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Introduction: Human brain activities are always difficult to recognize due 
to its diversity and susceptibility to disturbance. With its unique capability of 
measuring brain activities, magnetoencephalography (MEG), as a high temporal 
and spatial resolution neuroimaging technique, has been used to identify multi-
task brain activities. Accurately and robustly classifying motor imagery (MI) and 
cognitive imagery (CI) from MEG signals is a significant challenge in the field of 
brain-computer interface (BCI).

Methods: In this study, a graph-based long short-term memory-convolutional 
neural network (GLCNet) is proposed to classify the brain activities in MI 
and CI tasks. It was characterized by implementing three modules of graph 
convolutional network (GCN), spatial convolution and long short-term memory 
(LSTM) to effectively extract time-frequency-spatial features simultaneously. 
For performance evaluation, our method was compared with six benchmark 
algorithms of FBCSP, FBCNet, EEGNet, DeepConvNets, Shallow ConvNet and 
MEGNet on two public datasets of MEG-BCI and BCI competition IV dataset 3.

Results: The results demonstrated that the proposed GLCNet outperformed 
other models with the average accuracies of 78.65% and 65.8% for two 
classification and four classification on the MEG-BCI dataset, respectively.

Discussion: It was concluded that the GLCNet enhanced the model’s adaptability 
in handling individual variability with robust performance. This would contribute 
to the exploration of brain activates in neuroscience.
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1 Introduction

Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that records 
dynamic spatiotemporal brain patterns with millisecond resolution by measuring the magnetic 
fields produced by neuronal activity (Yang et al., 2024). Revealing the developmental patterns 
of motor cognition requires brain magnetic measurement technology with high temporal and 
spatial resolution, and MEG is the ideal tool for detecting the complex and multifaceted 
development of cognitive abilities (Gross, 2019). Compared to other neuroimaging modalities, 
MEG offers substantial advantages, including high temporal resolution, the capacity for direct 
measurement of neuronal activity, real-time data acquisition, and precise localization of 
dynamic neural processes (Hämäläinen et al., 2020; Mellinger et al., 2007). Recent studies have 
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demonstrated MEG’s effectiveness in classifying specific motor 
imagery (MI) and cognitive imagery (CI). For instance, MEG has been 
applied to classify upper limb movements (Hesse et  al., 2007), 
recognize multiple gestures (Bu et al., 2023), and assess kinematic 
parameters (Kim et  al., 2023), offering new possibilities for 
applications in fields such as neurorehabilitation and human-
computer interaction (Halme and Parkkonen, 2018). These findings 
underscore MEG’s potential for enhanced classifying of brain activity 
and its applicability in diverse research and clinical settings.

Brain activities such as MI (Groß et al., 2002; Jerbi et al., 2007), CI 
(Leeuwis et al., 2021), motor execution (ME) (Solodkin et al., 2004), 
and emotional processing (Dumas et  al., 2011) are key areas for 
understanding neural dynamics. Among them, MI holds promise in 
rehabilitation medicine, sports training, and neuroscience research 
(Chholak et al., 2019). MI involves mentally rehearsing movements 
without physically executing them (Phadikar et al., 2023), which is 
especially valuable for identifying movement intentions in patients 
with motor impairments and enables the implementation of closed-
loop neurofeedback systems to support rehabilitation (Mane et al., 
2020). CI is particularly significant for preventing cognitive decline 
and treating cognitive impairments (Hooda and Kumar, 2020). It 
involves activating specific brain regions through mental task 
simulation, generating interpretable neural patterns essential for both 
research and clinical practice. Till now, MEG decoding continues to 
face challenges in explaining complex brain activities and enhancing 
classification efficiency. While some progresses have been made in 
specific tasks, such as feature extraction from high-dimensional 
signals, understanding of brain activities, and accuracy improvement.

Classification of MEG signals in different task states can reveal brain 
region interactions and information processing processes (Nara et al., 
2023; Lotte et al., 2018). However, challenges such as noise, high inter-
trial variance, and limited training data, coupled with high intra-class 
variability of MI and CI, make MEG classification studies more difficult 
(Lotte et al., 2018; Roy et al., 2019). Previous studies on MI classification 
can be divided into two categories: classical machine learning (ML) and 
deep learning (DL) methods. Classical ML methods have mainly 
depended on manually crafted features derived from neurophysiological 
signals; however, these methods are frequently hindered by their time-
consuming nature, dependency on individual subjects, and limited 
ability to extract effective features (Lotte et  al., 2018). Handcrafted 
features can result in suboptimal classification performance due to the 
inherent limitations of individual expertise and experience. In contrast, 
DL enables the training of end-to-end models that directly map raw 
signals to categories, automatically extracting high-level features 
necessary for classification and thereby reducing the reliance on 
handcrafted features (Ju and Guan, 2022; Altaheri et al., 2023; Al-Saegh 
et al., 2021). DL models still struggle to meet the stringent demands for 
high accuracy and robust generalization required for emerging clinical 
applications (Sakhavi et al., 2018).

Among the classical ML methods, common spatial pattern (CSP) is 
a powerful method for constructing optimal spatial filters (Ramoser 
et al., 2000; Ang et al., 2008). As a result, several extended CSP variants 
have been developed, including filter bank CSP (FBCSP) (Ang et al., 
2008) and discriminative filter bank CSP (DFBCSP) (Thomas et al., 
2009). For feature classification, various classical classifiers are often 
employed, such as linear discriminant analysis (LDA) (Fisher, 1936), 
support vector machines (SVMs), and random forest (RF) (Breiman, 
2001), are commonly used to classify MI tasks (Lu et al., 2010; Ang et al., 
2012; Zheng et al., 2018). Rathee et al., (2021) used the FBCSP method 

for feature extraction, with low inter-session comparison accuracy and 
an average classification rate of about 69.35% for specific tasks (hand vs. 
word generation). Youssofzadeh et al. (2023) applied SVM classification 
to beta power decrements, achieving accuracy rates of 74% for MI tasks 
(Hand vs. Feet) and 68% for CI tasks (Word vs. Sub). Tang et al. (2024) 
employed SVM with a radial basis function (RBF) kernel to categorize 
features derived from Riemannian geometry, achieving an average 
accuracy of up to 80.47% in two-class cross-session MEG data tasks. 
Inspired by the success of EEGNet (Lawhern et al., 2018; Sarma et al., 
2023) proposed MEGNet, a compact deep neural network model 
designed to improve single-trial decoding. MEGNet effectively captures 
essential spatiotemporal features and improves classification accuracy, 
which results showed that MEGNet outperforms traditional feature 
extraction methods, achieving a consistent mean accuracy of 64.76% for 
two classification. Bu et al. (2023) developed the MEG-RPSnet model, a 
convolutional neural network for decoding hand gestures from MEG 
signals, and achieving an average accuracy of 85.56% for Rock-Paper-
Scissors gestures. Wang et al. (2024) performed unilateral movement 
decoding of the upper and lower limbs using MEG signals. Their study 
demonstrated that source-level analysis had achieved an averaged 
accuracy of 96.97% in classifying lower limb tasks, significantly 
outperforming sensor-level analysis.

MEG and electroencephalography (EEG) are non-invasive brain 
activity recording techniques with shared electromagnetic 
foundations, capturing electrical and magnetic fields from 
synchronized cortical neurons and providing complementary insights 
into brain dynamics (Hämäläinen et al., 1993; Cohen, 1972). Although 
there are limited studies applying DL to MEG classification, the data 
characteristics of MEG and EEG are similar and both reflect neural 
activities. Several DL-based EEG classification models have been 
proposed (Lawhern et al., 2018; Schirrmeister et al., 2017; Mane et al., 
2021), thus providing a reference for MEG research based on DL.

Recent studies have investigated the potential of DL methods, with 
particular focus on convolutional neural networks (CNNs) (Mane 
et al., 2020) and recurrent neural networks (RNNs) (Luo et al., 2018), 
as promising solutions for EEG signal classification. Lawhern et al. 
(2018) introduced the EEGNet model, which uses a two-step 
convolutional sequence to learn spatial filters for each time filter, 
effectively extracting spatial features of specific frequencies. The results 
demonstrated that the model achieves four-class classification accuracy 
of 73.15%. Schirrmeister et al. (2017) designed the DeepConvNet, a 
deep convolutional network inspired by successful architectures in 
computer vision, to address the task of EEG decoding. The results 
demonstrated that DeepConvNet achieves four-class classification 
accuracy of 72.22%. Schirrmeister et al. (2017) developed Shallow 
ConvNet, drawing inspiration from the FBCSP approach, to capture 
the temporal dynamics of band power fluctuations within trials 
(Sakhavi et al., 2015). Mane et al. (2021) proposed FBCNet, which 
utilizes multi-view data representation and spatial filtering techniques 
to extract spectral-spatial features with discriminative power. The 
model achieved four-class classification accuracy of 76.20%. 
Furthermore, the integration of CNN with graph theory led to the 
development of the graph convolutional network (GCN), which 
incorporates the functional topological relationships of brain networks 
(Defferrard et al., 2016; Song et al., 2018; Wang et al., 2019). Hou et al. 
(2022) proposed GCNs-Net, designed to classify four-class MI tasks by 
leveraging the functional topological relationships between electrodes. 
This method demonstrated reliable convergence for both individual 
and group-level predictions, achieving an average accuracy of 93.06% 
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on the PhysioNet dataset. RNNs and long short-term memory (LSTM) 
networks have also been proposed to capture temporal features for 
EEG classification (Yang et al., 2020; Hu et al., 2020; Wang et al., 2018). 
While GCN and LSTM have achieved high prediction accuracy, few 
researchers have explored this approach in the context of 
MEG classification.

To address the limitation of low accuracy in MEG multi-task 
classification, we developed a graph-based long short-term memory 
convolutional neural network (GLCNet) for the classification of MEG 
signals. Our model is characterized by the implementation of three main 
modules: the GCN module, which efficiently extracts spatial features; 
the spatial convolution module, performing spatial convolutions across 
all channels at each time point; and the LSTM module, capturing the 
temporal dynamics of the MEG signal, respectively. Finally, the spatial 
features extracted from the GCN and the spatiotemporal features 
captured from both the spatial convolution and LSTM modules are fed 
into a fully connected layer for precise classification results. Therefore, 
the time-frequency-spatial features of MEG signals are fully exploited 
by combining modules. The contributions are summarized as follows:

 (1) An improved GLCNet model is proposed to efficiently classify 
MEG signals. This model integrates three key modules: GCN, 
spatial convolution, and LSTM. It effectively captures highly 
discriminative and robust features.

 (2) An enhanced cross-entropy loss function will be added to focus 
the model on difficult samples, accelerating their correction 
and promoting faster convergence.

 (3) Experiment results show that the GLCNet outperforms 
benchmark algorithms on the MEG-BCI datasets.

2 Materials and methods

2.1 MEG datasets

We evaluated the classification accuracy on two datasets, namely 
the MEG-BCI datasets (Rathee et al., 2021) and the BCI competition 
IV dataset 3.1

2.1.1 MEG-BCI datasets
The dataset utilized in this study is an open-source MEG-BCI 

datasets designed for MI and CI tasks (Rathee et al., 2021). The dataset 

1 https://www.bbci.de/competition/iv/

consists of 17 participants, of whom 14 are male (82.35%) and 3 are 
female (17.64%), with the median age being 28 years.

MEG data were acquired using a 306-channel whole-head 
neuromagnetometer system (Elekta Neuromag TRIUX; MEGIN Oy, 
Helsinki, Finland), consisting of 204 planar gradiometers and 102 
magnetometers. The experiments were conducted in a shielded room, 
and the raw data were acquired with on-line filtering from 0.01 to 
300 Hz at a sampling rate of 1,000 Hz. Head position tracking started 
and continued 20 s after the start of the experiment (Rathee 
et al., 2021).

The experimental paradigm included four mental imagery tasks: 
both hands movements (Hand), both feet movements (Feet), 
mathematical subtraction (Sub) and word generation (Word). The 
timing diagram of the MEG-BCI paradigm is shown in Figure 1. Each 
trial starts with a 2-s rest period, followed by a 5-s imagery task period 
(Rathee et  al., 2021). Each subject’s two-session experiment was 
conducted on different days, and each session contained 200 trials (4 
classes × 50trials).

2.1.2 BCI competition IV dataset 3
BCI Competition IV dataset 3 includes MEG signals of two 

subjects, S1 and S2. The MEG changes during wrist movements in 
four directions with the right hand were measured by 10 MEG 
channels located above the motor areas. Those signals were filtered 
with a 0.5–100 Hz band-pass filter, and resampled at 400 Hz. There 
were 40 trials per target direction, resulting in a total of 160 labeled 
trials for each subject. The category labels of the four movement 
directions (right, forward, left, backward) were set to 1, 2, 3, and 4, 
respectively. The data format of MEG signal was represented as: 
number of experiments × number of time sampling points × number 
of channels. Here, the training data are 160 × 400 × 10 and 
160 × 400 × 10, and the test data are 74 × 400 × 10 and 73 × 400 × 10 
for S1 and S2, respectively.

2.1.3 MEG data preprocessing
For MEG-BCI datasets, we  selected 16 subjects (excluding 

participant with ID ‘sub-2’, whose information is incomplete), 
resulting in a total of 6,400 samples (16 subjects × 2 sessions × 200 
trials), MEG data from the 204 gradiometer sensors were utilized. 
Next, we  performed preprocessing on the MEG data using 
MNE-Python (Gramfort et al., 2013). Bad channel detection, jump 
artifact correction, and head movement compensation were 
performed using signal space projection (SSP) and Maxwell filtering 
techniques. Following this, MEG data were downsampled to 500 Hz, 
signal space separation (SSS) removes external noise sources (such as 
power lines, wireless devices, etc.). The data were baseline corrected 

FIGURE 1

Timing diagram of MEG-BCI paradigm.
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within the time window of −200 ms to 0 ms. Each trial spanned 
5,000 ms, from 2,000 ms to 7,000 ms, followed by 0.5–40 Hz bandpass 
filtering and removal of artifacts using independent component 
analysis (ICA). For BCI competition IV dataset 3, we  used the 
commonly used time window segmentation of [0, 4] s for data analysis.

2.2 Proposed GLCNet

As shown in Figure 2, the proposed GLCNet consists of five vital 
parts: multi-band layers, GCN module, spatial convolution module, 
LSTM module, and fully connected layer. The multi-band layer divides 
MEG signals into multiple frequency sub-bands for analyzing brain 
activities within specific frequency ranges; the GCN module obtains 
functional topological relationships between MEG channels relying 
on their relational properties; the spatial convolution module extracts 
spatial dependencies among neighboring channels; the LSTM module 
captures long-term temporal features by analyzing global correlations 
across time points. Finally, the fully connected layer integrates 
acquired features to yield predicted results.

The raw MEG data is first input into the multi-band layer to 
obtain multiple frequency sub-bands, which are then sequentially 
passed through the GCN module and spatial convolution module. The 
GCN outputs highly generalized MEG spatial features that capture 
graph correlations. Next, the spatial representations obtained from the 
spatial convolution module are input into the LSTM module, which 
outputs features with enhanced temporal correlations. Finally, the 
spatiotemporal features extracted by the GCN and spatial convolution-
LSTM modules are integrated and forwarded to a fully connected 
layer to produce the classification results.

Table 1 contains the main parameters and layer configurations of 
each module of GLCNet. Here, C, T denote the number of channels 
and time points, respectively. F represents the number of filters in the 
convolutional layers, and K indicates the size of the convolution 

kernel. ELU and ReLU activation functions are applied to the 
convolution and classification layers, respectively. S represents stride; 
the probability parameter P in dropout refers to the probability of a 
single neuron being discarded; A represents the adjacency matrix, 
while D denotes the degree matrix. Nc represents category.

2.2.1 Multi-band layers
This study applies a multi-band layer to decompose MEG signals 

into frequency sub-bands, generating multi-view representations that 
facilitate the analysis of frequency-specific brain activity. GLCNet 
employs a multi-view representation of the MEG data, x, generated by 
applying a filter bank with narrow-band temporal filters to the raw 
MEG signal. The filter bank F, comprising non-overlapping frequency 
bands (4–8, 8–12, …, 36–40 Hz) with 4 Hz bandwidths, utilizes a 
Chebyshev Type II filter for the filtering process. The design of this 
module is based on inspiration from the FBCSP algorithm (Ang et al., 
2008), providing sufficient frequency resolution to capture spatial 
patterns within the signal’s frequency components. Frequency bands 
based on typical MEG signal distributions were chosen to capture 
distinct characteristics of brain activity. This approach significantly 
improves the recognition of spatial patterns across different frequency 
bands for providing richer neural activity details.

2.2.2 GCN module
Due to the non-Euclidean spatial arrangement of MEG channels, 

graph-based data structures are highly effective for representing brain 
connectivity. We  propose utilizing a GCN to capture the spatial 
relationships among MEG channels. By incorporating advancements 
in graph theory, the GCN efficiently captures spatial features in MEG 
signals by learning the underlying relationships between nodes. These 
spatial dependencies can be efficiently represented and visualized as 
graphs, with each channel corresponding to a node and edges 
indicating the connections between channels. GCN performs 
convolution operations on graph-structured data in non-Euclidean 

FIGURE 2

The framework of the proposed GLCNet.
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space, where the graph captures the spatial relationships, ( )G ,V E=
consists of nodes V and edges E. The adjacency matrix s sA N NR ×∈  
describes the connections between different nodes (Zhao et al., 2019). 
The MEG signal, comprising both time-domain and channel features, 
contains spatially distributed information across channels. Thus, 
applying graph convolution to the channel dimension is critical for 
enhancing model performance (Du et al., 2022). The convolutional 
propagation rule in GCN for updating node features at each layer is 
defined in Equation 1.

 

( ) ( )
1

1
21 2l l lH HD WADσ

−+
 
 

=  
 
 

 

 (1)

where A  is the adjacency matrix of the graph G plus the identity 
matrix, (1)D  is the degree matrix, ( )lH  is the activation unit matrix of 
the l-th layer, ( )lW  is the parameter matrix of each layer, and σ 
represents the nonlinear activation function (Du et al., 2022). In this 
study, we use the phase lag index (PLI) matrix to replace the manually 
set adjacency matrix in the GCN (Piqueira, 2011).

The structure of the GCN module is illustrated in Figure 3. Multi 
band MEG input into GCN is represented as graph ( ),G V E= , where 

the nodes correspond to the set of MEG sV N=  and E the edges with 
( )1 / 2S SE N N= × − . E is represented as an adjacency matrix 

s sA N NR ×∈  with ( ), ,1j k j kA d S S= − , where d is the min-max 
normalized geodesic distance. L is represented as a Laplacian matrix. 
The CNN output, Z, represents the characteristic feature vectors of G, 
with the adjacency matrix, Laplacian matrix, and characteristic matrix 
sequentially introduced to capture the topological structure of the 
features as a graph. During forward propagation of the network, graph 
nodes are computed pointwise convolution is used to update node 
features based on the features of neighboring nodes, edge weights and 
learnable parameters. The architecture consists of two graph 
convolutional layers with dimensions (64,5) specified by the network’s 
design, followed by a CNN layer that aggregates node features into a 
single embedding vector of length 5.

2.2.3 Spatial convolution module
The spatial convolution module draws inspiration from the 

spatial convolution block (SCB) layer of FBCNet (Mane et  al., 
2021). It applies convolutional filters across the spatial dimensions 
of MEG data to capture dependencies and relationships between 
channel locations. This module enhances the extraction of spatial 
features by capturing interactions between neighboring channels, 
thereby improving the identification of patterns and structures in 

TABLE 1 Detailed framework and parameters of GLCNet.

Module Layer name Hyper parameters Output shape Number of 
parameters

Activation

Multi-band Input [4:4:40] (9,C,T)

Module 1:

GCN

Conv-2D K = (1,10)

F = 9

(9,C,T) 8,109 ReLU

BatchNorm2D F = 9 18 ELU

MaxPool2D K = (1,10) (9,C,T/10)

S = (1,10)

Dropout p = 0.25

GCN 204 204A R∈ ×

,D Ai j ij
j

=∑

(9,C,64) 15,424 ReLU

GCN 204 204A R∈ ×

,D Ai j ij
j

=∑

(9,C,5) 325 ReLU

Conv-2D K = (204,1)

F = 288

(288,1,5) 529,056 ReLU

BatchNorm2D F = 288 ELU

Dropout p = 0.25

Module 2:

Spatial convolution

Conv-2D K = (204,1)

F = 288

(288,1,T) 59,040 ReLU

BatchNorm2D F = 288 576

Average time T = 500 (288,T/500,1)

Module 3:

LSTM

LSTM S = 1 (288,T/500,1) 44,002

Fully connect Conv-2D K = (288*T/500) (Nc ,1,1) 5,764 ReLU

LogSoftMax (Nc ,1,1)
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the brain’s spatial activity domain. The spatial convolution module 
utilizes 2D convolution kernels to extract channel-specific 
spatial features (Peng et al., 2021). Following the 2D convolution, 
BatchNorm2D and dropout are applied to reduce overfitting.

2.2.4 LSTM module
The LSTM, a variant of RNN, incorporates storage units and a 

gating mechanism to replace standard hidden layer updates, 
effectively addressing the vanishing gradient issue in traditional 
RNNs. It excels in processing multivariate time series data, such as 
MEG signals, by capturing both short- and long-term dependencies 
to extract temporal features (Yu et al., 2019). The related formulas can 
be expressed in Equations 2–6, where w and b are the weights and 
biases of different layers in the memory, σ  is sigmoid activation 
function, it,ft,ot,ct,ht are input gate, forget gate, out gate, cell state and 
hidden state (He et al., 2022; Saichand, 2021). Figure 4 illustrates the 
structure of the LSTM module.

 ( )t i t i t 1 ii w x U h bσ= + +-  (2)

 ( )t f t f t-1 ff w x U h bσ= + +
 (3)

 ( )t o t o t-1 oo w x U h bσ= + +
 (4)

 t t t 1 t tc f c i c= +  -  (5)

 ( )t t th o tanh c= 
 (6)

In MEG signal processing, LSTM segments the signal into 
multiple time intervals and sequentially processes each segment to 
update internal states and generate outputs. This approach captures 
complex temporal features that reflect MEG signal dynamics. The 
resulting feature matrix from LSTM processing includes a feature 
vector for each segment, capturing both instantaneous values and 
temporal evolution. These features enhance classification accuracy 
and model robustness.

2.3 Loss function of enhanced 
cross-entropy

The loss function plays a crucial role in evaluating a model’s 
performance by quantifying the difference between predicted and 
actual outcomes. The cross-entropy (CE) loss function is widely used 
to measure the divergence between predicted and target probabilities 
(Ho and Wookey, 2019). The probability distribution p represents the 
true labels, and q the predicted outputs. The CE is given by ( ),H p q , 
with the CE for multi-class classification computed as shown in 
Equation 7:

 
( ) ( ) ( )( ), = −∑

x
H p q p x logq x

 (7)

It can be observed that a smaller ( ),H p q  indicates a closer 
alignment between the two probability distributions, which 
signifies more accurate prediction results. In the MEG dataset, 
samples exhibit varying characteristics and can be categorized 
based on the ease with which the model can classify them. Some 

FIGURE 3

The structure of the GCN module.
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samples are straightforward for the model to predict, 
often referred to as “easy samples.” Conversely, others present 
more  challenges and are known as “difficult samples.” 
While  traditional CE yields small losses for easy samples, an 
abundance of such samples can dominate the overall loss, 
overshadowing the contributions from more difficult samples. 
The loss function should prioritize difficult samples, allowing the 
model to focus on them and improve MI classification accuracy 
(Ma et al., 2023).

To shift the model’s focus toward challenging samples, the CE 
formula has been refined, resulting in the introduction of the 
enhanced cross-entropy (ECE) loss function. The ECE introduces 
weights into the original formula, with smaller weights for easier 
samples and larger weights for more difficult samples, which is 
expressed as Equation 8.

 
( ) ( )( ) ( ) ( )( )

2
, 1

x
H p q q x p x logq x= ∑- -

 (8)

In this formula, the larger the value of ( )q x , the easier the sample 

is to classify. Consequently, a smaller value of ( )21 ( )− q x indicates 

that this easy sample contributes less to the overall loss, while difficult 

samples, with larger ( )21 ( )− q x values, contribute more 
significantly. By introducing the square root, the loss function is 
designed so that, for correctly predicted samples, ( ),H p q  is smaller 
than the traditional CE, whereas for incorrectly predicted samples, 

( ),H p q  is larger. This adjustment directs the loss function to 
prioritize incorrectly predicted samples, accelerating the model’s error 
correction and promoting faster convergence.

2.4 Experimental setup

The experiment consisted of two-class and four-class 
classifications. For MEG-BCI dataset, the two-class experiments 
included Hand vs. Feet, Hand vs. Word, Hand vs. Subtraction, Feet 
vs. Word, Feet vs. Subtraction, and Word vs. Subtraction. The four-
class classification among Hand, Feet, Word, and Subtraction tasks 
was conducted. For BCI competition IV dataset 3, the two-class 
classification of 1 vs. 2, 1 vs. 3, 1 vs. 4, 2 vs. 3, 2 vs. 4, 3 vs. 4 and the 
four-class classification for 1, 2, 3, and 4 tasks were performed.

To evaluate the performance of GLCNet on the public 
MEG-BCI datasets, the performance of GLCNet was compared 
with six state-of-the-art benchmark algorithms of FBCSP (Ang 
et al., 2008), FBCNet (Mane et al., 2021), EEGNet (Lawhern et al., 
2018), Deep ConvNets (Schirrmeister et  al., 2017), Shallow 
ConvNet (Schirrmeister et al., 2017), and MEGNet (Sarma et al., 
2023). In order to validate the effectiveness of GLCNet, 
we  performed a technical validation of the four-classification 
model in terms of model training, ablation studies, feature 
visualization, comparison of ECE and CE accuracy, and statistical 
analysis. Among them, the ablation experiments are divided into 
three groups: (a) removal of the GCN module (without module 
1); (b) removal of the spatial convolution module (without module 
2); and (c) removal of the LSTM module (without module 3).

Two stage training method is employed where the dataset is 
divided separately into training set and validation set in the first 
stage. The model was trained using the training set, with early 
stopping criteria based on the validation accuracy. Training was 
terminated if no improvement in validation converges within 50 
epochs. Setting the maximum number of iterations to 100 ensures 
sufficient training duration. Once the stopping criterion was met, 

FIGURE 4

The structure of the LSTM module.
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the model parameters corresponding to the best validation 
accuracy were reinstated. In the second stage the validation set is 
added to the training set and the validation set loss is monitored 
and training stops when it is lower than the first stage.

The training method for GLCNet is shown in Algorithm 1. In 
the first stage, the input is processed through modules 1–3 to 
compute three feature sets (F1-F3), where F3 uses only the spatial 
convolution layer from module 2. These features are then fused by 
summation, and the resulting combined feature set is passed to a 
fully connected layer, which applies the ECE loss function to 
output the loss value of the fused feature set. In the second phase, 
the validation set is integrated with the training set, and the same 
training procedure as in the first phase is followed.

The proposed GLCNet is implemented with PyTorch 1.13.1 on 
four NVIDIA GeForce RTX 3090 GPUs platform. The training 
process was configured with a batch size of 32, a learning rate of 
0.001, and the ECE loss function. The Adam optimizer and ReLU 
activation function were employed, while Dropout with a rate of 
0.25 was used to mitigate overfitting. These settings of 
hyperparameters were referenced from FBCNet (Mane et  al., 
2021) and Deep ConvNets (Schirrmeister et  al., 2017). The 
running code is available on GitHub.2

Three metrics were used for performance evaluation, which 
are expressed in Equations 9–11.

2 https://github.com/yangyanling880/GLCNet_code

 
TP TNAccuracy

TP FN FP TN
+

=
+ + +  (9)

 
1 2 Recall PrecisionF

Recall Precision
×

= ×
+  (10)

 1
−

=
−

e

e

Acc pK
p  (11)

TP , TN, FP, FN  represent true positives, true negatives, false 
positives, and false negatives, respectively. Recall refers to the 
proportion of actual positive samples that are correctly identified 
as positive. Precision and recall are often considered opposing 
metrics. To account for both metrics, the F1-score was introduced. 

eP  represents the accuracy of classification under random 
conditions. Additionally, the kappa value serves as a measure of 
agreement, providing an assessment of classification consistency.

3 Results

3.1 Results of model training

The process involves two stages. In the first stage, prior to the 100th 
epoch, the validation set remains completely separate from the training 
set. During this stage, accuracy and loss converge quickly, with validation 

ALGORITHM 1

Training detail of proposed GLCNet.
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accuracy stabilizing around 80%, indicating that GLCNet is well-trained. 
In the second stage, following the 100th epoch, in order to make full use 
of all the training samples, the verification set is added to the training set 
as a new training set. Consequently, the validation data are incorporated 
into both training and validation processes, leading to validation 
accuracy approaching 100%. Additionally, the loss values for both the 
training and validation sets show a close alignment. The accuracy and 
loss trends of GLCNet during the training process are shown in Figure 5.

3.2 Results of ablation experiments

As shown in Table 2, removing any module results in a decrease 
in accuracy. Module 1 had the most significant impact, with 
recognition accuracy dropping by 9.00%. This module is primarily 
responsible for extracting spatial features; a 3.10% decrease after 
removing module 2, which extracts spatial convolution features; and 
a 5.70% decrease after removing module 3, responsible for temporal 
feature extraction. The positive impact of module 1 and 3 on model 
performance are evident, as the classification accuracy of GLCNet 
significantly declines when either module is excluded.

3.3 Feature visualization

The t-distributed stochastic neighbor embedding (t-SNE) (Van 
Der Maaten and Hinton, 2008) is a popular visualization method, 
which is employed to generate a two-dimensional embedding of the 
learned MEG features. Figure 6 shows the t-SNE visualization (sub11) 
of the feature distributions produced by the different models for the 

four tasks: hand, feet, word generation and subtraction. Compared to 
the other models, GLCNet has a higher discrimination with the least 
overlap between classes.

3.4 Effectiveness of ECE loss function

To validate the effectiveness of the proposed ECE loss function in 
classifying challenging samples in MEG data and enhancing 
classification accuracy, it is essential to demonstrate its practical 
impact on improving the model’s training performance. As illustrated 
in Figure 7, we compared the average accuracy of five benchmark 
algorithms and GLCNet using both the CE and ECE loss functions. 
The results show an approximately 2% improvement in the average 
classification accuracy for each model when using ECE. This indicates 
that the proposed ECE loss function is more effective in enhancing the 
classification accuracy, particularly for challenging samples.

Figure 8 compares the convergence curves of CE Loss and ECE 
Loss for the GLCNet model on sub 11 of MEG-BCI dataset. It is clear 
that the ECE Loss (orange curve) decreases more quickly than CE 
Loss (blue curve) along with epochs. This meant that the lower ECE 
Loss reflected more accurate predicted probabilities and exhibited 
stronger capabilities.

3.5 MEG classification on MEG-BCI

3.5.1 Results of two-class classification
The average comparison results of the six two-class 

classification tasks are presented in Table  3. Overall, for the 

FIGURE 5

Accuracy and loss of GLCNet in the training and validation sets during training.

TABLE 2 The accuracy comparison in the ablation study on MEG-BCI dataset.

Dataset w/o module 1 w/o module 2 w/o module 3 GLCNet

Acc (%) Kappa Acc (%) Kappa Acc (%) Kappa Acc (%) Kappa

MEG-BCI 56.8 0.39 62.7 0.51 60.1 0.51 65.8 0.55
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classifications of Hand vs. Feet, Hand vs. Word, Hand vs. 
Subtraction, Feet vs. Subtraction, and Word vs. Subtraction, the 
GLCNet model achieves superior mean accuracies of 70.8, 82.7, 
81.3, 81.7, and 78.9%, respectively, outperforming the other six 
algorithms. In Supplementary Table S1 (Hand vs. Feet), FBCNet, 
EEGNet and MEGNet achieve mean accuracies about 65%, while 
FBCSP, DeepConvNets, and ShallowConvNet achieve mean 
accuracies around 60%. In Supplementary Table S2 (Hand vs. 
Word), the mean accuracies for FBCSP, FBCNet, EEGNet, 
DeepConvNets, ShallowConvNet, and MEGNet were 66.3, 79.6, 
72.4, 70.0, 70.2, and 72.0%, respectively. In Supplementary Table S3 
(Hand vs. Subtraction), MEGNet accuracy around 77.0%, both 
DeepConvNets and ShallowConvNet recorded accuracies of 73%. 
While FBCNet and EEGNet showed steady performance, FBCSP 
consistently yielded lower classification results. In 
Supplementary Table S4 (Feet vs. Word), GLCNet achieves an 
average accuracy of 76.5%, slightly below FBCNet’s 77.9%. FBCSP, 
EEGNet, DeepConvNet and MEGNet achieved 61.4, 73.3, 68.5, 

and 71.63%, respectively. In Supplementary Table S5 (Feet vs. 
Subtraction), FBCSP recorded the lowest accuracy at 69.8%, 
FBCNet maintained approximately 77%, both EEGNet and 
ShallowNet reached 73%, MEGNet recorded the lowest accuracy 
at 50.3%. In Supplementary Table S6 (Word vs. Subtraction), 
FBCSP again recorded the lowest accuracy at 59.1%, FBCNet 
remained around 77%, and EEGNet, DeepConvNets, ShallowNet 
and MEGNet each scored approximately 70%.

In conclusion, Figure 9 summarizes the results, showing that 
the proposed GLCNet achieved a maximum accuracy of 82.7% in 
two-class classification, demonstrating superior performance over 
the other six algorithms. Both FBCSP, EEGNet and MEGNet 
exhibited stable performance, while FBCNet maintained 
consistent accuracy across classifications. DeepConvNets and 
ShallowConvNet showed moderate classification performance, 
with FBCSP being the least effective among the algorithms tested.

3.5.2 Results of four-class classification
Table  4 and Figure  10 present the complete four-class 

classification results on the MEG-BCI dataset using the proposed 
GLCNet and other benchmark algorithms. Overall, GLCNet 
surpasses the benchmarks in average classification accuracy, 
achieving an average accuracy of 65.8%, a mean kappa value of 0.55, 
and a mean F1-score of 0.65. This represents improvements of 20.7, 
6.7, 12.8, 16.7, 16.1, and 15.9% over FBCSP, FBCNet, EEGNet, 
DeepConvNets, ShallowConvNet, and MEGNet, respectively. 
Furthermore, the kappa value of 0.55, the highest among all methods, 
highlights the effectiveness of the proposed approach.

Table  5 presents the statistical significance of GLCNet 
compared to other models. With the exception of FBCNet, the 
classification results of the remaining four benchmark algorithms 
differ significantly from GLCNet (p < 0.001), indicating that 
GLCNet performs significantly better than these benchmark  
algorithms.

FIGURE 6

Visualization of t-SNE for sub 11 of MEG-BCI dataset. The four colors of dots represent Hand, Feet, Word Generation, and Subtraction.

FIGURE 7

Comparison of loss functions of CE and ECE for GLCNet and other 
models.
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3.6 MEG classification on BCI competition 
IV dataset 3

This study compares six benchmark models for two-class 
and four-class classification on the BCICIV-3 dataset. In Table 6, 
the GLCNet obtained the highest accuracies, particularly in the 
tasks 1 vs. 2, 2 vs. 3, 2 vs. 4, 3 vs. 4, and 1 vs. 2 vs. 3 vs. 4, 
achieving the accuracies of 76.5, 75.1, 78.1, 77.5, and 59.9%, 
respectively; the MEGNet also performed well in the tasks of 1 
vs. 3 and 1 vs. 4, with the accuracies of 82.9 and 78.1%, 
respectively. Meanwhile, it was indicated that the FBCNet and 
FBCSP gave worst results.

4 Discussion

This study introduced GLCNet, a novel end-to-end CNN 
architecture designed for MEG signal classification, combining 
GCN for spatial feature extraction and LSTM for temporal 
continuity. Through evaluation on MEG-BCI datasets and BCI 
competition IV dataset 3, GLCNet outperforms state-of-the-art 
benchmark algorithms in both classification accuracy and model 
robustness. Beyond classification accuracy, GLCNet demonstrated 
strong performance in model training, ablation experiments, 
feature visualization, comparison of ECE and CE accuracy, and 
ANOVA analysis. This comprehensive performance highlights 
GLCNet’s robustness and versatility in MEG signal classification 
and related analyses. GLCNet serving as a powerful tool for MEG 
signal classification and advancing its applications in intelligent 
diagnostics and neuroscience research.

MEG data features high spatial and temporal resolution, 
making it an ideal modality for investigating intricate brain 
activity. While traditional CNNs use spatial convolution layers to 
extract spatial features, they face limitations in handling complex 
spatial topologies and long-range dependencies. Accordingly, the 
six chosen benchmark approaches exhibited several challenges. 
Especially, the FBCSP (Ang et al., 2008) mainly relied on manually 
designed features, and limited its generalizability across tasks and 
subjects; the FBCNet (Mane et al., 2021) and EEGNet (Lawhern 
et al., 2018) were prone to overfitting when decoding MI tasks; the 
Shallow ConvNet (Schirrmeister et al., 2017) demonstrated high 
variability in reflecting task-dependent performance; the Deep 
ConvNets (Schirrmeister et al., 2017) incorporated complexity 
and failed to capture subtle patterns; the MEGNet (Sarma et al., 
2023) effectively identified prominent features but might overlook 
details in more complex tasks. To address these challenges, this 
paper introduces GCN for enhanced spatial feature learning, 
effectively capturing non-Euclidean structures and inter-channel 
correlations within MEG signals, thus uncovering comprehensive 
spatial information. Additionally, integrating LSTM, which 
captures long-term dependencies and complex temporal patterns, 
improves the continuity of time-series information and effectively 
manages temporal signal changes and dynamic features. GLCNet 
combines topological connectivity and convolutional features to 
deeply explore channel topological structures in the spatial 
domain while capturing temporal characteristics and signal 
variations. The inclusion of multi-band layers allows the model to 
focus on specific frequency ranges, capturing frequency 
components and their spatial patterns to maximize information 
utilization. By integrating above modules in parallel, GLCNet 

FIGURE 8

Comparison of convergence curves for CE and ECE on the sub 11 for MEG-BCI dataset.
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enhances classification performance, leveraging the rich temporal, 
frequency, and spatial information in MEG signals. This 
multidimensional approach enables more precise analysis of 
complex brain activity, improving the accuracy and robustness of 
neural data interpretation.

In this study, we  utilized data from the 204 gradiometer 
sensors while excluding data from the 102 magnetometers. This 
was because that the gradiometers typically exhibited a higher 
signal-to-noise ratio (SNR), which improved their sensitivity in 
detecting cortical activity. Additionally, the gradiometers could 
provide superior spatial resolution for precise localization of 
cortical activity (Rathee et  al., 2021). The proposed GLCNet 
model was tested on MEG-BCI and BCI competition IV dataset 
3, achieving the highest classification accuracy in both two-class 
and four-class tasks, except in the Feet vs. Word classification, 
where FBCNet outperformed GLCNet by 1.4%, and in the 1 vs. 
3 and 1 vs. 4 tasks, where MEGNet outperformed GLCNet by 3.2 
and 2.2%, respectively. Compared to benchmark algorithms on 
the MEG-BCI dataset, GLCNet’s average accuracy improved by 
8.65% for two-class classification and 14.6% for four-class 
classification. As the number of tasks grows, the complexity of 
classification also increases, resulting in a significant 
performance decline in comparison algorithms for multi-task 
classification. This highlights the superior performance of 
GLCNet. Ablation experiments demonstrated that the highest 
classification performance was obtained when both GCN and 
LSTM were employed simultaneously. The t-SNE feature 
distribution visualization confirmed that the GLCNet module 
enhanced the model’s recognition capabilities. Furthermore, the 
loss function analysis underscored the benefits of the proposed 
ECE in improving classification accuracy, particularly for 
challenging samples.

Our study has several limitations. First, the training samples 
is very limited. This may affect the generalizability of our 
proposed approaches in cases of other datasets or populations. 
Second, the proposed model faces the challenges of long training 
times and high computational complexity. Third, only one kind 
of MEG modality was used in our study. The fusion of MEG with 
multimodal data, such as EEG and/or fMRI would be hopeful for 
the potential applications in BCI applications.

There are four aspects in our future studies. At first, more 
samples should be enrolled and even more types of multi-center 
datasets should be involved. The detailed parameter analyses of 
age, gender, and health status of samples should be considered in 
performance evaluation, too. Besides, more data augmentation 
techniques, such as temporal transformation and frequency 
filtering, could be tried to resolve the limitation of data size (He 
and Wu, 2020; Zhang et al., 2021; Ma et al., 2024).

Secondly, more kinds of lightweight alternatives should 
be explore to alleviate the problem of high training costs, such as 
model compression (Buciluǎ et al., 2006), knowledge distillation 
(Gou et al., 2021), and the substitution of lightweight modules 
(Lahiri et al., 2020) for model simplification.

Thirdly, the fusion of MEG with other modalities, such as EEG 
and fMRI, is sure to be  a potential application in BCI. The 
multimodal decoding could help to improve model performance 
by optimizing signal quality, feature extraction (Li et al., 2023). 
This would assist a lot in the cognitive assessment of clinical T
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applications in neurorehabilitation and cognitive training (Wang 
et al., 2024).

Finally, the medical ethics would be strictly obeyed in data 
acquirement, experimental setup and clinical procedures in our 
further studies. It is true that the MEG would become an 
important tool in neuroscience, and even in the field of BCI.

5 Conclusion

The proposed GLCNet, an advanced end-to-end CNN network, 
could extract effectively distinguished features from MEG data, and 
it was concluded that the GLCNet had demonstrated robust 
capabilities for the classification of MI and CI tasks. It was hopeful to 

FIGURE 9

Comparison of two-class classification accuracy for GLCNet and other models. Black dots indicate outliers.
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TABLE 4 Comparison of accuracy, kappa and F1-score for four-class classification for proposed model and other models.

Sub. FBCSP FBCNet EEGNet Deep ConvNets Shallow ConvNet MEGNet GLCNet

Acc 
(%)

K F1 Acc 
(%)

K F1 Acc 
(%)

K F1 Acc 
(%)

K F1 Acc 
(%)

K F1 Acc 
(%)

K F1 Acc 
(%)

K F1

1 44.0 0.25 0.38 51.0 0.31 0.49 57.0 0.31 0.57 41.0 0.15 0.39 31.5 0.12 0.29 47.0 0.29. 0.47 63.5 0.44 0.63

3 56.0 0.41 0.50 76.0 0.73 0.76 50.0 0.31 0.50 63.5 0.40 0.64 69.5 0.54 0.70 53.0 0.37 0.52 77.5 0.76 0.77

4 32.0 0.09 0.28 27.0 0.02 0.25 34.5 0.09 0.34 29.5 0.07 0.28 27.0 0.07 0.19 26.0 0.01 0.23 45.5 0.33 0.44

6 32.5 0.10 0.29 74.0 0.67 0.74 64.5 0.51 0.64 65.5 0.51 0.65 60.0 0.39 0.57 64.5 0.53 0.64 72.0 0.61 0.72

7 40.0 0.20 0.35 49.5 0.16 0.48 49.0 0.28 0.47 46.5 0.19 0.46 29.0 0.09 0.31 52.0 0.36 0.50 61.5 0.47 0.60

9 55.5 0.41 0.51 50.0 0.36 0.48 51.0 0.27 0.51 53.5 0.38 0.53 28.5 0.06 0.22 40.5 0.21 0.40 75.5 0.75 0.75

11 65.0 0.53 0.64 65.0 0.55 0.65 54.5 0.42 0.49 46.5 0.25 0.44 69.0 0.51 0.68 52.5 0.37 0.50 73.5 0.64 0.73

12 36.5 0.15 0.32 44.5 0.25 0.43 34.5 0.15 0.34 37.0 0.04 0.34 45.5 0.21 0.44 38.0 0.17 0.37 59.5 0.39 0.58

13 43.0 0.24 0.39 63.5 0.48 0.63 47.5 0.35 0.47 46.5 0.21 0.46 48.0 0.25 0.48 50.5 0.34 0.50 58.5 0.57 0.58

14 37.0 0.16 0.32 54.0 0.38 0.53 43.5 0.25 0.43 36.5 0.21 0.36 45.5 0.29 0.44 44.5 0.26 0.44 63.0 0.43 0.62

15 43.5 0.25 0.43 74.5 0.63 0.74 64.5 0.49 0.64 44.5 0.26 0.43 70.0 0.43 0.70 60.0 0.47 0.60 80.0 0.74 0.80

16 36.0 0.15 0.31 65.0 0.03 0.65 57.0 0.34 0.55 55.0 0.39 0.55 43.0 0.22 0.44 48.0 0.31 0.48 64.0 0.49 0.64

17 36.0 0.15 0.34 39.5 0.17 0.35 41.5 0.23 0.42 40.5 0.19 0.40 37.0 0.13 0.33 42.5 0.23 0.43 48.0 0.31 0.46

18 53.0 0.37 0.51 72.0 0.65 0.71 70.5 0.62 0.70 64.0 0.48 0.63 75.0 0.62 0.75 65.0 0.53 0.65 73.5 0.72 0.73

19 48.0 0.31 0.45 60.5 0.45 0.60 59.5 0.39 0.60 59.5 0.40 0.60 47.5 0.27 0.46 53.5 0.38 0.53 62.0 0.49 0.61

20 63.5 0.51 0.61 79.0 0.69 0.79 68.5 0.54 0.69 55.5 0.37 0.54 68.5 0.51 0.68 61.0 0.48 0.61 75.5 0.71 0.76

Avg. 45.1 0.27 0.42 59.1 0.41 0.58 53.0 0.35 0.52 49.1 0.28 0.48 49.7 0.29 0.48 49.9 0.32 0.49 65.8 0.55 0.65

The bold values indicate the highest values for each metric across all models for each subject.
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be used in MEG-BCI systems. Future work will pay more attention 
to enhance the decoding capabilities and explore the potentials of the 
fused multimodal model in BCI applications.
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FIGURE 10

Comparison of four-class classification accuracy for GLCNet and other models. Black dots indicate outliers.

TABLE 5 ANOVA statistical analysis results of GLCNet and other models.

FBCSP FBCNet EEGNet Deep ConvNets Shallow 
ConvNet

MEGNet

ref Ang et al. (2008) Mane et al. (2021) Lawhern et al. (2018) Schirrmeister et al. 

(2017)

Schirrmeister et al. 

(2017)

Sarma et al. (2023)

p-values 0.001 0.144 0.002 0.001 0.003 0.001

TABLE 6 Accuracies (%) of benchmark models for the BCICIV-3 dataset.

Tasks FBCSP FBCNet EEGNet Deep 
ConvNets

Shallow 
ConvNet

MEGNet GLCNet

1 vs. 2 45.9 49.1 72.9 71.3 61.1 74.3 76.5

1 vs. 3 62.6 63.6 75.7 76.3 65.1 82.9 79.7

1 vs. 4 31.5 39.3 72.1 69.8 60.1 78.1 75.9

2 vs. 3 47.8 48.3 68.8 66.1 60.5 71.4 75.1

2 vs. 4 53.6 54.3 75.1 67.8 60.7 73.9 78.1

3 vs. 4 40.8 41.3 75.3 70.6 54.8 76.6 77.5

4 class 26.7 28.9 53.4 51.1 45.5 55.7 59.9

 The bold values indicate the maximum accuracy of the models for each task.
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