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E�cient processing of information is crucial for the optimization of neural

resources in both biological and artificial visual systems. In this paper, we study

the e�ciency that may be obtained via the use of a fovea. Using biologically-

motivated agents, we study visual information processing, learning, and decision

making in a controlled artificial environment, namely the Atari Pong video game.

We compare the resources necessary to play Pong between agents with and

without a fovea. Our study shows that a fovea can significantly reduce the neural

resources, in the formof number of neurons, number of synapses, and number of

computations, while at the same time maintaining performance at playing Pong.

To our knowledge, this is the first study in which an agent must simultaneously

optimize its visual system, along with its decision making and action generation

capabilities. That is, the visual system is integral to a complete agent.

KEYWORDS

neuromorphic computing, visual neuroscience, multi-resolution sensory integration,

neural resources, reinforcement learning

1 Introduction

The sensorimotor system is the essential pathway through which organisms sense and

interact with their environment via rapid and efficient adaptive responses to incoming

sensory information. Understanding the neuronal and neural circuit mechanisms by which

organisms develop and implement effective strategies to navigate external challenges is a

pivotal topic in the biological sciences. This process, often driven by plasticity and learning,

involves a continual adjustment of behavior based on experience. Reinforcement learning

(RL), which trains behavior through rewards, has a well-established biological foundation

and is integral to adaptive learning and decision-making (Montague et al., 1992, 1996;

Schultz et al., 1997; Day et al., 2007; Knutson et al., 2009; Niv, 2009; Lee et al., 2012; Kable

and Glimcher, 2009).

The principles underlying reinforcement learning are not only fundamental to

biological systems but are also highly relevant for developing advanced artificial

intelligence (AI) and robotics. In AI, RL algorithms have demonstrated remarkable

capabilities, including equaling or surpassing human performance in various complex

video games (Mnih, 2013; Wurman et al., 2022; Baker et al., 2022; Vinyals et al., 2019),

robotmanipulation (Nguyen and La, 2019), and chip design (Mirhoseini et al., 2021). These

advances suggest that artificial neural networks (ANNs) can be designed to reproduce

certain aspects of biological learning, potentially leading to adaptive and intelligent AI

systems. For robotics, understanding and implementing these principles could enhance the

ability of robots to learn from their environment and improve their interaction capabilities
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in complex, dynamic and unpredictable settings. The difficulty of

balancing rich visual input with efficient resource usage has been

studied previously in RL agents (for example, Mnih, 2013 scaled

down visual input from 210 × 160 × 3 to 80 × 80 to reduce

computations).

In biological organisms, sensory input plays a critical role

in shaping the downstream neural network. Sensory experiences

influence the development and organization of neural circuits,

driving the refinement of sensory processing and motor responses.

This input not only impacts the initial formation of synaptic

connections but also continuously modulates neural plasticity,

allowing the brain to adapt to new information and changing

environments (Wiesel and Hubel, 1963; Holtmaat and Svoboda,

2009; Hübener and Bonhoeffer, 2014). The ability of neural

networks to reconfigure based on sensory feedback is essential

for learning and adapting behaviors, highlighting the intricate

relationship between sensory experiences and neural development.

The visual system, one of the major sensory systems for

mammals, receives and processes optical information with a

spatially-variant structure (Land and Eckert, 1985; Bringmann

et al., 2018; Bringmann, 2019), combining high-resolution

foveal vision and low-resolution peripheral vision. This design,

alongside eye movements, allows organisms to efficiently gather

environmental information.

Researchers have explored ways to replicate biological multi-

resolution visual systems to enhance computational efficiency.

In terms of sampling methods, some models adopt a geometric

approach (Traver and Bernardino, 2010; Killick et al., 2023; Liu

et al., 2024), reducing sampling rates from the vision center

outward. For example, Lukanov et al. (2021) use Foveal Cartesian

Geometry (FCG), in which pixels are sampled from concentric

squares around the fovea, to emulate retinal sampling. Then

FCG foveated images are used as the input a CNN classifier.

Other researchers use a simple two-resolution strategy (Chipka

et al., 2021; Min et al., 2022): a uniform low-resolution image for

peripheral vision and a small high-resolution image cropped for

foveal vision. The model of (Xia et al., 2020) uses low-resolution

video frames as the peripheral visual input to predict human driver

gaze and uses high-resolution image patches from the predicted

gaze locations. Both peripheral and foveal input are used to predict

the vehicle speed at high accuracy and high efficiency.

Simulating eye movements is a key focus to build multi-

resolution visual systems. Xia et al. (2020), Zhang et al. (2020),

and Rong et al. (2021) studied imitation learning. Thakur et al.

(2021) proposed Gaze Regularized Imitation Learning (GRIL),

which learned concurrently from both human demonstrations

and eye gaze to solve a visual navigation task. They showed

that GRIL outperformed several state-of-the-art imitation learning

algorithms. A second approach relied on attention maps from

convolutional neural networks (CNNs) (Killick et al., 2023).

Lukanov et al. (2021) to extract an attention map from the final

convolutional layer and used it for bottom-up attention utilizing

salient features from the observations. The classification output

assisted a top-down attention mechanism to augment the attention

map. The maximum intensity in the attention map was used

to locate the foveal position. Another approach employed RL to

dynamically control eye movements based on task demands (Liu

et al., 2024). To capture more objects in human-driving video,

Chipka et al. (2021) trained a Deep-Q Network, where true positive

detections gave a reward. This foveal attention method provided a

considerable improvement in performance for vehicle detection.

Here, we propose a novel framework (Figure 1) for studying

sensorimotor systems using reinforcement learning. We introduce

a multi-resolution visual system with a Locally Competitive

Algorithm (LCA) (Rozell et al., 2008) front end, that closely

emulated mammalian visual processing. This framework was used

to train both single- and multi-resolution models to play the Atari

game Pong.We combined a uniform low-resolution visual field and

a small, cropped high-resolution visual field (fovea) as our multi-

resolution visual input. The fovea was trained to track the ball using

reinforcement learning.

Both single- and multi-resolution agents were trained with

inputs with different characteristics, varying in resolution, history

length, and foveal size. We statistically analyzed the agents’

performance and resource usage under different scenarios. Our

findings revealed that while the performance of both models is

significantly impacted by the quality of the input, the multi-

resolution model demonstrates a greater tolerance to lower-quality

inputs and more efficient utilization of resources, such as neurons

and synapses.

Our work contributes to a deeper understanding of the

structural and functional efficiency of biological visual systems.

It offers valuable insights into the design of visual perception

networks for complex tasks and provides implications for

applications of reinforcement learning, brain-like computing, and

the development of adaptive AI systems. By bridging the gap

between biological systems and artificial models, our study paves

the way for advancements in both theoretical and practical aspects

of sensorimotor learning.

2 Methods

2.1 The Pong environment

We chose Pong, one of the first computer games ever created,

as the task for our reinforcement learning-based agent. Pong is

a simple ping-pong-like game, featuring a ball and two paddles.

One paddle is controlled by the game software, and the other is

controlled by our agent. The goal for our agent is to play against the

computer-controlled paddle and be the first one to gain 21 points

(a player gets a point once the opponent misses a ball).

2.2 Peripheral and foveal visions

In this paper, we construct single- and multi-resolution agents,

respectively, and compare their performance in the OpenAI Gym

Pong environment (see Figure 1 for general information flow

and Figure 2 for detailed structure). We examine high-acuity

visual systems and pre-process Pong frames for two types of

visual system: single-resolution peripheral (peripheral agent), and

multi-resolution peripheral plus foveal vision (foveal agent). Our

peripheral vision agent processed whole video frames, while our

foveal vision agent received a part of the video frame at high

resolution (40× 40 pixels).

In our model, to mimic how animals use saccades to extend

foveal vision, we made the fovea movable and thus it required
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FIGURE 1

Schematic diagram of the single- and multi-resolution Deep-Q Network (DQN) agents that learn to play Pong. Open AI Gym Pong video frames

were preprocessed into a peripheral, low-resolution but full frame and a fovea-like, high-resolution but zoomed frame (active areas are denoted in

black). These frames from up to four time steps (labeled by “t, t− 1, ...") were sparse coded by a Locally Competitive Algorithm (LCA). The DQN agent

derived actions from these outputs. The single-resolution agent (A) exclusively received visual input from the periphery, then determined the paddle

action, which was sent back to the OpenAI Gym agent (black “Action” arrow). The multi-resolution agent (B) received input from the periphery and

fovea and returned the paddle action to OpenAI Gym and additionally updated the foveal movement parameters, used internally in the agent for the

next time step (black “Action” and red “Move” arrow, respectively).

a separate module to control its movements. Specifically, Pong

frames were first converted to grayscale and then resized to a fixed

resolution. For both peripheral and foveal agents, paddle and ball

sizes were proportionally resized, while their relative positions were

preserved. The peripheral agent’s input was the entire preprocessed

video frame. Then the m most recent frames were stacked giving

time-dependent input to the agent. The foveal agent received

cropped video frames according to the foveal position with the

n most recent patches stacked giving local time-dependent input.

Note that the stacked foveal patches may not have been cropped

from the same physical area because the stacks included past foveal

visual frames subject to time-dependent fovea movements.

2.3 Locally competitive algorithm

Visual inputs from both visual streams are first processed by

the Locally Competitive Algorithm (LCA) (Rozell et al., 2008),

a recurrent neural network for sparse coding and dictionary

learning (see Figure 2). LCA uses recurrent inhibitory synaptic

connectivity within a layer to competitively reduce activity in

neuronal populations with small contributions to a reconstruction

of its input. This results in a sparse representation of the input

data. The dictionary of vectors capable of contributing to a sparse

reconstruction is overcomplete, allowing flexibility to achieve

sparse coding. Sparse coding via LCA is thought to be similar to

how mammalian visual systems process visual information.

An LCA neuron with index i has internal state ui and receives

input, ai, through a synaptically encoded dictionary, Gij described

as

u̇i(t) =
1

τ
[bi − ui(t)−

∑

j6=i

Gijaj(t)] (1)

ai(t) =

{

0 ui(t) < λ

ui(t) ui(t) ≥ λ
(2)
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FIGURE 2

Detailed structure of single- and multi-resolution agents. Data flow of multi-resolution agent with 16 × 16 periphery, 20 × 20 fovea and n-frame

input is shown as an example. The preprocessed frame sequence was input into corresponding foveal and peripheral LCA and CNN networks to

extract spatiotemporal features. The single-resolution agent (black arrows) used only peripheral features (i.e. full frame at fixed resolution) to select

paddle action. The multi-resolution agent (black and red arrows) combined peripheral and foveal features, fovea movement and position to select a

paddle action and fovea movement in the next time step. *: The single-resolution agent had two fully connected layers to select paddle action while

multi-resolution agent had three.

where bi = 〈φm, s〉 is an excitatory input current, and φi is

the visual receptive field of neuron i. Lateral inhibition from

neuron j to neuron i is proportional to Gijaj(t), where Gij =

〈φi,φj〉. τ denotes a time constant and is set to 0.1. λ denotes

threshold and is set to 1.25, 1.3, 1.35, 1.4 when the number

of input frame is 1, 2, 3, 4, respectively. λ sets the degree

of sparsity in the data reconstruction and here the effective

sparsity(Nactive neurons/Nnon-zero pixels) is around 0.5 for 2, 3, 4 frame,

and 0.8 for 1 frame.

The goal of the LCA algorithm is to approximately reconstruct

the input, ŝ(t) =
∑

i
ai(t)φi ≈ s(t). For each n-frame input, ui and

ai will be updated according to Equations 1, 2 for 10 time steps

(dt = 0.01). We show that the changes in LCA reconstruction loss

as function of time have a similar tendency for different numbers of

frames (Figure 3A). Though all curves in Figure 3A converge at 25

time steps, the difference in performance between 10 and 25 time

steps is negligible (Figures 3B, C). Therefore, we set the number

of time steps to 10 to reduce computation time. During training,

receptive fields, φi, are updated with the following rule,

1φi = η(s− ŝ)ai (3)

where we used η = 0.002 as the learning rate.

In practice, visual inputs are divided into several non-

overlapping patches of 2 × 2 pixels and processed by patch-based

LCA, which shares weights between patches and encodes each patch

independently.We use a 4× overcomplete dictionary, such that, for

n-frame input, there are 4 × 2 × 2 × n = 16n LCA neurons in

each patch. We constrain dictionary elements to be unit norm. The

peripheral LCA agent is trained first. LCA neurons for peripheral

vision were trained with frames from Pong videos for 400 epochs, in

which the agent paddle is controlled by random actions. In the first

200 epochs, we train half of the LCA neurons with frame patches

from the vertical region that the paddle is constrained to move in.

In the next 200 epochs, we fix these neurons and train the other half

of the neurons with frame patches from all regions. This is done

to capture information about the ball’s motion. Subsequently, LCA

neurons for foveal vision are trained on all neurons within fovea-

sized images for 200 epochs, while concurrently training the foveal

motion controller.

2.4 Deep-Q network

Both single- and multi-resolution agents (see Figures 1, 2) are

based on deep Q-networks (DQN), which have been shown to be

capable of playing many Atari games, at or better than human

level, including Pong (Mnih et al., 2015). DQNs are based on a

reinforcement learning paradigm that makes use of Q-learning

(Watkins and Dayan, 1992). We use DQN to approximate the

optimal action-value function

Q∗(s, a) = Es′ [r + γ max
a′

Q(s′, a′)|s, a,π] (4)

where r is the reward, s′ and a′ are the state and action of the next

time step, and π is the policy. γ is the discount factor which we set

to be 0.99. At iteration i, we use a Q-learning update derived from

the loss function

Li(θi) = E(s,a,r,s′)∼U(D)[(r+γ max
a′

Q(s′, a′; θ−i )−Q(s, a; θi))
2] (5)

where θi are network parameters at iteration i and θ−i are the target

network parameters at iteration i. The target network parameters,

θ−i , are only updated with DQN parameters, θi, every 1, 000 steps

and fixed between individual updates.U(D) denotes the experience

pool which has a maximum size of 100, 000 samples for the foveal
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FIGURE 3

Comparing the LCA reconstruction loss at di�erent times. (A) LCA reconstruction loss vs. time. Periphery = 40× 40 for all reconstructions in this

figure. (B) and (C) Training curves of agents trained at time step 10 and time step 25. (B) Single-resolution agent {40, 2}. (C) Multi-resolution agent

{16, 12, 2}. Note that the agents train well at either time step 10 or 25.

controller and 500, 000 for the action controller. During training,

we use an epsilon greedy policy in which randomness of action

selection begins with 100% and converges to 2%. The learning rate

is set to be 0.0002. The foveal controller is trained for 300 epochs

while the action controller is trained for 3, 000 epochs.

2.5 The foveal controller

To control foveal movement, we use reinforcement learning

to train a foveal controller which outputs foveal movement at the

next time step (Figure 2). In Pong, the position and velocity of the

ball are the most critical information to win the game. Therefore,

we design the foveal controller to track the ball and keep it in the

center of the foveal vision. In the beginning of each game, the fovea

will be fixed in the center of the Pong frame until the ball appears.

The foveal controller is rewarded when the ball is in the center of

the foveal vision field (4 × 4 pixels) and penalized when the ball is

out of the foveal vision field. The reward function is summarized

in Equation 6.

r(t) =























0.01 if the ball is in the 2× 2 most central foveal patches

−0.05 if the ball is in the fovea, but not in one of the 2× 2

most central patches

−0.1 if the ball is outside of fovea

(6)

The foveal controller has two branches, one for foveal

movement along the x-axis (1xfoveat ) and the other for the y-axis

(1yfoveat ). During training, the foveal controller produces two sets

ofQ-values. The loss value of each branch is computed individually

according to Equation 5, Lx(θi) and Ly(θi). The training loss Li(θi)

is then their sum,

Li(θi) = Lx(θi)+ Ly(θi) . (7)

We use an agent wins about 50% of the time to play and record

video frames when playing and use them as training data. The

foveal controller combines visual information from both vision and

foveal movement in the most recent time step to generate new

foveal movement. The whole-frame resolution of foveal vision is

fixed to be 40×40 pixels. When the foveal visual field runs off of the

Pong screen, we augment the background. So, when the ball is close

to the frame edge, the foveal controller can still keep the ball in its

center and part of it can be outside of the Pong frame. The weights

of the foveal controller, including CNN weights, are fixed when we

train the action controller. Unlike other attention mechanisms (Xia

et al., 2020; Chipka et al., 2021; Zhang et al., 2020; Killick et al., 2023;

Lukanov et al., 2021; Liu et al., 2024), the foveal position in our

model is continuous and updated based on foveal movement and its

previous position.

2.6 The action controller

The ultimate objective for our agents is to be the first one

to gain 21 points, so they need to be able to hit the ball back

and not to miss it. We train models to map input states to

Q-values, the expected reward, of each action. For the single-

resolution agent (see Figure 2 black connections only), the only

difference between it and a conventional DQN is that it has an LCA

layer to pre-process peripheral inputs before convolutional layers.

Peripheral LCA is trained and fixed before training other parts

of single-resolution agents to identify the most valuable action of

each state.

For the multi-resolution agent (see Figure 2 both black and red

connections), the LCAs and the foveal controller are trained and

fixed. When training to play Pong, the dense layers which output

the paddle action receive not only visual information, but also the

position coordinates, xfoveat and yfoveat , and the velocity of the fovea,

1xfoveat−1 /1t and 1yfoveat−1 /1t. Only the weights of the dense layers in

the action controller are changed during this step of training for a

multi-resolution agent.
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FIGURE 4

Win score heatmap of single- and multi-resolution agents showing di�erences in input quality. The best agent win scores are plotted and bicubic

interpolation is used to fill other areas. The color bar denotes win score values. Markers (up triangle, square, plus, down triangle, diamond and x) in

the heatmap correspond to agents with di�erent input qualities and hyperparameters. Their training curves, test results and win score distributions

are shown in Figures 5, 6. (A) Heatmap of single-resolution agent, exhibiting low win score with periphery ≤16 × 16 and 1-frame input, but higher

win scores at high resolution and long history length. (B) Heatmap of multi-resolution model with 1 frame (bottom) and 2 frames (top) as input,

exhibiting high win score even with periphery = 8 × 8 and 1-frame input.

3 Results

3.1 Tolerance to input quality in single-
and multi-resolution agents

We examined how input quality affected the performance of

single- andmulti-resolution agents.We use win scoreW to evaluate

agents, where

Win score =
ScoreAgent

ScoreAgent + ScoreAtari
, (8)

where ScoreAgent is the total number of points received by the RL

agent, and ScoreAtari is the total number of points that the OpenAI

Gym Atari agent receives. For both agents, we varied the history

length and input frame resolution. In addition, we studied different

sizes of foveas in multi-resolution agents to test how foveal size

affects performance.

We trained and tested 36 agents with different sets of

parameters. The results of these agents, which are the win score

of the best agent with given settings, are shown in Figure 4.

Training curves of 6 single- and multi-resolution agents are shown

in Figure 5. Additionally, we assessed the best evaluation result

by finding the maximum win score over 1, 000 subsequent test

games (plotted to the right of the training curves in Figure 5). For

simplification, we use {rp, n} to denote single-resolution agents with

rp × rp peripheral resolution and n-frame inputs, while we use

{rp,wf , n} to denote multi-resolution agents with rp × rp peripheral

resolution, wf × wf foveal size and n-frame inputs.

3.1.1 Single-resolution agent
To compare single- and multi-resolution agents, we

separated input quality into two dimensions: peripheral

resolution and input frame number. We found that there is

a clear boundary between regions of good (W > 0.5) and

bad (W < 0.5) performance (win score) (Figure 4A). When

peripheral resolution is equal to or lower than 16 × 16, the

single-resolution agent always performs poorly no matter

how much we increase the history length. For instance, the

performance of the single-resolution agent {16, 2} converges

quickly and remains at a low level of around 20% throughout

training (Figure 5A).

Even when we increased the history length to 4, the win score

of the single-resolution agent {16, 4} is still below 50%. Similar

behavior occurred when only the current frame was used as input.

As the number of input frames and peripheral resolution increased

across the boundary, the agent performed better and was able

to achieve high win scores, which were around 80%. However,

win scores could still fluctuate during training even when input

quality was improved (longer history and/or higher resolution)

(Figures 5B, C).

These results suggest that the performance of single-resolution

agents is highly related to both dimensions of input quality. Defects

in either dimension kept single-resolution agents in the low win

score region, no matter how good the performance in the other

dimension was. When peripheral resolution is too low, single-

resolution agents cannot accurately determine the positions of the

ball and paddles. Meanwhile, ball velocity was unpredictable for

single-resolution agents when the input was only a single (i.e. the

current) frame.
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FIGURE 5

Training curves and test results of single- and multi-resolution agents. Model weights are saved every 40 episodes during training and evaluated for

20 games. Evaluation results are plotted with shading indicating standard deviation. Weights with the best evaluation result are tested for another

1,000 games and test results are plotted with error bar indicating standard deviation. Single-resolution agent {16, 2} (A), {40, 2} (B), {40, 4} (C).

Multi-resolution agent {16, 20, 1} (D), {16, 12, 2} (E), {16, 20, 2} (F).

3.1.2 Multi-resolution agent
Compared with single-resolution agents, multi-resolution

agents showed a higher tolerance of low quality inputs and their

performance compared better under similar input conditions. Since

multi-resolution agents had foveas, we added foveal width as a new

dimension of input quality. With their well-resolved foveas, multi-

resolution agents achieved high win scores with only the current

frame as input (Figure 4B, bottom). For example, after training for

about 2000 episodes, the win score of the multi-resolution agent

{16, 20, 1} reached 70% (Figure 5D), which was about 25% higher

than the single-resolution agent {16, 4} with the same peripheral

resolution. This was also 25% higher than the single-resolution

agent {24, 2}, which used a similar number of pixels.

We attributed the lower input quality tolerance of multi-

resolution agents to the fovea. Multi-resolution agents used their

small, but high resolution, fovea to track the ball such that it

could capture both the position and velocity of the ball accurately

with low peripheral resolution. Additional inputs, such as foveal

movement and position, had a similar effect to memory, helping

the agent to counteract the lack of temporal information of a single

input frame. Moreover, pre-trained CNNs were able to capture and

combine both global and local features from both components of

the visual system tomake a better prediction of the expected reward

of each action.

As input quality improved, multi-resolution agents still

benefited from their design. With 2-frame input, multi-resolution

agents always had excellent performance for most sets of

hyperparameters (Figure 4B, top) while single-resolution agents

only performed well when peripheral resolution was equal to

or higher than 32 × 32. Multi-resolution agents showed higher

pixel use under these circumstances. For instance, comparing

with the single resolution agent {40, 2}, the multi-resolution agent

{16, 12, 2} used only 25% of its pixels to achieve a 5% higher win

score. This multi-resolution agent converged over 200 episodes

earlier than the single-resolution agent with smaller fluctuations

during training (Figure 5E). Similar things happened when the

input quality improved and multi-resolution agents converged

even faster, training in about 1, 200 episodes (Figure 5F). Though

multi-resolution agents were efficient in using input information,

poor quality input still influenced their performance. Except for

{16, 8, 2}, other agents with 8 × 8 foveas could not achieve good

performance. Meanwhile, multi-resolution agents with 16 × 16

peripheral resolution always performed better than those with 8×8

peripheral resolution when other conditions were the same.

3.1.3 Distribution of the win score
In Figure 6, we investigate the win score distribution of six best-

performing single- and multi-resolution agents, whose training

curves are shown in Figure 5. The result shows that the single-

resolution agent {16, 2} almost never obtained a win score above

50% (Figure 6A, violet), which means it always lost. However,

the multi-resolution agent with 1-frame input won the most test

games (Figure 6B, violet). This result suggested that compared to
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FIGURE 6

The distribution of single- and multi-resolution agents’ test results. (A) Single-resolution agent. (B) Multi-resolution agent.

single-resolution agents, multi-resolution agents can extract more

information from low quality input and have higher tolerance to

low quality input. As the input quality improved, the win score

distributions of both single- and multi-resolution agents shifted to

the right and always had a win score that was higher than 50%,

indicating that both agents could benefit from the better input

quality and have good stability when the mean win score was high.

3.2 Resource utilization in single- and
multi-resolution agents

To explore the resource efficiency of both kinds of agents,

we compare the resource use and win score of agents as a

function of different hyperparameters. More specifically, the

number of neurons and synapses in the network, and a measure

of computational throughput (Floating Point Operations Per

Second, FLOPS) are used for comparison. Notice that, for

our multi-resolution agent, foveal movement and paddle action

were generated by the same visual information. Therefore, the

generation of foveal movement does not need extra resources to

process visual information.

When peripheral resolution is low or the number of input

frames is small, single-resolution agents perform poorly (Table 1

{16, 4} and {40, 1}). However, with input that has a longer

history but lower resolution, these agents can achieve significantly

higher win scores using fewer neurons and synapses (compare

Table 1 {40, 1} with {24, 3}). This suggests that for the same

network architecture, investing more resources might not lead to

better performance if the resources are used in the wrong place.

Improving input quality in the correct dimension (i.e. spatial scale

vs. history length) can make the model perform significantly better,

even with fewer resources.

With only the current frame as input, the win score of

multi-resolution agents is 18% higher than single-resolution

TABLE 1 Win scores of single-resolution agent using inputs of di�erent

quality and resources.

Periphery
resolution

Input
frames

Neurons Synapses FLOPs Win
score

40 1 9.51× 103 2.10× 106 6.21× 106 24.0%

16 4 4.90× 103 7.08× 105 6.34× 106 43.2%

24 3 8.23× 103 1.36× 106 8.90× 106 67.2%

40 4 2.87× 104 5.62× 106 4.20× 107 80.7%

agents that use similar numbers of synapses but more neurons

and computational throughput (compare Table 2 {16, 12, 1} with

Table 1 {16, 4}). Increasing the number of input frames leads to

better performance than increasing peripheral resolution (compare

Table 2 {8, 12, 1}, {16, 12, 2} and {8, 12, 2}). This agrees with the

results seen with single-resolution agents. Furthermore, multi-

resolution agents need fewer resources to stabilize their training

curves when both single- and multi-resolution agents can achieve

comparable performance (compare Table 2 {16, 12, 2} and Table 1

{40, 4}).

We show results of single-resolution agents with 2, 3, and 4-

frame input and multi-resolution agents with 1 and 2-frame input

in Figure 7. For each resource, win scores for each agent are fitted

with the functional form y = a− b
xc+d

, where y denotes win score,

x denotes the resource and (a, b, c, d) are fit parameters. It is clear

that for all resources, the fitting curve of multi-resolution agents

is above that of single-resolution agents for all resource amounts.

This indicates that multi-resolution agents have higher efficiency

in resource utilization. Combining with results in Tables 1, 2, this

indicates that low resolution could be one of the reasons for high

efficiency. It is interesting that the win scores of single-resolution

agents roughly follow the same curves as resources change, even

though the history length for these agents is different. However,

the results of multi-resolution agents show that when using similar
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TABLE 2 Win scores of Multi-resolution agent using inputs of di�erent quality and resources.

Periphery resolution Fovea width Input frames Neurons Synapses FLOPs Win score

8 12 1 2.03× 103 4.00× 105 1.06× 106 55.4%

16 12 1 3.44× 103 7.86× 105 2.08× 106 61.4%

8 12 2 2.86× 103 4.74× 105 1.97× 106 80.2%

16 12 2 6.32× 103 9.37× 105 3.84× 106 82.4%

FIGURE 7

Multi-resolution agents using fewer resources than single-resolution agent to achieve the same win score. Circle: single-resolution agent. Diamond:

multi-resolution agent. Function y = a− b
xc+d

is used to fit win scores of single-resolution agent (dash line) and multi-resolution agent (solid line). (A)

Neurons. (B) Synapses. (C) FLOPs.

amounts of resources, agents with longer history lengths always

perform better than agents with shorter histories (Figure 7, red and

blue diamonds). This implies that comparing with single-resolution

agents, multi-resolution agents have a better ability to extract

information from input with long history lengths. This could be

one of the reasons that multi-resolution agents use resources more

efficiently.

4 Discussion and conclusions

In this paper, we trained biologically-motivated agents, with

and without a fovea, to play Pong via reinforcement learning. We

then compared their performance and resource utilization. We

showed that the performance of agents with a fovea converges faster

during training and is more stable after the agent achieves a high

win score. At the same time, the agent with a fovea has a higher

tolerance to lower input quality and uses resources more efficiently.

This includes the number of neurons, synapses, and computations.

Comparing with other reinforcement learning agents that did

not use LCA, we found that our multi-resolution agent had a higher

pixel-efficiency. For example, the DQN RL agent in Mnih et al.

(2015) achieved a 91% win score in Pong, which was about 8%

higher than the mean score of our multi-resolution agent {16, 12, 2}

and about equal to its best score (see error bars on the right of

Figure 5D). However, our agent used about 3% of the pixels used

in Mnih et al. (2015). Similarly, in Adhikari and Ren (2021), the

authors used a Double DQN agent achieving similar win scores

with our multi-resolution agent {16, 12, 2}, while our agent only

used 2% of the pixels used in the Double DQN agent.

To emulate visual processing in mammalian primary visual

cortex (V1), we used LCA to preprocess the visual inputs from

peripheral and foveal vision. In studies of V1, researchers have

discovered that the spatiotemporal characteristics of V1 receptive

fields can be represented by a dictionary tuned to give rise,

via recurrent connections, to sparse responses to natural images

(Olshausen, 2003). Recordings of V1 activity under natural scene

stimulation have revealed that neural activity becomes sparse

when adjacent neurons are stimulated (Vinje and Gallant, 2002).

Additionally, it has been found experimentally that the dictionary

of V1 receptive fields is overcomplete (Olshausen and Field,

2004), meaning that the number of neurons in V1 exceeds the

dimensionality of the input signals. This overcompleteness confers

a high degree of flexibility in representing input information. Such

flexible sparse coding confers numerous advantages to the sensory

nervous system, including enhanced performance in subsequent

processing stages, increased memory capacity, and improved

energy efficiency. The locally competitive algorithm contains all

these properties, including lateral inhibition and overcompleteness,

which make it a candidate for sparse coding in the visual system.

Many studies transform LCA into a spiking neural network

and use it as a benchmark to run on neuromorphic hardware

(Woods et al., 2015; Fair et al., 2019; Parpart et al., 2023; Hong

et al., 2024). Neuromorphic systems are event-based and they
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consume energy only when spikes are generated. Compared to

traditional computing systems, neuromorphic systems require only

about 1% of the energy to run the same algorithm (Göltz et al.,

2021), which makes it perfect for devices with low SWaP (size,

weight, and power) requirements. Moreover, a neuromorphic LCA

algorithm capable of learning a dictionary has been demonstrated

(Chavez Arana et al., 2023). Hence, this early visual part of our

algorithm is capable of a low SWaP implementation.

The later visual system is represented by deep nets (i.e.

feedforward neural networks with many layers). A recent

study proposes a neuromorphic backpropagation algorithm

implemented on spiking neuromorphic hardware (Renner et al.,

2024) that uses mechanisms that have been experimentally

demonstrated in mammalian cortex, such as synfire chains (Mao

et al., 2001; Ikegaya et al., 2004) and communication through

coherence (Riehle et al., 1997; Sornborger et al., 2015; Wang et al.,

2016). Thus, the deep net part of our vision learning framework

can also be implemented neuromorphically. Taken together, this

implies that a learning, spiking implementation of our framework

for learning Pong is feasible.

The non-uniform spatial distribution with which we sampled

visual information has analogs in other sensory modalities. For

example, in human skin, the distribution of mechanoreceptors is

not uniform (Johnson, 2001). Mechanoreceptors are denser in the

fingertips, which are the main body parts that we actively use to

touch objects. In the human auditory system, the range of human

hearing is from 20 to 20, 000Hz. But due to the distribution of inner

hair cells in the cochlea, a human is more sensitive to frequencies

between 2, 000 and 5, 000 Hz (Gelfand, 2009). This range contains

the bulk of the frequencies relevant to human speech. Different

sensory systems focus most of their resources on perceiving key

local information while maintaining a global awareness, which

helps organisms acquire information more efficiently.

To play Pong, our agents combined information from different

parts of the visual system, the fovea and the periphery. One

possible improvement for our agent might be to add other

sensory modalities, such as sound. Adding a new sensory modality

may supply complementary information and provide a more

comprehensive view of a task. For example, in order to immerse

the player in the game, background music in video games always

provides supplementary information about the current game state

and even foreshadows what is going to happen. From the point

of view of neuroscience, multisensory integration, or the binding

problem, has gained a lot of attention (Roskies, 1999; Zmigrod

and Hommel, 2010; Powers III et al., 2016; Yu and Lau, 2023).

Studying how a biologically-plausible multisensory agent solves

complex decision-making tasks, like games, is a possible way to

study how binding happens in biological neural networks.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

RC: Writing – original draft, Writing – review & editing,

Data curation, Formal analysis, Investigation, Software, Validation,

Visualization. GK: Writing – review & editing, Supervision,

Conceptualization. LT: Writing – review & editing, Supervision,

Conceptualization. AS: Writing – review & editing, Supervision,

Conceptualization, Funding acquisition.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was partially supported by the National Science and Technology

Innovation STI2030-Major Project No. 2022ZD0204600 and the

Natural Science Foundation of China through Grant No. 31771147

(RC and LT). This work was supported by the US Department

of Energy National Nuclear Security Administration’s Office of

Defense Nuclear Nonproliferation Research & Development

(DNN R&D) at Los Alamos National Laboratory under contract

89233218CNA000001. LANL approval designation for this

document is LA-UR-24-33048.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnins.2025.

1547264/full#supplementary-material

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2025.1547264
https://www.frontiersin.org/articles/10.3389/fnins.2025.1547264/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2025.1547264

References

Adhikari, A., and Ren, Y. (2021). RL-PONG: Playing Pong From Pixels. Project
Proposal, CSCE 790-001: Deep Reinforcement Learning and Search.

Baker, B., Akkaya, I., Zhokov, P., Huizinga, J., Tang, J., Ecoffet, A., et al. (2022).
Video pretraining (VPT): learning to act by watching unlabeled online videos. Adv.
Neural Inf. Process. Syst. 35, 24639–24654. doi: 10.48550/arXiv.2206.11795

Bringmann, A. (2019). Structure and function of the bird fovea. Anat. Histol.
Embryol. 48, 177–200. doi: 10.1111/ahe.12432

Bringmann, A., Syrbe, S., Görner, K., Kacza, J., Francke, M., Wiedemann, P., and
Reichenbach, A. (2018). The primate fovea: structure, function and development. Prog.
Retin. Eye Res. 66, 49–84. doi: 10.1016/j.preteyeres.2018.03.006

Chavez Arana, D., Renner, A., and Sornborger, A. (2023). “Spiking LCA in a neural
circuit with dictionary learning and synaptic normalization,” in Proceedings of the 2023
Annual Neuro-Inspired Computational Elements Conference (New York, NY: ACM),
47–51. doi: 10.1145/3584954.3584968

Chipka, J., Zeng, S., Elvitigala, T., and Mudalige, P. (2021). “A computer
vision-based attention generator using DQN,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (Montreal, BC IEEE), 2942–2950.
doi: 10.1109/ICCVW54120.2021.00329

Day, J. J., Roitman, M. F., Wightman, R. M., and Carelli, R. M. (2007). Associative
learningmediates dynamic shifts in dopamine signaling in the nucleus accumbens.Nat.
Neurosci. 10, 1020–1028. doi: 10.1038/nn1923

Fair, K. L., Mendat, D. R., Andreou, A. G., Rozell, C. J., Romberg, J., Anderson, D. V.,
et al. (2019). Sparse coding using the locally competitive algorithm on the TrueNorth
neurosynaptic system. Front. Neurosci. 13:754. doi: 10.3389/fnins.2019.00754

Gelfand, S. (2009). Essentials of Audiology. Thieme Publishers Series. New York, NY:
Thieme.

Göltz, J., Kriener, L., Baumbach, A., Billaudelle, S., Breitwieser, O., Cramer, B., et al.
(2021). Fast and energy-efficient neuromorphic deep learning with first-spike times.
Nat. Mach. Intell. 3, 823–835. doi: 10.1038/s42256-021-00388-x

Holtmaat, A., and Svoboda, K. (2009). Experience-dependent structural
synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658.
doi: 10.1038/nrn2699

Hong, Q., Xiao, P., Fan, R., and Du, S. (2024). Memristive neural network
circuit design based on locally competitive algorithm for sparse coding application.
Neurocomputing 578:127369. doi: 10.1016/j.neucom.2024.127369

Hübener, M., and Bonhoeffer, T. (2014). Neuronal plasticity: beyond the critical
period. Cell 159, 727–737. doi: 10.1016/j.cell.2014.10.035

Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., et al. (2004).
Synfire chains and cortical songs: temporal modules of cortical activity. Science 304,
559–564. doi: 10.1126/science.1093173

Johnson, K. O. (2001). The roles and functions of cutaneous mechanoreceptors.
Curr. Opin. Neurobiol. 11, 455–461. doi: 10.1016/S0959-4388(00)00234-8

Kable, J. W., and Glimcher, P. W. (2009). The neurobiology of decision: consensus
and controversy. Neuron 63, 733–745. doi: 10.1016/j.neuron.2009.09.003

Killick, G., Henderson, P., Siebert, P., and Aragon-Camarasa, G. (2023).
Foveation in the era of deep learning. arXiv [Preprint]. arXiv:2312.01450.
doi: 10.48550/arXiv.2312.01450

Knutson, B., Delgado, M. R., and Phillips, P. E. (2009). “Representation of
subjective value in the striatum,” in Neuroeconomics, eds. P. W. Glimcher, C.
F. Camerer, E. Fehr, and Russell A. Poldrack (Amsterdam: Elsevier), 389–406.
doi: 10.1016/B978-0-12-374176-9.00025-7

Land,M., and Eckert, H. (1985).Maps of the acute zones of fly eyes. J. Comp. Physiol.
A 156, 525–538. doi: 10.1007/BF00613976

Lee, D., Seo, H., and Jung, M. W. (2012). Neural basis of reinforcement
learning and decision making. Annu. Rev. Neurosci. 35, 287–308.
doi: 10.1146/annurev-neuro-062111-150512

Liu, J., Bu, Y., Tso, D., and Qiu, Q. (2024). “Improved efficiency based on learned
saccade and continuous scene reconstruction from foveated visual sampling,” in
Twelfth International Conference on Learning Representations.

Lukanov, H., König, P., and Pipa, G. (2021). Biologically inspired deep learning
model for efficient foveal-peripheral vision. Front. Comput. Neurosci. 15:746204.
doi: 10.3389/fncom.2021.746204

Mao, B-. Q., Hamzei-Sichani, F., Aronov, D., Froemke, R. C., and Yuste, R.
(2001). Dynamics of spontaneous activity in neocortical slices. Neuron 32, 883–898.
doi: 10.1016/S0896-6273(01)00518-9

Min, J., Zhao, Y., Luo, C., and Cho, M. (2022). Peripheral vision transformer. Adv.
Neural Inf. Process. Syst. 35, 32097–32111.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W., Songhori, E., Wang, S., et al.
(2021). A graph placement methodology for fast chip design. Nature 594, 207–212.
doi: 10.1038/s41586-021-03544-w

Mnih, V. (2013). Playing Atari with deep reinforcement learning. arXiv [Preprint].
arXiv:1312.5602. doi: 10.48550/arXiv.1312.5602

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
et al. (2015). Human-level control through deep reinforcement learning. Nature 518,
529–533. doi: 10.1038/nature14236

Montague, P., Dayan, P., Nowlan, S. J., Pouget, A., and Sejnowski, T. (1992).
Using aperiodic reinforcement for directed self-organization during development.Adv.
Neural Inf. Process. Syst. 5, 969–976.

Montague, P. R., Dayan, P., and Sejnowski, T. J. (1996). A framework for
mesencephalic dopamine systems based on predictive hebbian learning. J. Neurosci.
16, 1936–1947. doi: 10.1523/JNEUROSCI.16-05-01936.1996

Nguyen, H., and La, H. (2019). “Review of deep reinforcement learning for robot
manipulation,” in 2019 Third IEEE International Conference on Robotic Computing
(IRC) (Naples: IEEE), 590–595. doi: 10.1109/IRC.2019.00120

Niv, Y. (2009). Reinforcement learning in the brain. J. Math. Psychol. 53, 139–154.
doi: 10.1016/j.jmp.2008.12.005

Olshausen, B. A. (2003). Principles of image representation in visual cortex. Vis.
Neurosci. 2, 1603–1615. doi: 10.7551/mitpress/7131.003.0123

Olshausen, B. A., and Field, D. J. (2004). Sparse coding of sensory inputs.Curr. Opin.
Neurobiol. 14, 481–487. doi: 10.1016/j.conb.2004.07.007

Parpart, G., Risbud, S., Kenyon, G., and Watkins, Y. (2023). “Implementing
and benchmarking the locally competitive algorithm on the Loihi 2
neuromorphic processor,” in Proceedings of the 2023 International Conference
on Neuromorphic Systems (New York, NY: IEEE), 1–6. doi: 10.1145/3589737.36
05973

Powers, I. I. I., Hillock-Dunn, A. R., andWallace, A. M. T. (2016). Generalization of
multisensory perceptual learning. Sci. Rep. 6:23374. doi: 10.1038/srep23374

Renner, A., Sheldon, F., Zlotnik, A., Tao, L., and Sornborger, A. (2024). The
backpropagation algorithm implemented on spiking neuromorphic hardware. Nat.
Commun. 15:9691. doi: 10.1038/s41467-024-53827-9

Riehle, A., Grun, S., Diesmann, M., and Aertsen, A. (1997). Spike synchronization
and rate modulation differentially involved in motor cortical function. Science 278,
1950–1953. doi: 10.1126/science.278.5345.1950

Rong, Y., Xu,W., Akata, Z., and Kasneci, E. (2021). Human attention in fine-grained
classification. arXiv [Preprint]. arXiv:2111.01628. di: 10.48550/arXiv.2111.01628

Roskies, A. L. (1999). The binding problem. Neuron 24, 7–9.
doi: 10.1016/S0896-6273(00)80817-X

Rozell, C. J., Johnson, D. H., Baraniuk, R. G., and Olshausen, B. A. (2008). Sparse
coding via thresholding and local competition in neural circuits. Neural Comput. 20,
2526–2563. doi: 10.1162/neco.2008.03-07-486

Schultz, W., Dayan, P., andMontague, P. R. (1997). A neural substrate of prediction
and reward. Science 275, 1593–1599. doi: 10.1126/science.275.5306.1593

Sornborger, A. T., Wang, Z., and Tao, L. (2015). A mechanism for graded,
dynamically routable current propagation in pulse-gated synfire chains and
implications for information coding. J. Comput. Neurosci. 39, 181–195.
doi: 10.1007/s10827-015-0570-8

Thakur, R. K., Sunbeam, M., Goecks, V. G., Novoseller, E., Bera, R., Lawhern, V. J.,
et al. (2021). Imitation learning with human eye gaze via multi-objective prediction.
arXiv [Preprint]. arXiv:2102.13008. doi: 10.48550/arXiv.2102.13008

Traver, V. J., and Bernardino, A. (2010). A review of log-polar imaging for
visual perception in robotics. Rob. Auton. Syst. 58, 378–398. doi: 10.1016/j.robot.2009.
10.002

Vinje, W. E., and Gallant, J. L. (2002). Natural stimulation of the nonclassical
receptive field increases information transmission efficiency in V1. J. Neurosci. 22,
2904–2915. doi: 10.1523/JNEUROSCI.22-07-02904.2002

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J.,
et al. (2019). Grandmaster level in starcraft ii usingmulti-agent reinforcement learning.
Nature 575, 350–354. doi: 10.1038/s41586-019-1724-z

Wang, Z., Sornborger, A. T., and Tao, L. (2016). Graded, dynamically routable
information processing with synfire-gated synfire chains. PLoS Comput. Biol.
12:e1004979. doi: 10.1371/journal.pcbi.1004979

Watkins, C. J., and Dayan, P. (1992). Q-learning. Mach. Learn. 8, 279–292.
doi: 10.1007/BF00992698

Wiesel, T. N., and Hubel, D. H. (1963). Single-cell responses in striate
cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017.
doi: 10.1152/jn.1963.26.6.1003

Woods, W., Bürger, J., and Teuscher, C. (2015). Synaptic weight
states in a locally competitive algorithm for neuromorphic memristive
hardware. IEEE Trans. Nanotechnol. 14, 945–953. doi: 10.1109/TNANO.2015.
2449835

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2025.1547264
https://doi.org/10.48550/arXiv.2206.11795
https://doi.org/10.1111/ahe.12432
https://doi.org/10.1016/j.preteyeres.2018.03.006
https://doi.org/10.1145/3584954.3584968
https://doi.org/10.1109/ICCVW54120.2021.00329
https://doi.org/10.1038/nn1923
https://doi.org/10.3389/fnins.2019.00754
https://doi.org/10.1038/s42256-021-00388-x
https://doi.org/10.1038/nrn2699
https://doi.org/10.1016/j.neucom.2024.127369
https://doi.org/10.1016/j.cell.2014.10.035
https://doi.org/10.1126/science.1093173
https://doi.org/10.1016/S0959-4388(00)00234-8
https://doi.org/10.1016/j.neuron.2009.09.003
https://doi.org/10.48550/arXiv.2312.01450
https://doi.org/10.1016/B978-0-12-374176-9.00025-7
https://doi.org/10.1007/BF00613976
https://doi.org/10.1146/annurev-neuro-062111-150512
https://doi.org/10.3389/fncom.2021.746204
https://doi.org/10.1016/S0896-6273(01)00518-9
https://doi.org/10.1038/s41586-021-03544-w
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.1523/JNEUROSCI.16-05-01936.1996
https://doi.org/10.1109/IRC.2019.00120
https://doi.org/10.1016/j.jmp.2008.12.005
https://doi.org/10.7551/mitpress/7131.003.0123
https://doi.org/10.1016/j.conb.2004.07.007
https://doi.org/10.1145/3589737.3605973
https://doi.org/10.1038/srep23374
https://doi.org/10.1038/s41467-024-53827-9
https://doi.org/10.1126/science.278.5345.1950
https://doi.org/10.1016/S0896-6273(00)80817-X
https://doi.org/10.1162/neco.2008.03-07-486
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1007/s10827-015-0570-8
https://doi.org/10.48550/arXiv.2102.13008
https://doi.org/10.1016/j.robot.2009.10.002
https://doi.org/10.1523/JNEUROSCI.22-07-02904.2002
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1371/journal.pcbi.1004979
https://doi.org/10.1007/BF00992698
https://doi.org/10.1152/jn.1963.26.6.1003
https://doi.org/10.1109/TNANO.2015.2449835
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2025.1547264

Wurman, P. R., Barrett, S., Kawamoto, K., MacGlashan, J., Subramanian, K., Walsh,
T. J., et al. (2022). Outracing champion Gran Turismo drivers with deep reinforcement
learning. Nature 602, 223–228. doi: 10.1038/s41586-021-04357-7

Xia, Y., Kim, J., Canny, J., Zipser, K., Canas-Bajo, T., Whitney, D., et al. (2020).
“Periphery-fovea multi-resolution driving model guided by human attention,”
in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision (Snowmass, CO: IEEE), 1767–1775. doi: 10.1109/WACV45572.2020.
9093524

Yu, X., and Lau, E. (2023). The binding problem 2.0: beyond perceptual features.
Cogn. Sci. 47:e13244. doi: 10.1111/cogs.13244

Zhang, R., Walshe, C., Liu, Z., Guan, L., Muller, K., Whritner, J., et al. (2020). Atari-
head: Atari human eye-tracking and demonstration dataset. Proc. AAAI Conf. Artif.
Intell. 34, 6811–6820. doi: 10.1609/aaai.v34i04.6161

Zmigrod, S., and Hommel, B. (2010). Temporal dynamics of unimodal
and multimodal feature binding. Attent. Percept. Psychophys. 72, 142–152.
doi: 10.3758/APP.72.1.142

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2025.1547264
https://doi.org/10.1038/s41586-021-04357-7
https://doi.org/10.1109/WACV45572.2020.9093524
https://doi.org/10.1111/cogs.13244
https://doi.org/10.1609/aaai.v34i04.6161
https://doi.org/10.3758/APP.72.1.142
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Foveal vision reduces neural resources in agent-based game learning
	1 Introduction
	2 Methods
	2.1 The Pong environment
	2.2 Peripheral and foveal visions
	2.3 Locally competitive algorithm
	2.4 Deep-Q network
	2.5 The foveal controller
	2.6 The action controller

	3 Results
	3.1 Tolerance to input quality in single- and multi-resolution agents
	3.1.1 Single-resolution agent
	3.1.2 Multi-resolution agent
	3.1.3 Distribution of the win score

	3.2 Resource utilization in single- and multi-resolution agents

	4 Discussion and conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


