spectral

decomposition methodology is depicted in Figure 1. At first, we

computed a signal envelope for each electrode and frequency

band EEG time series by applying the Hilbert transform. Then we
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downsampled the data to the fMRI BOLD TR (650 ms) (Brookes

et al., 2011), obtaining thus a time series of band-limited

power (BLP). Subsequently, we implemented an outlier correction

procedure using Tukey’s fences (k = 3) on each time series. Outliers

were identified and replaced with the mean value. Since the data

were acquired in resting-state condition, we further band-pass

filtered all BLP time series in a standard way to 0.008–0.09 Hz

as for the resting-state fMRI BOLD data. Next, we concatenated

the (space × time) BLP matrices of all frequency bands along the

spatial domain, forming thus a joint spatio-spectral domain on the

single-subject level. Each single-subject BLP time series was then

z-score normalized to handle inter-individual variability. All single-

subject normalized BLP matrices were subsequently concatenated

along the temporal domain, forming a group BLP matrix X.

Assuming that X is a linear mixture (by a mixing matrix A) of

temporally independent BLP sources S, we can express the linear

data generation process in a matrix form as

X = A S, (1)

where the matrix X has size (B · Ne) x (P · T). Here, B is

the number of frequency bands, that is, 7, Ne is the number of

electrodes, that is, 195, P stands for the number of subjects, that

is, 72, and finally T is the number of single-subject BLP time

points downsampled to TR, that is, 1,800. We applied a temporal

(group-level) ICA by RUNICA algorithm (Makeig et al., 1995) with

a PCA dimensionality reduction set to C = 30 components.

Several information criteria, including both the Bayesian and

the Akaike information criteria, were evaluated to ascertain the

optimal number of components. Due to significant discrepancies

between the criteria, the final number was chosen to align with

the typical number of components in BOLD resting-state ICA

analyses, see Section 4.1 for further discussion. Thus, we obtain

a matrix S with dimensions C x (P · T). Each row represents

a single component time series considered a temporal signature

of the given component. Matrix A, called mixing matrix with

dimensions (B · Ne) x C represents SSPs of the components

(one in each column). Since ICA decomposition is based on

iterative algorithms with random initialization, we utilized the

ICASSO tool (Himberg et al., 2004) to investigate the algorithmic

stability of the ICA decomposition itself by performing the ICA

decomposition 20 times with different initial conditions. The

cluster centroid time series were then considered the most reliable

estimate of components and, Therefore, utilized for the subsequent

analyses. Furthermore, SSPs were not obtained directly from the

matrix A but via correlating each component time series (ICASSO

cluster centroids) with each time series in BLP matrix X. The

correlation coefficients were subsequently transformed by a Fisher

Z-transformation. Obviously, each of the C = 30 SSPs consists

of B spatial patterns (one for each frequency band), and each of

C = 30 temporal signatures in S consists of the concatenation of

P individual time series (one for each subject). We also performed

the spatio-spectral decomposition on the first and second half of

the dataset for reproducibility analyses and statistical evaluation. To

handle temporal discontinuities in the case of the out-of-scanner

dataset, we treated each data epoch separately up to a point before

concatenation in the time domain. After that, the epochs within

the subject were concatenated and subsequently across subjects.

Finally, the ICA decomposition was performed in a similar way as

for the previous dataset.

2.7 Source–space spatio-spectral
decomposition

The source–space spatio-spectral decomposition generally

follows the workflow visualized in Figure 1 and described in

Section 2.6 with the following differences specific to the source-

projected EEG data. At each source model position, the dipole

moment is expressed as three time series, one for each direction

of the Cartesian coordinate system. Under the assumption that the

direction of the dipole moment is not fixed but may rotate freely in

time, we estimate the (scalar) signal power (amplitude) time series

as in Liu et al. (2017)

s(t) =

√

j2x(t)+ j2y(t)+ j2z(t), (2)

where s(t) is a BLP time series and jx, jy, jz are dipole moments in

each of x, y, and z axes of the Cartesian coordinate system. Instead

of Ne spatial points or electrodes, in the source–space case we

obtain Nd spatial points. These points correspond to the individual

source model positions. As mentioned in Section 2.5, individual

BLP time series were transformed to the template source model

positions to allow concatenation across subjects. Decomposing the

source BLP matrix enables us to compare the SSPs spatially with

the statistical maps of the explained BOLD signal or with the

BOLD-derived RSN spatial signatures. This was carried out by

also interpolating the BOLD voxel positions to the template source

model positions (rather than interpolating source model positions

to the positions of the BOLD voxels), which was advantageous in

terms of the computational complexity of the subsequent analyses.

The out-of-scanner SSPs were also transformed into the template

source model positions.

2.8 BOLD signatures of EEG
spatio-spectral patterns

We reconstructed the EEG spatio-spectral component time

series Sp of individual subjects by splitting S to P segments of

length T. To assess the single-subject relationship between EEG

spatio-spectral component time courses and the BOLD signal in

each voxel, the general linear model (GLM) was utilized. Note that

several resting-state studies showed a substantial HRF variability

of band-limited power regressor both when derived from a subset

of electrodes (de Munck et al., 2007), using a bilinear (Labounek

et al., 2019) or a trilinear (Marecek et al., 2016) band-limited

power decomposition approach. To take into consideration such

variability of the hemodynamic response function (HRF) across

subjects, brain areas, and components, we included three regressors

into the general linear model for each component separately: a

component time series convolved with the canonical hemodynamic

response function as the first regressor β1, and a component

time series convolved with the first (temporal) and the second

(dispersion) derivative of the canonical hemodynamic response
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FIGURE 1

A schematic flowchart of the spatio-spectral decomposition in both electrode-space and source space with highlighted main steps and examples of

SSPs. Please note that electrode- and source-space data are subjected to the ICA decomposition separately. The label electrodes/dipoles is meant to

denote in what dimension both approaches di�er. Also note that the actual size of matrices in Dipoles dimension (Nd, source-space version) is much

higher compared to Electrodes dimension (Ne, electrode-space version).

function, as the regressors β2 and β3—a procedure proposed and

examined in previous event-related studies (Lindquist et al., 2009;

Friston et al., 1998). In contrast to Labounek et al. (2019); Marecek

et al. (2016), where authors employed F-statistics test inference

for the GLM, our aim was to utilize such inference method

specifically to discern the direction (positive/negative correlation)

of the relationship between the component BLP time series and

the BOLD signal. Therefore, we implemented a formula proposed

in Calhoun et al. (2004):

H = sign(β̂1)
√

β̂2
1 + β̂2

2 + β̂2
3 , (3)

where H is an amplitude combining β̂1, β̂2, β̂3 absolute values,

and the directionality is determined by the sign of β̂1, that is, the

regression coefficient of component time series convolved with

the canonical HRF. This combined voxel-wise beta coefficient

H was subsequently used in a group-level analysis. Group-level

statistics was performed by a one-sample t-test at each voxel,

and a cluster-based permutation statistics (Maris and Oostenveld,

2007) was applied to correct for multiple comparisons (α = 0.05,

αcluster = 0.05). Those fMRI BOLD activation maps (later referred

to as BOLD signatures), as well as source–space signatures, were

visualized with the BrainNet Viewer tool (Xia et al., 2013).

2.9 Spatio-spectral EEG-fMRI integration
evaluation

One of the challenges in resting-state EEG-fMRI research

is evaluating the reliability of the correspondence between both

modalities. On the one hand, there are methodological studies

analyzing relatively small EEG-fMRI datasets in terms of a number

of subjects (Abreu et al., 2020; Sockeel et al., 2016; Yuan et al.,

2016); thus, statistical power is low. On the other hand, there are

studies examining reliability and reproducibility with a relatively

larger amount of subjects (Bridwell et al., 2018) or across more

datasets, and also across different paradigms (Labounek et al.,

2019). Since we do not possess two equivalent EEG-fMRI datasets,

we opted for checking the reproducibility of observed patterns

and relationships by splitting the sample - in our case, we split

our dataset into two equal subsets, that is, 36 subjects each. The

choice to divide the data into two equal subsets, was guided by

practical considerations aimed at balancing statistical power with

the need for subgroup analysis. This particular split allowed us

to maintain a sufficiently large sample size in each subset, which

is essential for observing typically weak levels of EEG-BOLD

correlations while facilitating comparisons between the two groups.

We want to highlight that the methods described in the following

parts can be broadly applied to other EEG-fMRI datasets acquired
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under different acquisition parameters. However, generalizing the

findings and results presented in this study should be approached

with caution since they originate from one yet comprehensive

EEG-fMRI dataset.

2.9.1 Between-group reproducibility of
spatio-spectral EEG patterns

For an initial check of the robustness of the spatio-spectral

patterns, we ran the SSP identification algorithm on each subset

separately. We then computed the Spearman correlation between

each SSP from the first subset and each SSP obtained from the

second subset, forming a square matrix with dimensions C × C.

A natural challenge in evaluating the reproducibility of EEG

or fMRI components is that the components provided have the

in-principle arbitrary order and are not thus directly comparable.

This can be solved by sorting them by selecting the best match

to each from a predefined list of templates (template matching),

or by simultaneously optimizing pairwise matches between all

components of both subsets. We chose this latter approach because

it does not require selecting a template. In particular, we first

transformed this matrix by calculating absolute values and then

multiplying by –1 to create a cost function for the Munkres

algorithm (Bourgeois and Lassalle, 1971), and then applied a

MATLAB implementation of Munkres algorithm to find C unique

pairs of SSPs between subsets. The algorithm satisfies a condition

of maximum similarity and ensures that each component appears

exactly once.

Note that establishing statistical significance for these

maximum values is highly non-trivial, due to both the intricate

sample dependencies, multiple testing, and ultimately the

maximization procedure involved in selecting the best matches.

Hence, we present the median and interquartile range of

similarity in the results section. The results of the between-group

reproducibility of SSPs evaluation will be presented in Section

3.1, along with the reproducibility analysis of spatio-spectral

EEG-fMRI integration. Indeed, while both the template matching

and the global optimization procedures have previously been

commonly applied to provide unique matching, the obtained best

matches naturally suffer from upward bias related to the problem

of overfitting by optimizing the matches, implicitly assuming a

one-to-one mapping, that might be in many scenarios unrealistic,

or carry biases in the selection of the templates (if used). Thus,

wherever practical, we developed alternative reliability testing

procedures that avoid explicit template matching. In the following

sections, we describe all statistical procedures used in this study for

evaluation of the proposed integration approach.

2.9.2 Reproducibility of spatio-spectral EEG-fMRI
integration

While the reproducibility of the Spatio-spectral EEG

decomposition per se is not straightforward to establish (see

previous section), our main interest here lies in the EEG

decomposition for fusion with fMRI. Thus, we introduce a novel

approach, where we focus on the reproducibility of the link

between an EEG component and its BOLD correlates, that is,

of the EEG-fMRI patterns. By EEG-fMRI pattern, we mean the

spatio-spectral and temporal signatures of a given EEG BLP IC

together with the BOLD signature of this EEG BLP IC, that is,

the statistical GLM map obtained when using the EEG BLP IC

time course as a regressor for concurrently measured voxel-wise

BOLD data. We work with the same subsets as in the previous

case. For both subsets, a separate source- as well as electrode-

space spatio-spectral decomposition was performed in the same

manner as described in Sections 2.6, 2.7, respectively. We test the

hypothesis that components with similar spatio-spectral signatures

(between the test and retest decomposition) also have a similar

pattern in explained BOLD signal, that is, BOLD signatures. To

this end, a correlation matrix was computed between the SSPs of

the first and the second subsets. Besides the correlation matrix of

the whole length of SSPs, separate band-wise correlation matrices

were also computed to test band-specific reproducibility. After

that, a group-level statistical GLM matrix with beta coefficients as

columns for each component was created for both subsets, and

a correlation matrix expressing similarity between components

was computed. If the EEG components and their correspondence

with the BOLD signal in both subsets are similar, then those

two correlation matrices should be more similar than by chance,

that is, the strength of the match between the EEG SSPs should

predict the strength of the match between their BOLD signatures.

To test this hypothesis, we implemented permutation statistical

testing. During each of 1,000 iterations, columns and rows of

spatio-spectral correlation matrix were randomly permuted, and

vectorized forms of the permuted SPP correlation matrix and

the GLM map correlation matrix were correlated to generate

a permutation null distribution. Statistical significance was

determined based on a percentile of original not permuted

similarity between spatio-spectral and statistical GLM correlation

matrices (α = 0.05, right-sided test). A schematic flowchart of the

proposed testing of EEG-fMRI pattern reproducibility is shown in

Figure 2. The results of this reproducibility test are presented in

Section 3.1.

2.10 Identification of reproducible
EEG-fMRI patterns

Following the assessment of overall reproducibility in EEG-

fMRI integration, our goal is to identify the most reproducible

EEG-fMRI patterns across subsets that would call for more detailed

neuroscientific interpretation. To achieve this, we introduce a

heuristic metric to identify EEG-fMRI patterns that significantly

contribute to the observed reproducibility. This metric considers

both the similarity of EEG BLP spatio-spectral maps and the

similarity of the corresponding BOLD signatures. For each pair

of spatio-spectral components within and across both subsets, we

computed the following multiplicative criterion to quantify their

similarity:

RMx,y =

{

√

RICx,yRGLMx,y, if RICx,yRGLMx,y >= 0.

0, otherwise.
(4)

where RMx,y is the similarity (by multiplicative criterion) between

components x and y, RICx,y is the Spearman correlation coefficient
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FIGURE 2

A schematic flowchart of a permutation statistical testing of EEG-fMRI patterns reproducibility between subsets of the dataset.

between spatio-spectral signatures of components x and y, and

RGLMx,y is the Spearman correlation coefficient between BOLD

signatures of components x and y. This similarity metric was

further transformed to a distance metric D = 1 − RMx,y for

the application of a hierarchical clustering algorithm to form an

agglomerative hierarchical cluster tree with the shortest distance

method to compute a distance between clusters.We aimed to report

only the first five most reproducible EEG-fMRI patterns (which

corresponded to the threshold for defining clusters Dthresh = 0.4

for electrode and source spaces). To associate a single whole dataset

EEG-fMRI pattern to a pair of EEG-fMRI patterns from subsets

1 and 2, we applied the same criterion as in Equation 4 to both

whole dataset EEG-fMRI patterns with defined EEG-fMRI pattern

from subsets 1 and 2. The best-matching whole dataset pattern was

determined to have the highest product value for these two criteria.

The resulting EEG-fMRI patterns are presented in Section 3.2.

Up to this point, reproducibility testing and identifying the

most reproducible EEG-fMRI patterns were performed solely

on the simultaneous EEG-fMRI data. To investigate whether

the observed spatio-spectral components can also be found in

the EEG data outside the MRI environment, we performed the

following analysis: For each spatio-spectral pattern of the five

most reproducible EEG-fMRI patterns, the most similar SSP in

the out-of-scanner dataset–based on the highest correlation of

the spatio-spectral signatures-was determined and reported. It is

important to stress that reporting the most similar patterns from

the out-of-scanner dataset does not provide a strict validation or

generalization of the results to other datasets due to the challenging

problem of overfitting through the matching procedure. However,

it demonstrates the level of variability to expect in resting-state EEG

data.

2.11 Source–space EEG patterns
spatio-temporal relation to BOLD
signatures and BOLD RSNs

So far, no one has directly spatio-temporally compared BLP-

based features (in our case, SSPs) obtained from EEG with their

activation maps in BOLD (BOLD signatures). Even though it

seems (at first sight) natural that temporally related EEG and

BOLD features should also be similar spatially, there is no strong

evidence in the literature that this holds. Furthermore, whether

BLP-based features exhibit spatio-temporal correspondence with

BOLD RSNs remains unclear. Therefore, we introduce three novel

statistical testing procedures, directly corresponding to the three

hypotheses regarding spatio-temporal relationships between EEG
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and BOLD data: (1) whether EEG SSPs are spatially co-localized

with their corresponding BOLD activation maps, (2) whether

EEG SSPs explaining more BOLD variability exhibit stronger

spatial alignment, and (3) whether EEG SSPs are spatio-temporally

associated to BOLD RSNs.

2.11.1 Spatial similarity of EEG spatio-spectral
and BOLD signatures

Here, for the five most reproducible patterns, we tested

whether the similarity of their spatio-spectral signatures to their

BOLD signatures is higher than to BOLD signatures of other

EEG-fMRI patterns, indicating a potential spatial correspondence

between spatio-spectral signatures and temporally coactivated areas

observed in the BOLD data. To be able to compare the EEG spatio-

spectral signatures and, in this case, purely spatial BOLD signatures,

we separately correlated each band-wise part of SSP with a given

BOLD signature. Then we computed a weighted average (weighted

by the contribution of each band to the overall SSP weights) of

the absolute values of Spearman correlations. In that manner,

we computed a complete (weighted average) correlation matrix

of all SSPs and BOLD signature combinations. We compared

the mean value on the diagonal (i.e., the correct correspondence

between SSPs maps and BOLD signatures) to the null distribution

obtained by computing the same statistic for each of 1,000 random

permutations of columns of the matrix, representing random

assignment of different BOLD signatures to SSPs. The significance

level α was set to 0.05 (right-sided test). We further evaluated each

component separately and how similar it is to its corresponding

GLM map compared to other BOLD signatures (each row of the

correlation matrix). On the significance level α = 0.05 (right-sided

test, uncorrected for a number of components), we report the

most similar components. A schematic flowchart of the statistical

testing is included in the Supplementary Figure S1. The results are

presented in Section 3.3.

2.11.2 spatio-temporal similarity of EEG
spatio-spectral and BOLD signatures

Furthermore, we tested whether the EEG components that

are more temporally synchronized with the BOLD signal also

tend to be more spatially similar to their BOLD signatures. It is

reasonable to assume that multiple of the 30 EEG components

may not correspond to strong stable neuronal dynamics but rather

to some transients or residual artifacts. To the extent that both

BOLD and EEG reflect predominantly local neuronal activity (an

assumption commonly used in brain activity modeling, based on

experimental observations such as those presented by Logothetis

et al. (2001) and others), one would expect that the reproducible

EEG patterns would have BOLD signatures co-localized to the

EEG spatial patterns, while the weaker, less robust, or artifactual

components not temporally related to BOLD signal, would also

have BOLD signature unrelated to the spatial EEG pattern.

To test this hypothesis, we again use a permutation-based test.

Similarly to the previous subsection, we compute the Spearman

correlation between each of the 30 EEG spatio-spectral components

and its BOLD signature, resulting in a vector. Then, for each EEG

SSP, we correlate its time series with the BOLD signature time

series. Since the BOLD signature is a statistical map representing

spatial activation, it does not inherently possess a time series.

Therefore, to establish a comparable time series for each BOLD

signature, we computed the average BOLD time series. This average

was computed using a weighted approach, where the weights

corresponded to the BOLD signature’s spatial pattern. This means

we prioritized voxels that exhibited a stronger correlation with the

EEG SSP time series when calculating this weighted average. This

process also resulted in a vector of temporal similarities, with a

length corresponding to the number of components, specifically

30. If the described spatio-temporal similarity is valid, these two

vectors should exhibit greater similarity than what would occur by

chance. The null distribution was obtained by randomly permuting

elements of both vectors (1,000 iterations) and the original not

permuted absolute value of Spearman correlation was tested against

the permutation distribution at the significance level α = 0.05

(right-sided test). A schematic flowchart of the statistical testing is

included in the Supplementary Figure S2. The results are presented

along with the previous test results in Section 3.3.

2.11.3 Source–space EEG patterns
spatio-temporal relation to BOLD RSNs

In previous EEG-only studies (Liu et al., 2017, 2018; Sockeel

et al., 2016) and EEG-fMRI studies (Yuan et al., 2016; Abreu et al.,

2020; Marino et al., 2019) the authors aimed to link EEG-derived

RSNs and BOLD RSNs both spatially and temporally. We have

decided to investigate the spatial and temporal correspondence

between EEG SSPs and BOLD RSNs involving a broad range

of RSNs in the same unbiased spirit as for the previous tests.

At first, we performed a spatial group ICA decomposition

of the BOLD data. To this end, we combined all of the

single-subject z-score normalized datasets across the temporal

domain. The dimensionality was then reduced to 30 PCA

components before running spatial ICA decomposition by the

FastICA algorithm (Hyvärinen and Oja, 2000). Subsequently, ICs

representing RSNs were identified based on a functional network

atlas obtained from (Shirer et al., 2012). The criterion was based

on the Spearman correlation between the spatial distribution of

the IC weights and atlas masks. Subsequently, statistical testing

was carried out in an analogous fashion for the spatio-temporal

similarity of EEG SSPs and BOLD signatures. In particular, the

(weighted across-band-averaged) correlation matrix of spatio-

spectral signatures in the source-reconstructed space on one side

with the spatial signatures of BOLD ICs spatial maps on the

other side was computed. After that, temporal signatures of

SSPs convolved with the canonical HRF were correlated with

the BOLD ICs temporal signatures. If there was spatial and

temporal correspondence between EEG-derived SSPs and BOLD

IC components representing RSNs, then those two correlation

matrices should be more similar than by chance. Similar to

the approach in Section 2.9.2, we implemented permutation

statistical testing. In each of the 1,000 iterations, columns

and rows of spatial patterns correlation matrix were randomly

permuted (by two different permutations), and vectorized forms

of the permuted spatial patterns correlation matrix and temporal

patterns correlation matrix (absolute values) were correlated to
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FIGURE 3

A schematic flowchart of permutation statistical testing of the correspondence of spatial and temporal similarities between the EEG source–space

spatio-spectral components and the BOLD ICs.

generate a permutation null distribution. The statistical significance

was determined based on the percentile of the permutation

distribution occupied by the original data similarity (Spearman

correlation) between spatial and temporal patterns correlation

matrices (α = 0.05, right-sided test). A schematic flowchart of

statistical testing of EEG and BOLD ICs similarity testing is in

Figure 3. The results are presented along with the two previous test

results in Section 3.3.

3 Results

The results section is divided into three subsections. In

Section 3.1 we report EEG-fMRI patterns reproducibility for

source- and electrode-space approaches, in Section 3.2, we

show the reproducible EEG-fMRI patterns in both spaces, in

Section 3.3, a summary from spatial and temporal correspondence

testing of EEG SSPs, their BOLD signatures, and BOLD ICs

is reported.

3.1 Stability of SSPs and reproducibility of
EEG-fMRI integration

3.1.1 Numerical SSP decomposition stability
As described in Section 2.6, first, the spatio-spectral

components stability testing in terms of ICA decomposition

was performed utilizing the ICASSO tool. Based on a similarity

index and visual assessment from the 2D canonical correlation

analysis (CCA) projection provided by the ICASSO tool, we

conclude that the ICA decomposition is algorithmically stable

for both source- and electrode-space approaches as well for both

subsets and the whole dataset. The ICASSO outputs are included

in the Supplementary Figure S3.
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3.1.2 EEG-fMRI pattern reproducibility
The EEG-fMRI patterns proved generally reproducible in the

test–retest setting, with the more matching EEG SSPs typically

corresponding to those with a more similar BOLD signature.

This was true for both EEG spaces, with marginally better

reproducibility for the source–space approach, in particular only

two statistically non-significant results were observed for the

electrode-space band-wise patterns in δ (rs = 0.03) and γ (rs =

0.04) bands. The highest reproducibility was observed for the

multiband (whole) SSPs—(rs = 0.29 for the source–space and

rs = 0.25 for the electrode-space). The results are summarized in

Table 1.

Of note, the SSPs reproducibility test described in Section 2.9.1

and based on components matching by Munkres algorithm clearly

showed a biased result with median Spearman correlation 0.46

(IQR= 0.42, 0.58). This approach has two shortcomings: (1) It

is difficult to test the level of similarity between matched SSPs

statistically and (2) It does not test BOLD signature reproducibility.

These results are further elaborated in the Discussion Section 4.1.

3.2 Reproducible EEG-fMRI patterns

We identified the five most reproducible EEG-fMRI

patterns based on the similarity measure and clustering

described in Section 2.9.2. The hierarchical tree is illustrated

in Supplementary Figure S4. The reproducibility is meant in the

sense of similarity of SSPs and also of BOLD signatures. The five

most reproducible source- as well as electrode-space EEG-fMRI

patterns are depicted in Figures 4, 5, respectively (ordered based

on descending similarity defined in Section 2.10).

All these reproducible source- as well as electrode-space EEG-

fMRI patterns have statistically significant correlation (cluster-

based permutation test, α = 0.05, αcluster = 0.05) with the BOLD

signal (see BOLD signatures in Figures 4, 5). Moreover, they

differ substantially in frequency as well as band-wise spatial

distributions. Furthermore, some of the source–space patterns are

noticeably similar to electrode–space patterns in terms of their

BOLD signatures as well as ICs weights distribution.

3.2.1 EEG-fMRI patterns common to source and
electrode-space

Specifically, the first EEG-fMRI pattern (Figure 4A) is neither

frequency- nor spatially specific and is represented by positive

weights across all frequency bands and source positions, that is,

widespread positive weights from δ to γ bands focused more

frontally andmedially and less occipitally and parietally. This global

pattern does not correlate negatively with the BOLD signal but

it shows a positive correlation pattern with the BOLD signal in

temporal (Heschl’s, superior temporal gyri), frontal (subcentral,

frontal middle, frontal superior medial gyri, and supplementary

motor area), parietal (supramarginal gyrus and precuneus), and

occipital (lingual, occipital inferior gyri) lobes. Positive clusters

also occupy the insular and cingulate cortex and some subcortical

brain areas such as the amygdala, caudate nucleus, thalamus,

and putamen. In several parts of the cerebellum (not visualized),

positive clusters can also be observed. Noticeably, the second

electrode-space EEG-fMRI pattern (Figure 5B) can also be called

global since its weight distribution is broad and very similar across

all frequency bands. This pattern correlates only positively with the

BOLD signal in very similar brain areas as the mentioned pattern in

Figure 4A, although in contrast to the source–space global pattern,

the electrode-space positive clusters were not observed in middle

frontal gyrus and were in fusiform gyrus.

The following pattern (Figure 4B) has weights distributed

mostly around the alpha band and spatially located positively across

occipital, parietal, and partly temporal lobes. This pattern has

widespread negative correlation with the BOLD signal across the

whole cortex and frontally focused positive activations. Negative

clusters can be found almost over the whole occipital lobe

(calcarine, lingual, inferior, middle, superior gyri, and cuneus),

parts of the parietal (postcentral, supramarginal gyri, parietal

superior cortex, and paracentral lobe), and temporal lobes (middle,

superior temporal, Heschl’s, and fusiform gyri). In frontal lobe

negative clusters are located in subcentral, precentral, inferior

frontal gyri, supplementary motor area, rolandic and inferior

frontal operculum. Positive clusters can be observed in anterior

cingulate as well as parts of orbitofrontal cortices. This source-

space pattern is highly similar to the electrode-space EEG-fMRI

pattern shown in Figure 5A. This pattern is spatially distributed

over the whole scalp with the maximum in the parieto-occipital

sites and also partly frontally. The statistical GLMmap is again very

similar to its source–space counterpart; only the electrode-space

component does not have positive clusters in the frontal lobe, while

in some parts of the cerebellum, positive clusters were observed.

3.2.2 Source–space specific EEG-fMRI patterns
The third EEG-fMRI pattern (Figure 4C) seems to be source–

space specific and is characterized by mostly frontoparietal and

medial positive weights across all three β subbands and negative

bilateral (mostly temporal) γ band negative weights. This pattern

correlates positively as well as negatively with the BOLD signal.

The negative cluster can be observed in the parietal (postcentral,

supramarginal gyri, inferior cortex, and paracentral lobe) lobe,

temporal superior gyrus, and frontal (precentral, subcentral gyri,

and inferior operculum) lobe. The positive cluster is located in the

precuneus as well as again in several parts of the cerebellum.

The next EEG-fMRI pattern (Figure 4D) is characterized by

negative parietal and occipital weights for all frequency bands

and positive bilateral temporal and frontal weights from β1 to γ

bands. This pattern shows only negative BOLD correlate clusters

in the parietal (postcentral, supramarginal gyri, inferior cortex, and

paracentral lobe) as well as in frontal (precentral, middle, superior,

subcentral gyri, and inferior operculum) lobes.

Finally, the last EEG-fMRI pattern in the source–space

(Figure 4E) is characterized by negative weights in low frequencies

in bilateral temporal and occipital sites and, at the same time,

positive γ weights again on bilateral temporal and occipital cortex

sites. This pattern correlates exclusively negatively in parietal

(postcentral, supramarginal gyri, inferior cortex, paracentral lobe,

and precuneus) and frontal (precentral, superior, middle and
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TABLE 1 Reproducibility of EEG-fMRI patterns: match of EEG SSPs corresponds to match of their BOLD GLM signatures.

Spearman correlation coe�cient (-)

SSP Whole δ θ α β1 β2 β3 γ

Source space 0.29∗ 0.06∗ 0.07∗ 0.11∗ 0.08∗ 0.11∗ 0.18∗ 0.09∗

Electrode-space 0.25∗ 0.03 0.07∗ 0.12∗ 0.08∗ 0.10∗ 0.15∗ 0.04

The table shows the similarity (Spearman correlation coefficient) of the correlation matrix of the spatio-spectral signatures obtained from the first and second data subsets with the correlation

matrix of the respective BOLD signatures. Results are provided separately for the electrode and source-space approaches.
∗ denotes permutation test statistical significance (α = 0.05). All statistically significant correlation coefficients remained significant also after FDR correction across tests (αFDR = 0.05).

FIGURE 4

Visualization of the most reproducible source–space EEG-fMRI patterns (A–E) in terms of the band-wise Euclidean norm of an SSP, SSPs, and the

BOLD signatures (from left to right). For each EEG-fMRI pattern, only selected band-wise SSPs are visualized based on the weight distribution and

their mutual similarity. Pattern (A) is similar between all frequency bands, pattern (B) is the most prominent in the α band, pattern (C) is similar in all β

subbands and has opposite weights in γ band, pattern (D) in changes gradually from δ to γ ) band. Finally, the pattern (E) changes its spatial

distribution from δ to γ band.

inferior gyri, supplementary motor area, and frontal inferior

operculum) lobes as well as in middle part of the cingulate cortex.

3.2.3 Electrode-space specific EEG-fMRI patterns
The third most reproducible electrode-space EEG-fMRI

pattern (Figure 4C) is characterized by whole scalp negative weights

in low frequencies around θ band in contrast to positive weights

in γ band spread mostly on parieto-occipito-temporal electrode

sites. This SSP correlates positively with the BOLD signal in

temporal (Heschl’s, superior, and middle temporal gyri), frontal

(supplementary motor area, rolandic, frontal inferior operculum,

frontal inferior triangularis, frontal superior, frontal superior

medial, and precentral gyri), parietal (precuneus, postcentral

gyrus), and lingual gyrus in occipital lobe. Anterior and middle

cingulate, as well as insular cortices and parts of the cerebellum,

also show a negative correlation with the BOLD signal.

The fourth scalp SSP (Figure 5D) is again not spatially specific

and demonstrates changes in the band-limited power between low

and high frequencies. Therefore, we observe gradually changing

polarity of weights from the lowest frequencies δ to β3 widely across

the whole scalp. For this pattern, specifically, α and γ frequency

bands are the least important. The correlation pattern of the BOLD

signal is exclusively negative and very similar to the statistical GLM

map of α band pattern (Figure 5A). Apart from α band pattern,

negative clusters can also be observed in parietal inferior, insular,

middle cingulate cortices, and frontal superior gyrus. A positive

cluster is only in some parts of the cerebellum.

The last electrode-space EEG-fMRI pattern (Figure 5E) is

relatively complex. From δ to θ band, the spatial pattern is mostly

positive in frontal, central, and temporal electrode sites. From

α to β3 bands also, negative parietal and occipital weights are

present, and the γ band is represented by a reversed pattern than

for all other frequencies. This complex EEG-fMRI pattern has

an exclusively positive BOLD signature, and it is very similar to

previous negative BOLD signatures in Figures 5A, D, respectively.

In contrast to those, clusters in the parietal and frontal lobes have

relatively higher T values compared to the occipital ones.
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FIGURE 5

Visualization of the most reproducible electrode-space EEG-fMRI patterns (A–E) in terms of the band-wise Euclidean norm of an SSP, SSPs, and the

BOLD signatures (from left to right). For each EEG-fMRI pattern, only selected band-wise SSPs are visualized based on the weight distribution and

their mutual similarity. Pattern (A) is the most prominent in the α band, pattern (B) is similar between all frequency bands, pattern (C) is similar for θ

band and neighboring frequencies and di�ers in the γ band, pattern (D) is less prominent in δ and θ bands and more in high (β2 and β3) frequency

bands. Finally, the pattern (E) changes its spatial distribution from δ to γ bands.

3.2.4 Variability of the five most reproducible
EEG-fMRI patterns

Last but not least, to capture the variability of components

between subsets of the same dataset as well as between different

datasets recorded in a different environment (out-of-scanner

dataset), in Figures 6, 7 we show the SSPs from both subsets and

the closest SSP in out-of-scanner dataset for each of five the most

reproducible EEG-fMRI patterns for source- as well as electrode-

space approaches.

Please note that in this case statistical testing is not provided.

Therefore, both figures serve only as an example of SSP’s variability

that can be expected when applying the methodology to a different

dataset. Also, note that the most similar component of a global SSP

from the out-of-scanner dataset was not determined based on the

highest correlation with a global SSP from the whole dataset but

rather by selecting a component having all weights with the same

sign. This feature cannot be measured with a similarity measure

based on Spearman correlation. Also, the visualized out-of-scanner

SSP in Figure 6C is the second most similar component to the

whole dataset component since the most similar component was

the same as for Figure 6E.

3.3 Source–space EEG patterns
spatio-temporal relation to BOLD
signatures and BOLD RSNs

We report the findings of the three hypotheses testing

regarding spatio-temporal relationships between EEG and BOLD

data: (1) whether EEG SSPs are spatially co-localized with their

corresponding BOLD activation maps (Methods Section ??),

(2) whether EEG SSPs that explain more BOLD variability

exhibit stronger spatial alignment (Methods Section ??), and (3)

whether EEG SSPs are spatio-temporally associated to BOLD RSNs

(Methods Section 2.11.3). The results are summarized in Figure 6.

We found for the first 5 most reproducible EEG-fMRI patterns

weak but statistically significant (R = 0.14, p = 0.031) spatial relation

between their spatio-spectral signatures and BOLD signatures,

suggesting spatial colocalization between them, see Figure 8A. In

post-hoc testing, we observed that the similarity was mostly driven

by spatio-spectral patterns B and D, see Figure 8B.

The suggested spatio-temporal test of EEG spatio-spectral

components and BOLD signatures shows statistically significant

relation between the levels of their temporal and spatial correlation

(R = 0.42, p = 0.009), suggesting that EEG spatio-spectral

components having a higher level of correlation in the temporal

domain with its statistical GLM map pair are also more similar

spatially, see Figures 8B, E.

Statistical testing of the correspondence between EEG-derived

spatio-spectral components and BOLD-derived ICs in terms of

spatial and temporal similarities (R = 0.03, p = 0.255) did not reveal

any similarity, see Figure 8C, F. Specifically to demonstrate this on

the most reliable alpha pattern, we picked 3 pairs of alpha-RSNs

as: (1) The most spatially similar (PN), (2) The most temporally

similar (VSN), and (3) The most spatio-temporally similar (PVN)

(up-right in scatter plot) pair alpha pattern-RSNs, see Figure 8F. In

Figure 9, the alpha EEG-fMRI pattern together with those 3 RSNs

is visualized. These results are commented and put in the context

in the Discussion Section 4.3.
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FIGURE 6

Visualization of corresponding subset 1 and 2 SSPs together with out-of-scanner SSP for each of the five most reproducible source–space EEG-fMRI

patterns (A–E).

FIGURE 7

Visualization of corresponding subset 1 and 2 SSPs together with out-of-scanner SSP for each of the five most reproducible electrode-space

EEG-fMRI patterns (A–E).

4 Discussion

In the present study, we, for the first time, introduce a

fully data-driven method of spatio-spectral decomposition in

the source-reconstructed space applied to hdEEG data recorded

simultaneously with the fMRI. We directly compare it to the

electrode-space spatio-spectral decomposition on the same dataset.

Rather than solely testing against other traditional methods, our

study is focused on addressing intriguing questions regarding the

EEG-fMRI relationship. Therefore, we apply a novel, unbiased

approach to evaluate the reproducibility of the observed EEG-

fMRI patterns and, maybe even more importantly, of their spatio-

temporal relation to their BOLD signatures and BOLD RSNs.

A comparison with the SSPs obtained from the out-of-scanner

data and with the results of electrode-space decomposition is

also provided.

4.1 Stability of SSPs and their relation to
fMRI

The unbiased reproducibility testing based on the split-half

analysis of the large EEG-fMRI dataset clearly showed that the SSPs,

and at the same time, their correspondence to the BOLD signal,

are reproducible between subsets for both approaches (source- and

electrode-space). All frequency-specific (single-band) EEG spatial

signatures are reproducible across subsets (besides electrode-

space δ and γ bands, see Table 1). The whole SSPs robustness

suggests that the spatio-spectral components are formed across

multiple frequency bands, as in the case of most electrode-space

(Figures 5B–E) as well as source space (Figures 4A, C–E) SSPs.

Additionally, (single-band) SSP reproducibility does not exclude

the possibility that some SSPs might be narrow (defined by a single

frequency band) and that most frequency bands have at least a few

unique components.

It is also interesting to note that the highest reproducibility

is achieved by the full (multiband) spatio-spectral signatures

compared to band-wise signatures for both spaces; see Table 1.

This suggests that the pattern across joint spatio-spectral space is

important, and performing only single-band decomposition might

miss some spectrally wide patterns.

In this study, the concurrent measurement with BOLD

provided that we could simultaneously test SSPs and their BOLD

signatures. Previously, when assessing the stability/reproducibility

of EEG patterns between datasets or subjects, many studies utilized

template matching procedures to pair the most similar components

to BOLD-derived RSNs templates (Liu et al., 2017, 2018; Marino
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FIGURE 8

Spatial (spatio-temporal) relation of EEG spatio-spectral components and BOLD. (A) Spatial similarity of the EEG spatio-spectral signatures and their

corresponding BOLD signatures: mean value across the five most robust components (orange bar), the permutation test statistic (blue histogram). (B)

Spatio-temporal similarity of the EEG spatio-spectral signatures and their corresponding BOLD signatures: mean values across all components

(orange bar), the permutation test statistic (blue histogram). (C) Spatio-temporal similarity of the EEG spatio-spectral signatures and BOLD RSNs:

mean values across all components (orange bar), permutation test statistic (blue histogram). (D) Spatial similarity of all robust source–space

spatio-spectral patterns (A-E) all BOLD signatures (violin plots, dots) with denoted actual BOLD GLM map (square point). (E) Pair-wise similarity

(Spearman correlation) of EEG spatio-spectral and BOLD signatures spatial (scatter plot x-axis) and temporal (scatter plot y-axis) signatures. Colored

points correspond to EEG-fMRI patterns from (D). (F) Pair-wise similarity (Spearman correlation) of EEG spatio-spectral and BOLD RSNs spatial

(scatter plot x-axis) and temporal (scatter plot y-axis) signatures. Colored points correspond to EEG-fMRI patterns from (D). Three points for alpha

EEG-fMRI pattern are labeled as follows: (1) most spatially similar to Precuneal network (PN), (2) most temporally similar to Visuospatial network

(VSN), and (3) most spatio-temporally similar to Primary visual network (PVN).

et al., 2019) or component clustering algorithms applied only

to EEG signatures (Labounek et al., 2018, 2019). However, such

matching approaches suffer from artificially inflated match quality

(as the optimal match is sought for across many components,

even a random set of candidate maps, if sufficiently large, can

provide decent “optimal” matches). For illustrative purposes and

to maintain some comparability with results of previous studies

(despite many other methodological differences), we also applied

such straightforward matching procedure in the evaluation of SSPs

reproducibility (the best matching SSPs between two subsets),

where we reached a relatively higher mean level of similarity (R =

0.46).

A potential drawback of our reproducibility analysis is

the number of PCA components retained before the ICA

decomposition, that is, model selection. It is because overestimating

components may result in a component splitting (Abou-Elseoud

et al., 2010). This could decrease the level of reproducibility. It is

difficult to adequately estimate the number of PCA components,

and various model selection criteria often provide different

estimates. Some authors estimate the number of PCA components

on BLP matrices based on information theory criteria such as

minimum description length (MDL) (Liu et al., 2017, 2018; Marino

et al., 2019). Others Labounek et al. (2018) arbitrarily chose a

number of ICs and tested the stability of recovered ICs by metrics

obtained from toolboxes such as ICASSO software (Himberg et al.,

2004) or setting the number of ICs to be around the typical

number from fMRI studies (Li et al., 2018). A combination of

the last two mentioned model selection strategies was utilized

in the present study. A different approach might be to estimate

the number of non-random components via a data-modeling and

testing against surrogates (Vejmelka et al., 2015). Generally, the

number of ICs throughout the literature fluctuates from 20 to

50; therefore, we chose the number of components in the current

study to be 30. Another improvement might be a generalization

of the reproducibility evaluation between different datasets or even

different paradigms, not only resting-state (Labounek et al., 2018,

2019).

4.2 Reproducible EEG-fMRI patterns

While we chose, in line with the literature, a generous number

of 30 ICA components to be extracted, unlike several previous
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FIGURE 9

Example of spatial mismatch between alpha EEG-fMRI pattern and BOLD RSNs.

studies we present only a relatively modest number of 5 of them.

Two factors may play a role here. First, we pose an additional

requirement on the presented components, that not only they have

a counterpart in the decomposition of an independent EEG dataset,

that is, the EEG SSP patterns is reproducible, but moreover, we

require that its BOLD signature is also conserved between the test

and retest dataset. This focuses our analysis only on those EEG

patterns that do have some robust BOLD signature, but perhaps

evenmore importantly provides a control for falsematches between

random EEG patterns, which are likely to occur due to the sheer

number of available components for the matching. Secondly, the

fact that we search for multiband spectral patterns that do not

require the same spatial signature for each frequency means that

the approach presented here can encompass richer patterns within

a single component, rather than dividing them into individual

frequencies.

Thus, the resulting number of components described in detail

in both source- and electrode-space are relatively smaller than those

reported by other authors. Previous studies usually concentrated

on the single-band source–space BLP decomposition and directly

focused on spatial and temporal correspondence. They typically

report almost a complete set of recovered EEG-derived RSN

patterns. In EEG-only studies (Liu et al., 2017, 2018), the authors

reported finding a complete set of 14 EEG-BLP patterns spatially

similar to BOLD-derived RSNs. Conversely, Marino et al. (2019)

focused on extracting a single DMN pattern from the source–space

EEG BLP matrix.

In Bridwell et al. (2013), the authors reported 10 robust EEG

SSPs performing electrode-space spatio-spectral decomposition.

Five of those components were specifically spectrally focused

around the α band. Unlike our approach, the authors had a finer

spectral resolution of 0.5 Hz, which, in combination with ICA

decomposition along the spatio-spectral domain, may result in

the decomposition of one alpha rhythm into several components.

All five alpha components exhibited remarkably similar occipital

SSPs in their study, and all demonstrated a negative correlation

with the BOLD signal in the occipital, parietal, and certain regions

of the frontal lobe. This suggests that they may relate to the

over-splitting of a single, relatively spatio-temporally consistent

alpha component. The authors also report a widespread positive

correlation across the cortex for the rest of the components, where

three were in δ–θ and two in β2–γ frequency bands.

In Labounek et al. (2018) and Labounek et al. (2019), the

authors found 14 SSPs (across three different datasets) having

substantial similarity with components from Bridwell et al. (2013).

We present the five most reliable EEG-fMRI patterns that are

reproducible in terms of both SSPs and their BOLD signatures.

Furthermore, it is noteworthy that some EEG-fMRI patterns

between spaces (electrode and source level) intuitively correspond

to each other. In the following paragraphs, we will discuss all

reported patterns regarding interpretation and connect them to

existing studies.

The most reproducible electrode-space EEG-fMRI pattern

(Figure 5A) resembles the alpha components from a couple of

previous studies (Bridwell et al., 2013; Labounek et al., 2018).

It is a data-driven derived occipital alpha correlate known from

many previous studies (Goldman et al., 2002; Moosmann et al.,

2003; Feige et al., 2005; Laufs et al., 2003a,b; Tyvaert et al.,

2008; Gonçalves et al., 2006). In agreement with Bridwell et al.

(2013), we found widespread negative correlation within a middle

frontal, superior temporal, inferior occipital, lingual gyri, and

cuneus; see statistical GLM map in Figure 5A. Note that we also

observed positive clusters in the anterior cingulate and parts of the

orbitofrontal cortices. Positive correlations are not widely reported

across studies except (Laufs et al., 2003b), where the authors

reported a positive correlation with the BOLD signal in the anterior
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cingulate cortex in a fixed effects group analysis. Intuitively, this

electrode-space component has its source–space counterpart as

EEG-fMRI pattern in Figure 4B. This source–space pattern has

very similar statistical GLMmap patterns corresponding to sensory

areas and weights distribution, mostly in α band parieto-occipital

cortical sites. Since the source–space SSPs were not studied before,

linking them with the current literature is difficult. Nevertheless,

compared to the TFICA approach on EEG-only dataset in Li et al.

(2018), this SSP may be related to the group of components called

Default by the authors. It is also interesting that the BOLD signature

of those components resembles a more typical EEG-fMRI occipital

α band correlate rather than the bilateral frontoparietal pattern

reported and discussed in the studies by Laufs et al. (2003b) and

Laufs et al. (2006).

The second pattern in the electrode-space shown in Figure 5B

has (as in the previous case) its intuitive counterpart in the

source space; see Figure 4B. Those global patterns in both spaces

also share very similar BOLD signatures when having exclusively

positive clusters in all lobes and several subcortical structures

such as the thalamus, amygdala, or putamen. To further elucidate

the existence of this pattern, it probably represents a global BLP

mean time series since they appear to be correlated in space and

across all frequency bands. This pattern may be notable in studies

where authors derive BLP regressors as average BLP time series

across all electrodes (Mantini et al., 2007). Our results show that

the average BLP time series is one of the most stable (assessed

by ICASSO tool) BLP-independent components. Furthermore,

we demonstrated that the average component belongs to a set

of robust EEG components, significantly contributing to EEG-

fMRI integration. Even though it is difficult to interpret such an

unspecific EEG-fMRI pattern, this pattern might represent both

neurophysiological activity and/or globally expressing artifactual

patterns. The former (neurophysiological activity) explanation

can be supported by the study Magri et al. (2012). Despite

substantial methodological differences (resting-state simultaneous

LFP and BOLD data in monkey visual cortex), the authors made

notable conclusions and remarks linking to this global as well

as the previous alpha pattern. First, they found strong positive

correlations between LFP at frequencies above 20 Hz and much

weaker negative correlations between low-frequency LFP (<20 Hz)

and the BOLD signal. Second, they report positive covariation

of α LFP power and BOLD with total LFP power. Furthermore,

they hypothesize that when significant fluctuations in total LFP

power take place, the correlation between alpha power and the

BOLD signal will seem positive (as reported by some authors),

reflecting their shared variability with total LFP power. It seems

that utilizing our method, the alpha pattern (anticorrelating with

the BOLD signal) can be clearly distinguished from total power

fluctuation (global pattern) allowing us to study those phenomena

separately. Our method is, therefore, superior to ones considering

only temporal averages of BLP across preselected electrodes/ROIs.

The next source–space EEG-fMRI pattern in Figure 5C

represents an interplay between β and γ frequency bands. The

SSP for all β subbands can be described as primarily frontoparietal

medial positive weights compared to negative bilateral temporal

and parietal patterns of the γ band. Notably, the BOLD signature

of this pattern spatially resembles its SSP in terms of the positive

cluster in the precuneus. Furthermore, parietal and temporal

negative activations can be spatially linked to the γ band as

well. As the positive cluster in the precuneus (the central spatial

component of the DMN) together with negative clusters (mainly

SMN and AN functional networks), this SSP might represent

temporal anticorrelation structure between DMN and so-called

task-positive networks as suggested in Fox et al. (2005) and later

discussed in many other studies.

Another source–space EEG-fMRI pattern in Figure 4D reflects

a broadband pattern from δ to γ band where negative weights

can be observed through all bands in parietal and occipital lobes,

whereas bilateral positive weights in temporal and frontal lobes

are observed in higher β1 to γ frequency bands. Based on its

BOLD signature, this pattern might capture active somatosensory

brain areas processing information; thus, positive correspondence

between the BOLD signal and β1—γ weights. At the same time, a

decrease of BLP in parieto-occipital cortex sites might be associated

with typical α band suppression and probably in combination with

inactivity of visual processing since there is no positive cluster

in occipital areas. Therefore, this pattern could be considered

somatosensory specific and could distinguish between visual and

other sensory processing.

The last not mentioned source–space EEG-fMRI pattern

relating low frequencies around θ and γ band is shown in

Figure 4E. Negative, mostly occipital and midline low-frequency

band weights are included together with γ band bilateral frontal,

temporal, and parietal positive weights. This pattern exhibits

correlation with the BOLD signal in sensory areas such as

postcentral and supramarginal gyri, parietal inferior cortex, and

paracentral lobe. This pattern might, along with other EEG-fMRI

patterns, reflect somatosensory processing.

The electrode–space pattern in Figure 5C also represents

mutually anticorrelated BLP patterns between negative weights in

low frequencies with a maximum around θ band and positive γ

band with a maximum in right parietal as well as left temporal

electrode sites. Again, this pattern is not reported in previous

studies. It is interesting to note that its BOLD signature differs from

other EEG-fMRI patterns by having negative clusters in several

parts of the frontal lobe, mainly in the superior frontal and medial

superior frontal gyri, which might have a connection to typical

sources of the midline theta rhythm (Asada et al., 1999).

The EEG-fMRI pattern in Figure 5D is again a frequency-wide

but spatially not specific pattern showing a global anticorrelation

pattern of BLP fluctuations between high and low frequencies.

Interestingly, both α and γ bands are the least important frequency

bands for this pattern. This pattern is not observable in spatio-

spectral decomposition studies (Bridwell et al., 2013; Labounek

et al., 2018, 2019). The rationale might be that it is unlikely that

ICA decomposition performed along a spatio-spectral domain

will retrieve such type of frequency-wide pattern. In contrast,

performing ICA decomposition along a temporal domain might

reveal such types of spatio-spectral signature patterns. A more

related frequency-wide component may be found in the trilinear

PARAFAC decomposition, such as in Marecek et al. (2016) and

Mareček et al. (2017), even though it is a different type of

decomposition. Despite this component differing in spatio-spectral

signature from SSP in Figure 5A, the fMRI correlation pattern
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exhibits a statistically significant negative relation when changing

from high to low frequencies. This SSP also may be interpreted

reversely such that large weights in lower frequencies δ and θ bands

positively correlate with the BOLD signal across sensory brain areas

in occipital and parietal lobes, which is in correspondence with low-

frequency components in Bridwell et al. (2013); Labounek et al.

(2018).

Finally, the last not discussed electrode-space EEG-fMRI

pattern is a broadband and spatially specific pattern in Figure 5E.

Its SSP is represented by (1) frontal, central, and temporal positive

weights for low frequencies; (2) α band negative parieto-occipital

weights, and (3) reversed pattern in γ band. The statistical GLM

map of this pattern is very similar (sign reversed) to one in

Figure 5A, except that clusters in parietal somatosensory areas have

relatively higher T-values compared to occipital ones.

Examples of SSP’s variability in Figures 6, 7 show that to

some extent similar components can be obtained not only from

different subsets of the same dataset but even from a different

dataset recorded out of theMRI scanner environment. Even though

not statistically tested, this observation suggests that a similar

methodology may also be applied to out-of-scanner datasets, which

potentially increases the number of experiment types that the

proposed methodology can investigate. Subjectively, the global and

the alpha SSPs are the most robust for both source- and electrode-

spaces. As highlighted in several sections of our manuscript, the

out-of-scanner dataset differed from the simultaneous one in terms

of how we acquired and analyzed the data. We acknowledge that

these differences could have a meaningful impact on the obtained

SSPs and, consequently, on the similarity levels of matched SSPs

between the datasets. However, delving into a detailed exploration

of the influence of these analysis differences is beyond the scope

of our current study. This aspect might become a subject of

investigation in future research.

In this work, we focus on the five most robust EEG-fMRI

patterns. Indeed, further, particularly less prominent patterns

could be extracted by alternative clustering setups (e.g., less strict

thresholding) or a combination of dimensionality reduction and

clustering algorithms such as applied in Piorecky et al. (2019). A

particularly interesting direction would be to consider a possible

hierarchical splitting of SSPs into more components and other

aspects, such as linking between electrode-space and source–space

components. Such an approach might also reveal differences in

observed components between data spaces (electrode vs. source)

and that way help better understand a source–space version of the

spatio-spectral decomposition approach.

The use of source localization before the EEG power

decomposition provides a direct anatomical link for spatio-spectral

components, which we consider a major benefit of this method. In

this study, a source–space spatio-spectral decomposition approach

did reveal source–space unique patterns compared to the electrode-

space. We observed spatial correspondence between parts of

SSP and its BOLD signature for some source–space patterns. In

contrast, we should be aware of the ill-posed nature of the source

localization and the resulting limitations of this technique (Hallez

et al., 2007).

Last but not least, we want to make a comment on inter-

individual variability. In this work, we applied a relatively

conservative approach to the z-score normalization of each BLP

time series. Nevertheless, there may be meaningful variability

across subjects, as well as across bands/electrodes, that we here

suppressed. This may be an objective of a future study.

4.3 EEG spatio-spectral components
relation to BOLD signatures and BOLD
RSNs

Based on the results, we observed a far-from-perfect but

statistically significant spatial relation between EEG spatio-spectral

components and BOLD signatures for the five most reproducible

EEG-fMRI patterns. This finding is in line with the common

assumption that the BLP fluctuations have spatially (almost) the

same source as the BOLD signal. In contrast, by looking at the

most similar source–space spatio-spectral signature and its BOLD

signature, which is the alpha pattern (Figure 4B), we can still

notice that the spatial match is far from perfect. The similarity is

mostly driven by both maps’ tendency to be more parieto-occipital

rather than frontal. Besides all the potential sources of mismatch

mentioned in the following paragraphs, the low levels of similarity

can be caused by the ill-posed nature of the inverse problem.

Indeed, one should consider that even in the case the fMRI and

EEG power were perfectly co-localized, the EEG spatial distribution

in the brain volume reconstructed from the electrode signals may

achieve far-from-perfect recovery of this EEG-BOLD spatial match.

The level of this reconstruction-based bias could be at least partially

elucidated by simulation studies with realistic signals and forward

and backward projection.

Furthermore, a statistically significant linear relationship

between temporal and spatial correspondence between EEG spatio-

spectral patterns and their BOLD signatures further suggests that

there exist EEG componentsmore informative for the BOLD signal,

which is (at the same time) more spatially similar to their BOLD

signatures. Suppose we assume that this correspondence arises

from physiological brain activity. In that case, it means that the

more of the same brain activity visible in both EEG and BOLD, the

more spatially similar they are and vice versa. On the other side,

our statistical evaluation could not confirm the spatial and temporal

correspondence between BLP-derived components and the BOLD

ICs. This negative finding might contrast with studies (Liu et al.,

2017, 2018; Marino et al., 2019). Via a group ICA approach,

obtained components represent the structure of the whole dataset.

Of note, our approach does not require any pattern matching of

components between subjects, and avoids thus potential overfitting.

Our approach is, of course, vulnerable to the ubiquitous

problem of selecting the number of ICs recovered and the

previously mentioned problem of component splitting, which may

cause a problem for the selected similarity statistical method.

Nevertheless, our study suggests that while one may find for known

BOLD ICA components some EEG SSP patterns that would be

spatially similar (as shown previously in the literature), there is

not a clear spatio-temporal agreement between main components

of EEG BLP and the BOLD ICA components. More research is

thus needed to clarify the spatial (spatio-spectral) and temporal

correspondence between EEG BLP patterns and BOLD ICs.

For an illustrative example, as demonstrated in Figure 9, we see

that even for themost reproducible EEG-fMRI alpha pattern (based

on several previously described criteria), there is no clear RSN
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counterpart that would be themost similar spatially and at the same

time temporally. Furthermore, those related networks (precuneal

network, visuospatial network, and primary visual network) are

associated with a different type of brain processing. Therefore,

when performing an EEG-only study, we should be careful when

interpreting the resting-state results based on only spatial profiles

of BLP features in the sense of BOLD functional networks. In any

case, the direct spatio-temporal relation of EEG BLP and RSNs

does not seem trivial, and one should keep in mind that we cannot

use knowledge from one modality to interpret results from other

modality solely on spatial colocalization assumption and without

further discussion.

The statistical methods used to test the reproducibility of EEG-

fMRI patterns, as well as the relationship between EEG SSPs and

BOLD signatures/RSNs, involved multiple levels of construction

and processing of descriptive statistics that were only at the

end subjected to statistical hypothesis testing. This resulted in

an increased abstraction level of the final results. For instance,

when testing the spatial colocalization hypothesis in Section 2.11.1,

we began with derived EEG spatio-spectral patterns, which are

ICs representing band-limited power fluctuations in EEG. We

believed that the spatio-spectral signature of a given component

represents a spatial pattern (one for each frequency band), and

its temporal signature depicts the evolution of this spatial pattern

over time. To obtain a BOLD-related map, it is straightforward

to use a temporal signature of a given EEG component as an

explanatory variable in a typical GLM analysis as is Section 2.8

and obtain BOLD signatures (a spatial map of beta coefficients).

In the ideal case of spatial colocalization, the BOLD signature as

a spatial map would perfectly spatially correspond to the spatio-

spectral signature of a given EEG component. We can compute

the level of spatial similarity of those two maps by (in our case)

Spearman correlation. We applied a weighted average to address

the issue of separate spatial maps for each EEG frequency band.

Additionally, given that both types of spatial maps (EEG SSPs and

BOLD signatures) exhibit spatial smoothness, assessing the level

of statistical significance was challenging. Therefore, we employed

permutation statistics to generate a meaningful null distribution as

a final step. In summary, by the spatial colocalization, we tested

whether the spatial similarity between a given EEG SSP and its

BOLD signature (assessed by the weighted average of band-wise

spatial map similarity with BOLD signature) was, on average,

higher than between the same EEG SSP and BOLD signatures of

other components. In other cases, as in Sections 2.9.2, ??, 2.11.3,

we utilized a very similar methodology, customizing this multistep

approach to suit each specific hypothesis. We aimed to consistently

compare comparable derived measures (spatial against spatial

and temporal against temporal) and construct a meaningful null

distribution for statistical analysis. Of note, the thresholding of

the various spatial maps prior to statistical analyses was omitted

because those analyses focused on comparing overall pattern

similarity between the maps rather than interpreting individual

map values. This omission did not introduce bias into the analysis

but might introduce some noise levels.

A possible explanation for not observing spatial/spatio-spectral

and temporal correspondence between EEG BLP patterns and

BOLD ICs might lie in brain activity phenomena that are assumed

to give rise to these two signals. While EEG signal is considered

to rise from temporally and spatially synchronous neuron activity,

specifically excitatory postsynaptic potentials/currents, the BOLD

signal generation is dependent on the rather complex vasodilation

effect, which is controlled by multiple different pathways as

summarized in Drew (2019). It is also a matter of ongoing research

which (and how much) cell types in the central nervous system

(CNS) contribute to the overall captured BOLD signal. In an

optogenetic mouse model stimulation study Vazquez et al. (2018),

the authors found that stimulating interneurons leads to a larger

increase in blood flow than stimulating pyramidal neurons; thus,

they hypothesize that interneurons might be the primary driver

of the BOLD response. Other mouse model studies suggest that

also astrocyte responses might contribute to the BOLD signal

(Tran et al., 2018) and that astrocyte activity might not modulate

neuronal activity (Takata et al., 2018). In contrast to human resting-

state EEG-fMRI studies, in many animal studies, it was observed

that typically gamma band-limited power (Logothetis et al., 2001;

Mateo et al., 2017; Winder et al., 2017; Schölvinck et al., 2010)

and multiunit spiking activity (Ma et al., 2016; Mateo et al.,

2017; Winder et al., 2017) correlates with the BOLD signal. It is

also discussed in (Drew, 2019), that observed low correspondence

between EEG and fMRI resting-state signals (correlation coefficient

typically lower than 0.3) might not be caused by methodological

issues but rather by ongoing vasculature dynamics that might be

independent of neural activity. This is argued by evoked activity

studies (Logothetis et al., 2001; Winder et al., 2017; Lima et al.,

2014), which report much higher levels of correlation (even higher

than 0.9), thus a high level of explained variance. Findings in

those animal studies, as well as other non-neural signals that are

superposed on true neural activity and hemodynamic responses,

might all contribute to not directly observing spatio-temporal

relation between the proposed EEG- and BOLD-derived patterns.

These findings and theories follow mostly the assumption that

EEG- and BOLD-derived fluctuations are spatially co-located.

Nevertheless, since generators of EEG are generally considered

EPSCs, and we assume long-range communication between brain

areas, the active brain area (observed in BOLD signal) causes

observable EEG activity at a different part of the brain. Therefore,

perfect spatial colocalization of EEG and fMRI might not likely

emerge. In that case, studying causal relationships might further

contribute to a better understanding those modalities. It is also

important to note that there are other EEG features distinct from

the amplitude of band-limited EEG oscillations relating EEG and

BOLD signals, such as reported BOLD correlates of infraslow EEG

fluctuations (ISF) Hiltunen et al. (2014); a signal that is known to

be correlated to amplitude of band-limited EEG oscillations Monto

et al. (2008), although the relation of the BOLD correlates of ISF

EEG and BLP power oscillations has not yet been explicitly studied.

Finally, we must also acknowledge the impact of EEG data quality

acquired within the MRI environment. Despite employing state-

of-the-art methods for EEG preprocessing, effectively suppressing

the two most prominent artifacts (pulse and gradient) remains

challenging, partly due to their mutual interaction (Steyrl and

Müller-Putz, 2019). One such improvement of the proposed

methodology would be to evaluate the quality of EEG recorded

during fMRI with the in-scanner EEG recorded prior to fMRI
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acquisition. Further development of the preprocessing methods

is necessary primarily because the mentioned artifacts partially

overlap with the EEG frequency bands of interest.

5 Conclusion

We comprehensively compared and integrated EEG whole-

brain patterns of neural dynamics with concurrently measured

fMRI BOLD data. We derived EEG patterns based on a spatio-

spectral decomposition of band-limited EEG power in the source-

reconstructed space for that purpose. The decomposition has

proven reproducible regarding the similarity of the EEG spatio-

spectral signatures with the correlation patterns of the BOLD

signal, and we further illustrated that the SSPs obtained from

the source-reconstructed space are anatomically interpretable.

Furthermore, we observed statistically significant but weak spatial

correspondence between EEG spatial profiles and their BOLD

signatures, supporting both plausibility in mutual validation, while

challenging the view of perfect spatial co-localization of EEG

power and BOLD fluctuations. Moreover, we did not observe

substantial spatio-temporal correspondence between the EEG and

BOLD components. Overall, the introduced data-driven method

with enhanced spatial resolution may be helpful for a deeper

understanding of the link between EEG and fMRI, namely, human

brain networks. Specifically, this approach might identify complex

spatio-spectral dynamics of interest not only in rest but also in

task studies of the dynamics of brain activity-both in health and

in disease states.

From the data analysis perspective, we showed that EEG

spatio-spectral decomposition in the source-reconstructed space is

a viable dimensionality reduction technique that provides direct

information about an anatomical region related to a specific

spatio-spectral pattern and, therefore, provides EEG components

that are directly spatially comparable to BOLD spatio-temporal

patterns. The presented results shed more light on resting-state

EEG-fMRI literature when understanding the link between those

two modalities. From an application perspective, the extracted

EEG spatio-spectral patterns may serve as a spatio-spectral filter

for various applied studies (i.e., provide well-informed dimension

reduction to time series of 5 interpretable SSP patterns) or as a

basis for other methodological EEG-fMRI work studying the link

between those modalities.

To further explore the spatio-spectral space by ICA or

similar methods, advanced clustering analysis may contribute to

potentially detecting subsequent-weaker or more detailed-patterns.

Different types of more subject-individual decomposition methods

might be beneficial in understanding more specific patterns. A

good trade-off between single-subject ICA decomposition and

the group ICA method presented in this direction might be an

independent vector analysis (IVA) (Lee et al., 2008). There also exist

other methods from the trilinear decomposition family, such as

Tucker trilinear decomposition methods (Tucker, 1966) or block-

term decomposition (Rontogiannis et al., 2021). Those are far less

constrained approaches (compared to PARAFAC) which might

provide valuable insights into interactions within EEG data. The

proposed methodology may also serve for computational modeling

purposes as an EEG feature extraction method for whole-brain

network computational models (Sanz Leon et al., 2013; Cakan et al.,

2021; Schirner et al., 2018).
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