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Introduction: The gut microbiota composition and the expression profiles 
of microRNAs (miRNAs) in the brain tissue, cerebrospinal fluid, and blood of 
patients with Alzheimer’s disease (AD) differ significantly from those with normal 
cognition function. The study aimed to initially explore the relationship between 
plasma exosomal microRNAs, gut microbiota, and cognitive impairment, 
providing insights into the pathogenesis and treatment of AD.

Methods: The study enrolled 8 participants with AD and 8 participants with 
normal cognition. The Mini-Mental State Examination (MMSE) was utilized to 
evaluate cognitive function. High-throughput sequencing was used to identify 
differentially expressed miRNAs in plasma exosomes, while metagenomic 
sequencing was employed to detect differences in the abundance of gut 
microbiota. Furthermore, the associations among them were analyzed.

Results: Four exosomal miRNAs and 14 microbiota taxa, which exhibited 
differential expression and abundance, respectively, in comparison between AD 
group and normal cognition group, were identified to be significantly associated 
with MMSE scores. Notably, the abundance of potential probiotics, including 
Faecalibacterium prausnitzii, Roseburia intestinalis and Roseburia inulinivorans, 
which was decreased in AD patients, exhibited positive correlations with specific 
exosomal miRNAs: Roseburia intestinalis correlated with miR-3120-3p and miR-
6529-5p; Roseburia inulinivorans correlated with miR-3120-3p, miR-6529-5p 
and miR-124-3p; Faecalibacterium prausnitzii correlated with miR-3120-3p.

Discussion: The study revealed a close association among gut microbiota, 
plasma exosomal miRNAs, and cognitive impairment in AD, and suggested 
that specific components of gut microbiota and exosomal miRNAs may serve 
as potential biomarkers and therapeutic targets for AD on the microbiota-gut-
brain axis.
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1 Introduction

Alzheimer’s disease (AD) is the primary cause of dementia. As the 
global population ages, the prevalence of AD is on the rise, imposing 
a considerable strain on both families and society at large (Bacigalupo 
et  al., 2018). AD is a neurodegenerative disease characterized 
primarily by neuritic plaques, neurofibrillary tangles, and the 
degeneration and death of neurons (McKhann et al., 2011; Jack et al., 
2018). However, the precise etiology of AD remains ambiguous. A 
study by Montagne et al. utilized advanced imaging techniques to 
reveal that the breakdown of blood–brain barrier (BBB) in the 
hippocampus was an early event in aging humans and was more 
pronounced in individuals with cognitive impairment, suggesting that 
disruption of the BBB may contribute to early stages of AD (Montagne 
et al., 2015).

Exosomes can easily cross the BBB due to their small size 
(typically between 30 and 150 nm in diameter) and cell-like membrane 
structure (Wood et  al., 2011). Neural cells produce and release 
exosomes, which can traverse the BBB and thus be detected in both 
blood and peripheral fluids (Kanninen et al., 2016). Exosomes can 
carry and protect microRNAs (miRNAs) from degradation. miRNAs 
are short, non-coding RNAs, about 20 to 25 nucleotides in length, that 
regulate gene expression by binding to specific mRNAs (Inui et al., 
2010). Up to 70% of miRNAs are expressed in the human nervous 
system, and abnormal miRNA expression is associated with the 
pathogenesis of AD (Nowak and Michlewski, 2013). These miRNAs 
participate in the pathogenesis of AD by regulating and influencing 
key molecules such as microtubule-associated protein tau, amyloid 
precursor protein (APP), and β-site APP-cleaving enzyme 1 (BACE1) 
(Wang et al., 2023). Exosomal miRNA expression in plasma was found 
to change in patients with early cognitive impairment and AD, and 
some exosomal miRNAs were considered as potential biomarkers for 
AD (Yang et al., 2018; Jia et al., 2022; Duan et al., 2024). For example, 
miRNAs such as miRNA-135a and miRNA-384 can inhibit the 
production of amyloid-beta (Aβ) (Liu et  al., 2014c, 2014b), while 
miRNA-193b can downregulate the expression of APP (Liu et al., 
2014a). Therefore, changes in the expression profile of plasma 
exosomal miRNAs can reflect pathological changes in the central 
nervous system, serving as biomarkers for early diagnosis and disease 
progression monitoring of AD (Wang et al., 2023).

The intestine and brain are closely linked through the microbiota-
gut-brain axis. Dysregulation of the gut microbiota can contribute to 
the pathogenesis and progression of AD by exacerbating immune 
senescence, oxidative stress, cytokine secretion, and 
neuroinflammation (Leblhuber et  al., 2020). In AD patients, the 
diversity of gut microbiota shows a downward trend, and this change 
comes at the expense of anti-inflammatory probiotics, while leading 
to a significant increase in pro-inflammatory microflora (Varesi et al., 
2022). The study by Vogt et al. (2017) reported that the abundances of 
Firmicutes and Bifidobacterium were significantly decreased in the 
feces of AD patients, whereas the abundance of Bacteroidetes was 
markedly increased. Lipopolysaccharide, primarily derived from 
Bacteroides and Prevotella, can cross the gut barrier and migrate to 
microglia, activating the NF-κB signaling pathway and regulating the 
expression of pro-inflammatory miRNAs (such as miR-146a and 
miR-155), thereby playing a crucial role in the pathogenesis of AD 
(Hill et al., 2015; Kim et al., 2021). Additionally, amyloids derived 
from gut microbiota may accumulate in the brain by translocating 

from the intestine, which may lead to an increase in the 
pro-inflammatory miRNA-34a levels and a suppression of 
phagocytosis mediated by TREM2, thus promoting the accumulation 
of Aβ42 peptides (Zhao and Lukiw, 2013; Zhao et al., 2015). It has 
been reported that exosomes originating from the gut microbiota of 
AD patients can cause tau protein to become overly phosphorylated 
and aggregated in vitro, suggesting a possible mechanism of disease 
progression (Haas-Neill and Forsythe, 2020). Furthermore, aging is 
associated with increased vulnerability of the human gastrointestinal 
tract and BBB, which may enable the translocation of microbiota-
derived neurotoxins from the gut into the bloodstream (Tran and 
Greenwood-Van Meerveld, 2013; Man et al., 2014; Montagne et al., 
2015; Qi et al., 2017). This, in turn, can provoke systemic inflammation, 
thereby exacerbating the destruction of the BBB and accelerating 
neurodegenerative changes in the nervous system. Recent research has 
shown that participants with mild cognitive impairment exhibited 
higher abundances of Proteobacteria and Gammaproteobacteria, and 
these abundances were correlated with serum levels of let-7g-5p, 
miR-107, and miR-186-3p (Zhang X. et  al., 2021). The study 
highlighted the potential of gut microbiota combined with serum 
miRNAs as biomarkers for cognitive impairment.

The crosstalk between gut microbiota and miRNAs is closely 
related to AD. Dysregulation of the gut microbiota can mediate 
changes in miRNA expression in brain tissue, thereby influencing the 
pathogenesis and progression of AD (Ayyanar and Vijayan, 2024). 
However, few studies have explored the correlation between alterations 
in gut microbiota and changes in plasma exosomal miRNA expression 
in AD patients. Therefore, this study aimed to preliminarily explore 
the association between them. Our research findings revealed a 
decreased abundance of potential probiotics in AD patients, including 
Faecalibacterium prausnitzii, Roseburia intestinalis and Roseburia 
inulinivorans, which positively correlate with certain exosomal 
miRNAs (such as miR-3120-3p, miR-6529-5p, or miR-124-3p). This 
suggested that specific components of both the gut microbiota and 
exosomal miRNAs could be potential biomarkers and therapeutic 
targets for AD on the microbiota-gut-brain axis.

2 Materials and methods

2.1 Participant recruitment

The participants enrolled in this study were volunteers who 
received medical treatment or health examination in the First Affiliated 
Hospital of Shantou University Medical College from January 2021 to 
October 2022. All patients in the AD group met the clinical diagnosis 
of AD according to the 1984 NINCDS-ADRDA criteria (McKhann 
et  al., 1984). To exclude cognitive impairments caused by other 
etiologies as much as possible and minimize the interference of other 
factors on the research results, the exclusion criteria for AD group 
included: (1) conditions such as altered consciousness, fatal diseases, 
drug poisoning, etc.; (2) a history of gastrointestinal tumors or 
inflammatory bowel diseases; (3) malignant anemia; (4) thyroid 
diseases that may affect cognition (Tan et al., 2008); (5) psychiatric 
disorders such as depression, that may lead to secondary dementia; (6) 
other brain diseases, including central nervous system infections, recent 
or old cerebrovascular accidents, hydrocephalus, subdural hematomas, 
Parkinson’s disease and Parkinson’s syndrome, Huntington’s disease, 
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Creutzfeldt-Jakob disease, brain tumors causing dementia, or severe 
cerebral white matter rarefaction; (7) long-term exposure to heavy 
metals or chemicals in work and (or) living environments. The 
cognitively normal health control group met the following criteria: (1) 
possessing normal daily life cognitive abilities with no cognitive 
impairments; (2) having no relevant family history of inherited diseases 
affecting cognition, or a family history of AD in first-degree relatives; 
(3) having no blood relation to any member of the AD group.

2.2 Clinical data collection

The fundamental clinical data of the enrolled participants were 
collected, including age, gender, educational background, fasting blood 
glucose levels, indicators of liver and kidney function, as well as blood 
lipid profiles. Cognitive abilities were assessed using the Chinese 
adaptation of the Mini-Mental State Examination (MMSE) (Folstein 
et al., 1975; Katzman et al., 1988), which evaluates orientation, memory, 
attention, calculation, recall, and language, among other domains, with 
a total score of 30 points. The lower the score, the more severe the 
cognitive impairment. Participants in this study were required to meet 
the following clinical criteria: (1) no use of probiotics, antibiotics, or 
proton pump inhibitors in the past month; (2) no history of alcohol, 
drug, or substance abuse; (3) no significant digestive system symptoms 
such as jaundice, poor appetite, or hepatosplenomegaly; (4) no current 
acute gastroenteritis, intestinal tuberculosis, or other intestinal 
infections; (5) no severe conditions affecting gastrointestinal 
metabolisms, such as gastrointestinal bleeding, hepatitis, or liver damage.

2.3 Extraction and identification of plasma 
exosomes

The brief flowchart for the experimental operation and data 
analysis process of the whole study is shown in Figure 1. Fasting 
peripheral blood was drawn from participants using EDTA-coated 
tubes in the morning. The samples were centrifuged at 3,000 × g 
for 15 min at 4°C, then the supernatant was collected and stored at 
−80°C. After incubating the plasma samples at 37°C or room 
temperature until they were completely thawed, they were 
centrifuged at 10,000 × g for 15 min at 4°C. The supernatant was 
extracted and treated with Proteinase K (Life Technologies). 
Subsequently, incubated with total exosome isolation from plasma 
and centrifuged at 10,000 × g at 4°C to precipitate. The supernatant 
was then discarded, and the exosome-containing precipitate at the 
bottom of the tube was resuspended in PBS. Randomly select one 
case from both the AD group and the control group for exosome 
identification. Diluted exosome suspensions were deposited onto 
copper grids for precipitation. After treatment with 
phosphotungstic acid, transmission electron microscope images of 
the exosomes were obtained using the electron microscope 
(HITACHI, HT-7800) (Figures 2A,B). The size and concentration 
of the exosomes were measured using the Nanoparticle Size 
Analyzer (Flow NanoAnalyzer) (Figures 2C–F). The blots were 
incubated overnight with antibodies against CD63, CD81, TSG101, 
and Calnexin, all of which were diluted to 1:1000 and sourced from 
Abcam. After washing with TBST, secondary antibodies (diluted 
1:5000) were added for 1 h. Finally, protein detection was 

performed using chemiluminescence (Bio-Rad ChemiDoc) 
(Supplementary Figure S1).

2.4 Isolation and sequencing of exosomal 
RNA

RNA was extracted from the exosome suspension through a 
series of steps, including QIAzol lysis, chloroform/isopropanol 
(24:1) extraction, ethanol precipitation, and column purification, 
ultimately obtaining the RNA elution product. The integrity and 
concentration of the samples were assessed using an Agilent 2,100 
bioanalyzer, while the level of salt ion contamination was quantified 
with a NanoDrop spectrophotometer. The exosomal miRNA was 
sequenced using the DNBSEQ platform. After removing adapters, 
low-quality tags, and fragments shorter than 18 nucleotides, the 
raw sequencing data were acquired in FastQ format. The isolation 
and identification of exosomes, as well as the separation and 
sequencing of RNA, were carried out by Shenzhen BGI Genomics 
Co., Ltd.

2.5 Analysis of plasma exosomal miRNA 
sequencing data

The plasma exosomal miRNA sequencing data was initially 
subjected to a reliability evaluation of the reads by FastQC software 
(version 0.11.9) for quality assessment. Adapter sequences were 
thoroughly assessed for purity, and the dataset was refined using 
Trimmomatic (version 0.39) to remove low-quality sequences, 
resulting in a clean dataset. Subsequently, quality control was 
conducted once again utilizing FastQC. The clean data was aligned to 
human microRNAs (version 22) from the miRBase database1 and the 
GRCh38 human genome using Bowtie (version 1.3.1) and miRDeep2 
software (version 0.3.1) to calculate the absolute number of reads 
aligned to human microRNAs.

The DESeq2 package (version 1.34.0) of R software was used to 
perform differential expression analysis of microRNAs. The DGEobj.
utils package of R was utilized to obtain expression levels in reads per 
million (RPM) format based on the reads counts of plasma exosomal 
microRNAs. The gender (male/female) and age groups (50–65, 65–75, 
and ≥75 years) of participants were considered as batch variables to 
compare the expression levels of miRNAs between two groups. Using 
the Benjamini-Hochberg method to control the False Discovery Rate 
(FDR) (Benjamini and Hochberg, 1995), a threshold of <0.05 was used 
to determine statistical significance for identifying differentially 
expressed miRNAs in large-scale analyses. The search and prediction 
of target genes for plasma exosomal microRNAs were performed 
utilizing miRWalk (version 3)2. The identified target genes underwent 
Gene Set Enrichment Analysis (GSEA) and further functional 
enrichment pathway analysis using KEGG, Reactome, and Gene 
Ontology (GO). Functional pathways with an adjusted p-value less 
than 0.05 were selected as significantly enriched results.

1 https://www.mirbase.org/

2 http://mirwalk.umm.uni-heidelberg.de/

https://doi.org/10.3389/fnins.2025.1545690
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.mirbase.org/
http://mirwalk.umm.uni-heidelberg.de/


Lin et al. 10.3389/fnins.2025.1545690

Frontiers in Neuroscience 04 frontiersin.org

2.6 Analysis of gut microbiota

Fecal samples were collected following a strict procedure. Samples 
were added to a preservative solution, thoroughly mixed, and stored in 
an ultra-low temperature freezer at −80°C. The extraction of DNA 
from microbial cells within fecal samples was performed utilizing the 
CTAB protocol. The concentration, purity, and integrity of the 
extracted DNA were then assessed using either Qubit 2.0 or Agilent 
5,400. Qualified DNA samples were utilized to construct libraries with 
the NEB Next®Ultra™ DNA Library Prep Kit for Illumina 
(United  States). Upon achieving library qualification, the indexed 
samples were subjected to clustering using the cBot Cluster Generation 
System, with the Illumina PE Cluster Kit (United States). Metagenomic 
sequencing of the samples was conducted using the Illumina Novaseq 
platform, resulting in raw metagenomic data. Subsequently, the raw 
data was subjected to preprocessing with Kneaddata software, which 
included adapter sequences, low-quality sequences (with a default 
quality score threshold ≤20), and sequences with a final length of less 

than 50 base pairs. The Bowtie2 software (version 2.35.5.1) was 
employed to eliminate host genomic sequences, while FastQC was 
utilized for quality assessment. The Kraken2 tool was utilized to align 
the sequence numbers of species present in the samples, and 
subsequently, Bracken was employed to forecast their relative 
abundances. The HUMAnN2 software was employed to align 
sequences that had undergone quality control and host removal with 
the protein database (UniRef90), utilizing DIAMOND to obtain 
annotation data from various functional databases and a relative 
abundance table for species (bacterial phyla) across different taxonomic 
levels. The LEfSe analysis of the fecal metagenomics data was 
conducted at the family, genus, and species levels, employing Hutlab’s 
Galaxy platform3. The Linear Discriminant Analysis (LDA) scores for 
various bacteria were calculated, and bacteria with an absolute value 

3 http://huttenhower.sph.harvard.edu/galaxy/

FIGURE 1

Brief flowchart of sequencing and analysis.
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of the logarithm (base 10) of their LDA scores exceeding 2 were 
recognized as significantly distinct between groups at each taxonomic 
level (Segata et al., 2011). The above steps were primarily completed by 
the laboratory of Shenzhen Weikengmeng Technology Group Co., Ltd.

2.7 Statistical analysis

Given the limited sample size, the baseline data of the participants 
were initially evaluated for normality using the Shapiro–Wilk test by 
SPSS (version 25). For normally distributed data, the results were 
reported using mean ± standard deviation format, and statistical 
comparisons between groups were conducted using independent 
t-tests. For non-normally distributed data, the median (along with the 
25th percentile and 75th percentile) was used, and the Wilcoxon 
rank-sum test was conducted to compare differences between groups. 
In correlation analysis, considering the small sample size of this study, 

the software SPSS 25.0 was used to test for normality using the 
Shapiro–Wilk test. If the variables exhibited a normal distribution, 
Pearson correlation analysis was applied. If not, Spearman correlation 
analysis was utilized. The correlation coefficient was considered 
statistically significant if the p-value was less than 0.05.

3 Results

3.1 Clinical data

A total of 11 individuals were planned to be included in the AD 
group and 9 in the healthy control group. However, 3 volunteers from 
the AD group did not complete the head magnetic resonance imaging 
(MRI) examination, and 1 volunteer from the healthy control group, 
who underwent a head MRI, was found to have a subacute pontine 
infarct. Finally, the study included 8 participants in the AD group and 

FIGURE 2

Electron microscopy imaging, size distribution, and concentration of exosomes. (A) Exosome electron microscopy image of the AD patient. 
(B) Exosome electron microscopy image of the cognitively normal participant. (C) Exosome size distribution of the AD patient. (D) Exosome size 
distribution of the cognitively normal participant. (E) Exosome concentration schematic of the AD patient. (F) Exosome concentration schematic of the 
cognitively normal participant.
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8 in the healthy control group, maintaining a gender ratio of 1 male to 
3 females. Apart from differences in cognitive scale scores (MMSE 
scores) and blood albumin levels, no statistically significant differences 
were found in the baseline characteristics of the two groups (Table 1).

3.2 Correlation between plasma exosomal 
miRNA expression and cognitive function

A total of 10 miRNAs with differential expression between groups 
were identified (PFDR < 0.05) (Table 2 and Figure 3). Among them, 
only hsa-miR-627-5p was upregulated in AD patients, while the 
remaining 9 miRNAs were downregulated in AD patients. Spearman 
correlation analysis revealed that only hsa-miR-6529-5p (r = 0.580, 
p < 0.05), hsa-miR-3120-3p (r = 0.580, p < 0.05), hsa-miR-124-3p 

(r = 0.562, p < 0.05), and hsa-miR-323a-5p (r = 0.507, p < 0.05) were 
significantly correlated with MMSE scores (Table 2).

3.3 Prediction of miRNA target genes and 
their functions

The target genes of the differentially expressed miRNAs associated 
with MMSE scores were predicted, and functional enrichment analysis 
was subsequently performed (Supplementary Table S1). KEGG 
analysis revealed the association of the predicted target genes of 
miR-3120-3p with neurotrophin signaling pathway and bacterial 
invasion of epithelial cells. GO analysis showed enrichment of target 
genes in various functional categories, including protein 
phosphorylation, nervous system development, protein K48-linked 
ubiquitination, c-Jun N-terminal kinase (JNK) cascade, activation of 
JUN kinase activity, among others. The predicted target genes of 
hsa-miR-124-3p may play crucial roles in signal transduction, 
transcriptional regulation, protein modification, and localization. The 
predicted target genes of hsa-miR-6529-5p may play significant roles 
in multiple aspects, including the development and function of the 
nervous system, cellular signal transduction, protein modification, 
and cell proliferation. Additionally, the enrichment results of the 
predicted target genes of miR-323a-5p suggested that they are 
associated with the APP catabolic process. Furthermore, the predicted 
target genes of these four miRNAs were all enriched in the soluble 
N-ethylmaleimide-sensitive fusion factor attachment protein receptor 
(SNARE) complex.

3.4 LEfSe analysis of gut microbiome

The results of differences in gut microbiota abundance between 
the AD group and control group are shown in Figure 4. The findings 
revealed that the abundance of bacteria belonging to the family 
Propionibacteriaceae, as well as the genera Peptoniphilus, 
Anaerococcus, Tannerella, Arachnia, and Dermabacter, and the 
species Burkholderia cepacia, Fusobacterium necrophorum, Blautia 
hydrogenotrophica, Streptococcus porcinus, Streptococcus parasuis, and 
Actinomyces sp. oral taxon 848, were significantly enriched in AD 
patients. Conversely, the abundance of Romboutsia, Faecalibacterium, 
Roseburia, Sarcina at the genus level, as well as Massilistercora 
timonensis, Lachnospiraceae bacterium GAM79, Romboutsia ilealis, 
Faecalibacterium prausnitzii, Roseburia inulinivorans, Roseburia 
intestinalis, Sarcina sp. JB2, Uncultured Erysipelotrichaceae bacterium 
at the species level, was significantly enriched in the control 
group participants.

3.5 Correlation between gut microbiota 
and cognitive scores

The relative abundance of 24 gut microbiota, which were identified 
as differing between groups, was analyzed using Spearman correlation 
analysis to assess their correlation with MMSE scores. The findings 
revealed significant negative correlations between MMSE scores and 
the relative abundances of the family Propionibacteriaceae (r = −0.586, 
p < 0.05), genus Anaerococcus (r = −0.503, p < 0.05), genus Arachnia 

TABLE 1 Baseline characteristics of the AD group and control group.

AD group Control group

Age (year) 71.3 ± 8.4 64.4 ± 8.3

Educational attainment 

(year)
4.5 ± 4.0 6.0 ± 4.5

Fasting blood glucose 

(mmol/L)
6.21 ± 1.58 6.10 ± 0.48

Direct bilirubin (μmol/L) 2.25 ± 0.48 2.13 ± 0.89

Indirect bilirubin (μmol/L) 9.79 ± 3.91 10.02 ± 3.35

Total bilirubin (μmol/L) 12.04 ± 4.00 12.15 ± 4.18

Triglycerides (mmol/L) 1.19 (0.75, 1.45) 1.21 (0.96, 1.42)

Total cholesterol (mmol/L) 5.85 ± 1.43 5.94 ± 1.35

High-density lipoprotein 

cholesterol (mmol/L)
1.35 ± 0.41 1.46 ± 0.32

Low-density lipoprotein 

cholesterol (mmol/L)
3.61 ± 1.13 3.45 ± 0.91

Aspartate aminotransferase 

(U/L)
24.11 ± 6.11 24.85 ± 5.62

Alanine aminotransferase 

(U/L)
18.35 ± 3.74 18.28 ± 6.33

Gamma-

glutamyltransferase (U/L)
17.98 (13.61, 25.43) 25.06 (18.71, 27.53)

Lactate dehydrogenase 

(U/L)
210.00 (162.75, 227.25) 210.00 (182.50, 227.25)

Cholinesterase (kU/L) 7.72 (6.71, 8.92) 8.03 (7.30, 10.60)

Albumin (g/L)* 40.44 ± 2.67 43.36 ± 2.26

Globulin (g/L) 32.43 ± 3.55 30.13 ± 3.55

Total protein (g/L) 72.87 ± 2.90 73.48 ± 2.51

Albumin/Globulin ratio 1.27 ± 0.20 1.46 ± 0.25

Serum creatinine (μmol/L) 69.72 (65.73, 82.52) 74.97 (66.16, 74.97)

Uric acid (μmol/L) 348.53 ± 117.60 400.64 ± 81.37

MMSE score (score)* 14.5 (4.5, 14.5) 28.88 (27, 30)

The variables in the two groups that both satisfied the normal distribution were presented as 
mean ± standard deviation; otherwise, they were presented by median (25th percentile, 75th 
percentile). *P < 0.05 (t-test for normally distributed data, Wilcoxon rank-sum test for 
non-normal distributions).
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(r = −0.650, p < 0.01), genus Peptoniphilus (r = −0.710, p < 0.01), 
genus Tannerella (r = −0.528, p < 0.05), species Actinomyces sp. oral 
taxon 848 (r = −0.647, p < 0.01), species Fusobacterium necrophorum 
(r = −0.607, p < 0.05), and species Streptococcus porcinus (r = −0.444, 
p < 0.05). In contrast, significant positive correlations were observed 
between MMSE scores and the decreased relative abundances of the 
genus Faecalibacterium (r = 0.601, p < 0.05), genus Roseburia 
(r = 0.562, p < 0.05), species Faecalibacterium prausnitzii (r = 0.601, 
p < 0.05), species Lachnospiraceae bacterium GAM79 (r = 0.529, 
p < 0.05), species Roseburia intestinalis (r = 0.625, p < 0.01), and 
species Roseburia inulinivorans (r = 0.579, p < 0.05) (Table 3).

3.6 Correlation between miRNAs, gut 
microbiota, and blood albumin level

Blood albumin level was found to have statistical differences 
between the AD group and the control group, and the impact of blood 
albumin level on the results of this study could not be  ruled out. 
Therefore, for the miRNAs with differential expression between 

groups and the gut bacteria with differential abundances between 
groups, we also analyzed their correlations with blood albumin level. 
We found that genus Faecalibacterium (r = 0.503, p < 0.05), species 
Faecalibacterium prausnitzii (r = 0.503, p < 0.05), and species 
Lachnospiraceae bacterium GAM79 (r = 0.509, p < 0.05) showed 
significant positive correlations with blood albumin level 
(Supplementary Table S2). Additionally, hsa-miR-323a-5p (r = 0.532, 
p < 0.05) also demonstrated a notable positive correlation with blood 
albumin level (Supplementary Table S3).

3.7 Correlation between plasma exosomal 
miRNA and gut microbiota

From the above, we identified four group-differentially expressed 
plasma exosomal miRNAs and 14 group-differentially abundant gut 
microbiota taxa, both significantly correlated with cognitive scores. 
The correlations between them were further analyzed (Figure 5). The 
abundance of Propionibacteriaceae, Faecalibacterium, Roseburia, 
Faecalibacterium prausnitzii, Roseburia intestinalis, and Roseburia 
inulinivorans was found to be significantly associated with hsa-miR-
3120-3p. Additionally, the abundance of Propionibacteriaceae, 
Roseburia, Actinomyces sp. oral taxon 848, Roseburia intestinalis, and 
Roseburia inulinivorans was significantly associated with hsa-miR-
6529-5p, while Roseburia inulinivorans was positively correlated with 
hsa-miR-124-3p, and Peptoniphilus exhibited a negative correlation 
with hsa-miR-323a-5p.

4 Discussion

In this study, we preliminarily explored the correlations between 
plasma exosomal miRNAs, gut microbiota, and cognitive impairment. 
In patients with AD, we identified 10 plasma exosomal miRNAs with 
differential expression and 24 gut microbiota taxa with differential 
abundances. Among them, the expression levels of 4 exosomal 
miRNAs and the relative abundances of 14 gut microbiota taxa were 
found to have significant correlations with MMSE scores. Notably, the 
abundance of potential probiotics, specifically Roseburia intestinalis, 

TABLE 2 Exosomal microRNAs with significant differences between case group and control group.

microRNA log2FoldChange P-value PFDR Expression in AD 
patients

Correlation 
coefficient with 

MMSE score†

hsa-miR-6529-5p −29.33 1.06E-22 7.82E-20 Down 0.580*

hsa-miR-6826-3p −25.89 3.27E-15 1.16E-12 Down 0.458

hsa-miR-676-3p −25.75 4.71E-15 1.16E-12 Down 0.458

hsa-miR-6731-5p −25.49 8.71E-15 1.61E-12 Down 0.458

hsa-miR-3120-3p −25.2 1.39E-14 2.05E-12 Down 0.580*

hsa-miR-627-5p 16.56 5.76E-07 7.10E-05 Up −0.029

hsa-miR-6769b-5p −15.94 1.95E-06 1.80E-04 Down 0.314

hsa-miR-7-2-3p −15.94 1.95E-06 1.80E-04 Down 0.314

hsa-miR-124-3p −7.75 5.17E-05 0.004 Down 0.562*

hsa-miR-323a-5p −7.53 2.63E-04 0.019 Down 0.507*

†Spearman correlation analysis; *P-value < 0.05.

FIGURE 3

Volcano plot of differential expression of plasma exosomal 
microRNAs.
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Roseburia inulinivorans, and Faecalibacterium prausnitzii, which was 
found to be decreased in AD patients, exhibited positive correlations 
with specific exosomal miRNAs.

The levels of four downregulated plasma exosomal miRNAs in 
AD patients, including miR-124-3p, −3,120-3p, −6,529-5p, and 
-323a-5p, were found to be positively correlated with MMSE scores, 
suggesting that these miRNAs could be involved in the process of 
cognitive impairment. Some studies indicated that exosomes are 
associated with neurodevelopment and neuroinflammation (Reza-
Zaldivar et al., 2019; Sharma et al., 2019; Zhang T. et al., 2021). A 
previous study has ascertained that exosomes, enriched with miRNAs 
that facilitate neurogenesis, such as miR-17-92, display a 
neurorestorative effect on neural injuries after ischemia (Xin et al., 
2017). miR-124-3p, a microRNA highly abundant in brain tissue, 
targets genes involved in the synthesis of BACE1. A study has shown 
that it inhibited the upregulation of BACE1 protein and the 
overexpression of Aβ in a low perfusion brain model (Zhang et al., 
2017), indicating a close association with AD pathology. Furthermore, 
in the rmTBI mouse model, microglial-derived exosomes enriched 
with miR-124-3p were found to be not only internalized by neurons 
in the injured brain tissue but also transported to hippocampal 
neurons, thereby mitigating the neurodegenerative process via the 
Rela/ApoE signaling pathway (Ge et al., 2020). Additionally, in vitro 
experiments and studies conducted on AD model mice have 
demonstrated that the absence of miR-124-3p could promote the 
hyperphosphorylation of tau protein, resulting in neurodegenerative 

changes (Zhou et al., 2019). Our study found that miR-124-3p levels 
were downregulated in the plasma exosomes of AD patients, 
suggesting a diminished neuroprotective function.

miR-3120 is a signaling RNA that targets heat shock protein 70 
and auxilin, modulating the uncoating of clathrin-coated vesicles 
(Scott et al., 2012). It is also a potential biomarker for head and neck 
epithelial cell carcinomas (Shimada et al., 2021), but there is limited 
research on its role in neuroscience. KEGG pathway enrichment 
analysis revealed that target genes of miR-3120-3p were associated 
with nerve growth factor and bacterial invasion, while GO enrichment 
analysis demonstrated that its target genes were enriched in functions 
such as neural system development, protein K48-linked ubiquitination, 
JNK signaling pathway, and JUN kinase activation. The process of 
protein K48-linked ubiquitination has been discovered to 
be associated with the recognition and clearance of soluble misfolded 
proteins (Mallette and Richard, 2012). The pathogenesis of AD is 
thought to involve the misfolding of proteins, the formation of soluble 
protein oligomers, and the phosphorylation of tau protein (Haass and 
Selkoe, 2007). Furthermore, prior research has demonstrated a 
correlation between the activation of JNK and Aβ in brain tissue (Shoji 
et al., 2000), and it has been discovered that tumor necrosis factor-α, 
interleukin, and interferon-γ can stimulate the JNK-dependent MAPK 
pathway, which is involved in the clearance of APP (Liao et al., 2004).

miR-323a-5p has been found to inhibit the proliferation of 
neuroblastoma cells (Soriano et  al., 2019), while lncRNA SNHG7 
could sponge miR-323a-5p and promote neuroblastoma progression 

FIGURE 4

LEfSe analysis of gut microbiota at the family, genus, and species levels.

https://doi.org/10.3389/fnins.2025.1545690
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lin et al. 10.3389/fnins.2025.1545690

Frontiers in Neuroscience 09 frontiersin.org

(Jia et  al., 2020). Functional enrichment analysis of the predicted 
target genes of miR-323a-5p in this study revealed a relationship with 
the APP cleavage process, which generates AD-associated pathogenic 
proteins. However, there is still limited research on miR-323a-5p in 
this area. Additionally, we found that GO analysis of the predicted 
target genes of hsa-miR-323a-5p, −6,529-5p, and −124-3p were all 
related to the SNARE complex, whose deficiencies are associated with 
the proteomic pathological changes in AD (Karmakar et al., 2019). In 
a word, the functional enrichment analysis of these miRNA target 
genes implies a close link between these miRNAs and the pathogenesis 
of AD. However, the specific regulatory mechanisms of their roles still 
require further research to explore.

Our metagenomic sequencing results revealed a significant 
decrease in the relative abundance of microbiota producing short-
chain fatty acids (SCFAs) in AD patients, particularly the genus 
Faecalibacterium and its species Faecalibacterium prausnitzii, as well 
as the genus Roseburia and its species, Roseburia inulinivorans and 

Roseburia intestinalis. Similarly, Sheng et al. reported a decreasing 
trend in the relative abundance of Faecalibacterium from normal 
cognitive function to perceived cognitive decline and subsequently to 
mild neurocognitive impairment (Sheng et al., 2021). This study also 
revealed a negative correlation between the abundance of 
Faecalibacterium and brain amyloid-beta load in cognitively normal 
volunteers (Sheng et  al., 2022), suggesting that a decrease in the 
abundance of Faecalibacterium may be a pathogenic factor in cognitive 
disorders such as AD. Research conducted by Ueda et al. found a 
reduction in Faecalibacterium prausnitzii among participants with 
mild cognitive impairment and demonstrated that strains of 
Faecalibacterium prausnitzii isolated from healthy volunteers could 
ameliorate the Aβ-induced cognitive impairments in mice (Ueda 
et al., 2021).

Research conducted in Kazakhstan also found a decrease in 
the abundance of Roseburia in AD patients (Kaiyrlykyzy et al., 
2022). Bacteria of genus Roseburia, and species Roseburia 
inulinivorans and Roseburia intestinalis, are capable of producing 
SCFAs, which can affect immune balance, inflammatory 
responses, and other physiological processes (Tamanai-Shacoori 
et  al., 2017). SCFAs have been shown to influence 
neuroinflammation by inhibiting the expression of 
pro-inflammatory cytokines, while simultaneously promoting 
microglial maturation and function, which may be beneficial for 
AD (Liu et al., 2020; Wenzel et al., 2020). Roseburia intestinalis, 
one of the primary butyrate-producing bacteria in the human gut, 
has been found to inhibit the expression of interleukin-17 (IL-17) 
in mouse models and in vitro cellular studies, thereby reducing 
inflammation (Zhu et al., 2018). In the central nervous system, 
IL-17 can induce neuronal damage either alone or in synergy with 
other factors (Waisman et al., 2015). Our current study observed 
a reduced abundance of Roseburia intestinalis in AD patients, 
which may be  due to reduced inhibition of IL-17 expression, 
thereby promoting neuroinflammation and neuronal damage. 
Therefore, SCFAs-producing probiotics, namely Faecalibacterium 
and Roseburia, may have a protective effect on AD and represent 
potential therapeutic targets.

Our research findings also revealed significant enrichment of 
Propionibacteriaceae, Peptoniphilus, Arachnia, Tannerella, as well as 
species including Streptococcus porcinus, Fusobacterium necrophorum, 
and Actinomyces sp. oral taxon 848 in AD patients, all of which 
showed a significant negative correlation with MMSE scores. 
Tannerella, Fusobacterium necrophorum, and Actinomyces sp. oral 
taxon 848 can inhabit the human oral cavity and are potential oral 
pathogens. Studies have shown that some oral pathogenic bacteria 
can invade the brain, where they produce amyloid proteins leading 
to Aβ deposition, thereby inducing or exacerbating AD (Poole et al., 
2013; Singhrao et  al., 2014; Sureda et  al., 2020). In addition, a 
community-based study of multiracial elderly individuals found an 
increased risk of AD among participants with high serum IgG 
antibodies against Actinomyces naeslundii (Noble et al., 2014). In our 
study, these enriched gut microbiota in AD patients may be involved 
in the pathogenesis of AD. However, relevant research is currently 
lacking, and the underlying mechanisms of their roles in AD remain 
to be further investigated.

We also identified significant associations between gut microbiota 
and plasma exosomal miRNAs. These findings further support the 
microbiota-gut-brain axis theory, which proposes that there is a crosstalk 

TABLE 3 Correlation analysis between gut bacteria abundances and 
cognitive scores.

Category Gut bacteria Correlation 
coefficient with 

MMSE score†

Family Propionibacteriaceae −0.586*

Genus

Anaerococcus −0.503*

Arachnia −0.650**

Dermabacter −0.454

Faecalibacterium 0.601*

Peptoniphilus −0.710**

Romboutsia 0.432

Roseburia 0.562*

Sarcina 0.495

Tannerella −0.528*

Species

Actinomyces sp. oral taxon 

848
−0.647**

Blautia hydrogenotrophica −0.447

Burkholderia cepacia −0.375

Faecalibacterium prausnitzii 0.601*

Fusobacterium necrophorum −0.607*

Lachnospiraceae bacterium 

GAM79
0.529*

Massilistercora timonensis 0.473

Romboutsia ilealis 0.417

Roseburia intestinalis 0.625**

Roseburia inulinivorans 0.579*

Sarcina sp. JB2 0.495

Streptococcus parasuis −0.444

Streptococcus porcinus −0.591*

Uncultured 

Erysipelotrichaceae 

bacterium

0.457

†Spearman correlation analysis; *p-value < 0.05, **p-value < 0.01.
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between gut microbiota and the brain, jointly influencing the 
physiological functions of the body. In AD patients, intestinal dysbiosis, 
intestinal barrier damage, and the increase of pro-inflammatory bacteria 
lead to more release of toxins or metabolites such as lipopolysaccharide 
and amyloid into the bloodstream (Ayyanar and Vijayan, 2024). These 
harmful substances can subsequently cross the BBB and enter neurons, 
activating signals such as NF-κB and mediating the expression of specific 
miRNAs, thereby causing neuroinflammation and neurodegeneration 
(Ayyanar and Vijayan, 2024). Studies have shown that activated microglia 
and astrocytes secrete exosomes rich in miRNAs, which can enhance 
neuroinflammation, activate complement system, impair innate immune 
signaling transduction, and exacerbate disease progression (Lukiw and 
Pogue, 2020). Therefore, the exosomal miRNAs released from brain 
tissue into the bloodstream reflect the pathological state of AD. This is 
also one of the reasons why certain plasma exosomal miRNAs are 
considered biomarkers for AD. In this study, we found a decrease in the 
abundance of SCFAs-producing probiotics (such as Roseburia and 
Faecalibacterium) in AD patients, which was positively correlated with 
the decreased expression of exosomal miR-124-3p, miR-3120-3p, or 
miR-6529-5p. This may indicate a decrease in the levels of SCFAs derived 
from probiotics in AD patients, which in turn diminishes their inhibitory 
effect on neuroinflammation. Consequently, this could also result in 
decreased expression of some miRNAs (such as miR-124-3p) that exert 
protective effects against AD.

This study initially investigated the potential correlation between 
plasma exosomal miRNAs and gut microbiota in the development of 
AD. However, this study still has some shortcomings. First, the latest 2011 
NIA-AA diagnostic criteria (McKhann et al., 2011) were not used, as 
some patients did not cooperate with the examination, so the 1984 
NINCDS-ADRDA criteria were used. Second, this study could not 

determine the organ or tissue source of the plasma exosomes extracted. 
Thirdly, as a preliminary exploratory study, this research was a cross-
sectional study with a relatively small sample size, which limited the 
possibility of causal inference. The results obtained still need to 
be validated by cohort studies with large sample sizes. Lastly, a notable 
disparity in plasma albumin levels was observed between the AD group 
and the cognitively normal group. A previous study demonstrated that 
plasma exchange, when coupled with albumin replacement therapy, could 
decelerate cognitive deterioration in patients with AD (Boada et al., 2020). 
This suggests that albumin might act as a confounding variable. 
Nevertheless, most of the significantly altered miRNAs and gut microbiota 
in this study were not significantly correlated with albumin.

5 Conclusion

The study revealed a close association between gut microbiota and 
plasma exosomal miRNAs in AD patients, suggesting their potential as 
biomarkers and therapeutic targets for AD. Future studies should further 
explore the application value of these biomarkers in the early screening, 
diagnosis, and treatment of AD, as well as their specific mechanisms of 
action in the pathological processes of AD.
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FIGURE 5

Correlation between plasma exosomal miRNAs and gut microbiota. Spearman correlation analysis was used; *p-value < 0.05, **p-value < 0.01.
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