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Research indicates that by 2050, more than 150 million people will be living with

Alzheimer’s disease (AD), a condition associated with neurodegeneration due

to the accumulation of amyloid-beta and tau proteins. In addition to genetic

background, endocrine disruption, and cellular senescence, management of the

gut microbiota has emerged as a key element in the diagnosis, progression,

and treatment of AD, as certain bacterial metabolites can travel through the

bloodstream and cross the blood-brain barrier. This mini-review explores

the relationship between tau protein accumulation and gut dysbiosis in

Drosophila melanogaster. This model facilitates the investigation of how gut-

derived metabolites contribute to neurocognitive impairment and dementia.

Understanding the role of direct and indirect bacterial by-products, such as

lactate and acetate, in glial cell activation and tau protein dynamics may provide

insights into themechanisms of AD progression and contribute tomore e�ective

treatments. Here we discuss how the simplicity and extensive genetic tools of

Drosophila make it a valuable model for studying these interactions and testing

potential therapeutics, including probiotics. Integrating Drosophila studies with

other established models may reveal conserved pathways and accelerate the

translation of findings into clinical applications.
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1 Introduction

The incidence of Alzheimer’s disease (AD) has notably increased in recent years. The

number of patients is projected to triple by 2050 (Scheltens et al., 2021), causing not only

suffering to family, friends and caregivers (Beata et al., 2023), but deeply consequences to

health systems. The condition is strongly associated to the accumulation of amyloid-beta

(Aβ) and tau proteins (Palmqvist et al., 2021; Hou et al., 2019; Rydbom et al., 2021), but a

secondary approach leveraging the influence of the intestinal tract on the brain has been

established (Vogt et al., 2017; Pluta et al., 2020). The modulation of the microorganisms

found in the gut showed a new path to treat the disease, since the molecules produced by

themicrobiota can reach neurons and glial cells and influence them in several ways (Huang

et al., 2023; Mayneris-Perxachs et al., 2022).

In addition to the traditional murine models, Drosophila melanogaster is an

inexpensive, genetically modulable and easily reproducible model (Jennings, 2011) that

is currently used in AD and microbiota-related research (Rydbom et al., 2021; Kong

et al., 2018; Tan et al., 2020). In addition, the molecular and cellular conserved aspects

of Drosophila support its use in intestinal epithelium (Apidianakis and Rahme, 2011),
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and brain-gut communication research (Makdissi et al., 2023;

Kitani-Morii et al., 2021), encouraging new AD diagnosis insights

from an interorgan perspective.

Aspects of Drosophila gut microbiota are common with

humans, including bacterial genera such as Acetobacter and

Lactobacillus (Simhadri et al., 2017), which produce acetic acid

and lactic acid, respectively. The undissociated form of acetic acid,

acetate, presents anti-neuroinflammatory properties (Liu et al.,

2020), while lactate modulates aging in flies (Long et al., 2020)

and is transported from glial cells to neurons, where it is utilized

in the tricarboxylic acid cycle (Xu et al., 2023; Volkenhoff et al.,

2015). These organisms play a fundamental role in disrupted energy

metabolism associated with AD.

Glial cell types such as microglia participates in tau protein

engulfment and neuroprotection in both zebrafish (Hassan-Abdi

et al., 2019) and mammals (Freeman and Doherty, 2006; Yildirim

et al., 2019). Since its Drosophila flies’ counterparts—neuropil,

cortex, and ensheathing glia (Freeman and Doherty, 2006; Doherty

et al., 2009)—also play a role in tau phagocytosis, the activation

of ensheathing glia is believed to be crucial for elucidating the

pathways involved in tau protein generation (Figure 1A).

Exploring the impact of gut-derived lactate and acetate on AD

progression and glial activation in fly models can provide valuable

insights into how bacterial by-products modulate neuro-cognitive

and homeostatic functions, ultimately guiding more effective

treatments for the disease. Thismini-review highlights the potential

of Drosophila as a robust model for investigating the associations

between the flies’ gut microbiota and the human microbiota, a

connection that helps uncover the mechanisms linking bacterial

balance to AD progression and inform future therapeutics.

2 Proteins associated with Alzheimer’s
disease

Aβ and tau proteins are the molecules more frequently

associated to Alzheimer’s disease progression (Lei et al., 2021;

Scheltens et al., 2021; Panza et al., 2019). Tau protein is found

in neuronal cells of the central nervous system (CNS), mainly in

dendrites and axons regions (Rawat et al., 2022), and a diversity

of post-translational modifications can cause its abnormal function

(Giong et al., 2021). The excessive phosphorylation of tau protein

by enzymes known as kinases destabilizes it, making it prone to

detaching from microtubules, organelles essential for transporting

vesicles and molecules throughout neurons.

Specific regions of tau can be abnormally phosphorylated

or, more precisely, hyperphosphorylated. Serine, tyrosine and

threonine are the amino acids where this addition occurs, and

depending on the position of the phosphate attachment, numerous

variants are formed. For instance, tau hyperphosphorylated on

threonine 181 is found in blood, which optimize its use as

an easy-to-collect biomarker in AD diagnosis (Thijssen et al.,

2020), whereas the deficiency of super oxide dismutase 2 (SOD2)

exacerbate the levels of tau hyperphosphorylated on serine 396 in

mice (Flynn and Melov, 2013; Melov et al., 2007).

Tau phosphorylation introduces a negatively charged

phosphate group to the peptide, changing its electrostatics

and making it more hydrophilic (Alquezar et al., 2021).

The pathological phosphorylation along with the diminished

clearance of tau fragments by glial cells and neuroinflammation

trigger the formation of insoluble paired helical filaments

(Rawat et al., 2022).

The expression of the Lamp1 gene (lysosomal-associated

membrane protein) is decreased in Drosophila fruit flies expressing

proteins related to Parkinson’s, indicating that lysosomal

degradative activity plays a crucial role in protecting against

oxidative stress and locomotor deficits (Rahmani et al., 2022).

Additionally, Lamp1 is down-regulated in flies expressing Aβ

while being up-regulated in models of amyloid- β precursor

protein (AβPP) (Bergkvist et al., 2020). This suggests that these

vesicles regulate the degradation and toxicity of Aβ oligomers,

with significant implications for tau pathology. In contrast, Lamp2

mutant mice are more severely affected by vacuole formation

compared to Lamp1 (Chaudhry et al., 2022; Rahmani et al.,

2022), indicating that their respective alleles operate through

different mechanisms across species. Nevertheless, both isoforms

are recognized as equally significant biomarkers in the context of

neurodegenerative research.

3 Gut microbiota and Alzheimer’s
disease

The interconnection between diet, microbiota, and the

intestinal epithelium offers valuable insights into brain health.

The gastrointestinal tract engages in a complex bidirectional

communication with the nervous system through a sophisticated

network of signaling pathways (Makdissi et al., 2023). In mammals,

the gut microbiota influences the development of the newborn

immune system (Donald and Finlay, 2023), the differentiation

of anti-inflammatory Treg cells (Arpaia et al., 2013), hormone

levels, neurotransmitter metabolism, neuronal signaling (Morais

et al., 2021), and the integrity of blood-brain barrier (Fung et al.,

2017). However, themechanisms throughwhich the intestinal host-

microbiota interactions remotely alter brain physiology remain

an area of ongoing research (Fung et al., 2017), especially in

invertebrate models.

A wide range of bacterial genera perform gut-related functions.

Lactobacillus rhamnosus modulates the levels of the inhibitory

neurotransmitter γ-aminobutyric acid, also known as GABA

(Barrett et al., 2012), leading to the regulation of anxiety and

depression both in mice (Bravo et al., 2011; Tsai et al., 2023)

and humans (Slykerman et al., 2017). Moreover, psychological

stress increases the abundance of the gut commensal L. murinus

in mice, a producer of indole-3-acetate (IAA), which contributes

to the loss of intestinal secretory cells (Wei et al., 2024). In

addition, Lactobacillus shows an intrinsic positive metabolic

interplay with Acetobacter strains (Dodge et al., 2023), that are

equally reduced in neurodegenerative diseases (Liu et al., 2023).

The interaction between these groups encourages further studies

on how bacterial metabolites may influence neurological diseases

(Figure 1B), especially given the diversity of these molecules, which

tends to decline with age and the progression of AD (Kong et al.,

2018; Lynn et al., 2022).

Some studies have shown that the microbiota can be modified

or improved to protect patients against the neurocognitive decline.
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FIGURE 1

Gut bacterial metabolites in Drosophila a�ect brain processes associated with Alzheimer’s disease. (A) Engulfment of tau fragments by Drosophila

ensheathing glia is linked to ROS production and lysosomal activity, both of which may be modulated by gut bacterial metabolites. (B) The two

primary gut bacteria genera shared between flies and humans: gram-negative Acetobacter and gram-positive Lactobacillus. (C) The gastrointestinal

regions of Drosophila, highlighting the low pH region of copper cells in the middle midgut, which influences the microbiota composition. Created in

https://BioRender.com.

Instead of administering isolated species such as Lactobacillus

(Kleerebezem et al., 2010), the solution may lie in fostering

an optimal gut—and external—environment that promotes the

growth of beneficial bacteria, while also considering their key

metabolites. Even social interactions seem to play a role in

microbiome-associated diseases (Valles-Colomer et al., 2023).

In this context, transplantation of feces from human with

AD to germ-free mice decreases the abundance of nervous

system mediators, including GABA, taurine, and valine (Fujii

et al., 2019). Additionally, the fecal microbiome of patients

with the disease exhibits increased levels of Bacteroidetes, and

decreased levels of Firmicutes and Bifidobacterium (Vogt et al.,

2017), reinforcing the synergy between microbiota diversity and

neuronal processes.

Although more studies on brain-gut-microbiota

communication are necessary for establishing effective therapies

for CNS disorders, multidisciplinary approaches provide valuable

insights and sustain the development of future treatments

(Grenham et al., 2011). Furthermore, the specific bacterial species

most significantly altered during AD progression remain uncertain,

highlighting the need for continued research to effectively utilize

bacterial groups as biomarkers in early diagnosis. Investigating

the correlation between bacterial metabolites, such as acetate, and

taxonomic composition data (Ferreiro et al., 2023) could clarify the

role of specific gut taxa in AD.

4 Drosophila as a gut-brain axis model

Drosophila is frequently used in genetic research, and its

tractable microbiome makes it a valuable axenic and gnotobiotic

model (Brummel et al., 2004; Steven et al., 2021). This

allows controlled interactions between the host and known

microorganisms, which can be useful in assessing aggressive

behaviors (Jia et al., 2021) and locomotion patterns (Schretter et al.,

2018). With a relatively simple microbiota (Marra et al., 2021),

D. melanogaster holds microbial communities of 2 to 30 species,

that are represented by two phyla: Proteobacteria and Firmicutes.

The most consistently associated species across different studies

are lactic and acetic acid bacteria that reflects the fermentative

substrates on which flies feed (Arias-Rojas and Iatsenko, 2022).

The intestine of Drosophila exhibits well-conserved molecular

aspects with humans (Apidianakis and Rahme, 2011) and distinct

pH zones (Sapre et al., 2020), making it a widely used model

in gut-related studies (Iatsenko et al., 2018; Dodge et al., 2023;

Silva et al., 2020). The gastrointestinal tract is divided into the

foregut, midgut and hindgut, with the midgut harboring the

gastric acid-producing copper cells (Miguel-Aliaga et al., 2018;

Broderick and Lemaitre, 2012) (Figure 1C), which, similarly to the

human stomach, may affect pH-sensitive bacteria and influence

the microbiota composition (Storelli et al., 2018). The Drosophila

gut is altered by the ingestion of Pseudomonas entomophila
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(Vodovar et al., 2005) and Erwinia carotovora (Buchon et al., 2009),

which influence the cytoskeleton composition of gut epithelial

cells and promote intestinal stem cell proliferation, respectively.

Additionally, the gut epithelium secretes a mucus layer and the

chitin-based peritrophic matrix, which act as filters for pathogenic

microorganisms (Vodovar et al., 2005; Apidianakis and Rahme,

2011).

Species such as Acetobacter fabarum and Lactobacillus brevis

assist in Drosophila nutrition (Sommer and Newell, 2019), while

microbiota-derived acetate activates intestinal innate immunity

(Jugder et al., 2021). Furthermore, Lactobacillus plantarum, a

bacterium found in the Drosophila intestine, influences larval

growth through a nutrient-sensing system (Storelli et al., 2011), and

the gut microbiome prevents rapid fluctuations in the circadian

cycle of flies (Zhang et al., 2023), reinforcing the communication

between the two organs.

In fly models of both AD and Parkinson’s disease, the

proportion ofAcetobacter and Lactobacillus is lower than in healthy

controls (Kong et al., 2018; Liu et al., 2023). Lactic acid is the

main metabolite of Lactobacillus and stimulates the production

of reactive oxygen species (ROS) via the intestinal NADPH

oxidase Nox (Iatsenko et al., 2018), a process strongly associated

with neurodegeneration. Moreover, the Drosophila’s metabolism is

highly adaptive; when the glycolytic pathway is insufficient, its glial

cells can switch to using fatty acids to fuel neuronal metabolism

(McMullen et al., 2023), suggesting that these cells contribute to

the gut-brain axis as either intermediaries in neurodegeneration

or nutrient processing. In summary, both microbial metabolites

and the composition of microbial species are strong candidates for

contributing to AD progression.

The Drosophila gut-brain axis is also reflected in its anatomy,

where nerve fibers are regulated by cells in the digestive tract.

Serotonergic enterochromaffin cells, a type of cell found in the

human gut epithelium, were shown to modulate sensory nerves

via serotonin receptors and synaptic connections (Bellono et al.,

2017). Some subtypes of these enterochromaffin cells are also

found in Drosophila (Guo et al., 2022), suggesting that flies, like

humans, experience environmental, metabolic, and homeostatic

signals from the gut directly to their nervous system.

5 The CNS glial cells of Drosophila

Fruit flies are extensively used as animal models in

neurocognitive and physiological experiments (Kitani-Morii

et al., 2021). These studies employ various assays, including

negative geotaxis (Rahmani et al., 2022; Ferreiro et al., 2018),

gastric motility (Rydbom et al., 2021), and memory-related

behavior (Gil-Martí et al., 2023). Physiological and behavioral

alterations associated with AD can be assessed through multiple

methods, such as monitoring sleep (Vaccaro et al., 2020), profiling

the transcriptome (Marsh et al., 2016; Zhang et al., 2023; Liu et al.,

2023), assessing lifespan (Vaccaro et al., 2020; McMullen et al.,

2023), quantifying bacteria (Zhang et al., 2023; Trébuchet et al.,

2019), evaluating microglial metabolic alterations (Marsh et al.,

2016; Huang et al., 2023), and assessing glial development (Stork

et al., 2012).

TABLE 1 Types and functions of glial cells in the adult Drosophila CNS.

Glial type Function Position

Astrocyte-like Ionic and neurotransmitters

homeostasis

Outside (cell bodies) and

inside (extended processes)

the neuropil

Ensheathing Phagocytosis of debris Between neuropil surface and

cortex cells

Cortex Trophic support to neurons CNS cortex

Subperineural Chemo-protection and

selective transport of

nutrients

CNS periphery

Perineural Chemo-protection, selective

transport of nutrients, and

barrier physical support

Covering the entire nervous

system

The Drosophila nervous system exhibits a significant level of

complexity, sharing cellular, genetic, and functional characteristics

with its mammalian counterparts (Salazar et al., 2022). Some

authors categorize glial cells into four categories: cortical glia,

neuropil glia, peripheral glia, and surface glia (Freeman and

Doherty, 2006; Yildirim et al., 2019), but the classification may vary

depending on characteristics such as cell body position and form.

A comprehensive classification is presented in Table 1, considering

the morphological and functional similarities of glial subtypes.

The evolution of the nervous system has resulted in a higher

proportion of glial cells compared to neurons, with estimates of

15% in flies, 50% in mice, and 90% in humans, indicating an

increasing contribution of glia according to complexity (Kremer

et al., 2017). Similar to mammalian microglia, the surface and

neuropil glia of Drosophila—specifically, the ensheathing glia—

perform macrophage-like functions (Freeman and Doherty, 2006),

suggesting their involvement in the engulfment of Aβ and

tau fragments.

The perineural and subperineural glia perform a blood-brain

barrier role in Drosophila, controlling the passage of bacterial

metabolites to the brain. Furthermore, glial cells, such as astrocytes,

supply lactate to neurons (Hascup et al., 2022), a function of cellular

cooperation that is also conserved in Drosophila (Volkenhoff et al.,

2015), but is abnormally altered in energy-demanding neurons

affected by AD. The variety of transgenic lineages and the ease of

using flies as axenic and gnotobiotic models make this organism

useful in researching neurological conditions as diverse as AD and

autism (Salim et al., 2021).

Similar to the mammalian vagus nerve, Drosophila gut-brain

communication is mediated by serotonergic neurons that innervate

its intestine (Schoofs et al., 2014). This enteric nervous system

of the invertebrate model—including both neurons and glial

cells—connects to the central nervous system via the antennal

nerve (Salim et al., 2021; Schoofs et al., 2014), a crucial pathway

for transporting bacterial metabolites across the gut-brain axis.

The relatively small number of glial cells in flies, compared to

mammals, may offer a unique opportunity to better understand

glial communication with the neuronal microenvironment.

Intriguingly, when AD disrupts the gut microbiota of

mammals, Lactobacillus produces such high levels of GABA that
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the mucin layer is compromised, allowing the movement of

solutes and metabolites out of the intestine (Conn et al., 2024).

Furthermore, enteric glial cells of mice express GABA signaling

receptors (Deng et al., 2023), raising the question of whether a

similar host-bacteria communication could occur in Drosophila,

a model organism with well-characterized genome and largely

mapped neuronal connectome.

In mammals, the neuroinflammation related to AD is

intricately associated with microglial activation (Johnson et al.,

2020), which causes the cell to undergo a morphological

transformation from a slender, ramified form to a more rounded

shape with fewer extensions (Loh et al., 2024; Colombo et al.,

2021). In addition, the gut microbiome of mice has been shown

to modulate the expression of AD-related genes, such as Apoe and

Trem2 (Huang et al., 2023). In flies, the interaction of neurons

with their support cells and the expression of genes involved in

Aβ clearance in glial cells (Yang et al., 2017) warrant a deeper

investigation into the molecular mechanisms underlying gut-

brain axis.

6 Discussion

The indirect mechanisms linking intestinal dysbiosis to the

progression of Alzheimer’s disease remain poorly understood, with

most current studies primarily focusing on direct correlations.

The complexity of inter-organ communication and the impact of

environmental factors such as stress, sleep, and social interactions

on neurocognitive impairment are still in discussion. Employing

an in vivo system for such investigations could better reflect the

complexity of signals that CNS cells receive and process, producing

a more representative output that facilitates the development of

new therapies.

The well-characterized genome and genetic tools ofDrosophila,

along with its simpler microbiota and low maintenance

requirements, serve as motivating reasons to use this model for

evaluating the influence of extraneural events on the progression of

Alzheimer’s disease. The behaviors exhibited by the flies and their

metabolic pathways are highly mappable, facilitating the analysis

of the interplay among comprehensive and robust hypotheses.

Fruit flies are also an excellent model for developing and

testing drugs, though they are still timidly utilized in biotechnology

research. Considering the development of probiotics, the

modifiable microbiome of Drosophila could accelerate the creation

of new medications and improve safety before clinical trials. When

used in pioneering research and in association with complementary

models, Drosophila can foster new discoveries in the gut-brain

axis field, translating evolutionarily conserved associations into

theragnostic solutions, from bench to bedside.
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