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Introduction: Amyotrophic lateral sclerosis (ALS) is a progressive 
neurodegenerative disorder, characterized by tremendous clinical heterogeneity 
that necessitates reliable biomarkers for the trajectory of the disease. The 
potential of phosphorylated Neurofilament-Heavy-chain (pNfH) measured in 
cerebrospinal fluid (CSF) to mirror disease progressiveness has repeatedly been 
suggested but is not applicable as outcome on an individual patient-level. This 
potential was probably obfuscated before due to imprecise clinical measures 
of disease progression that assumed a linear decline of motoric function over 
time. The primary objective was therefore to study if disease aggressiveness, as 
quantified via the D50 model, would reveal more stable correlations with pNfH.

Methods: ELISA-quantified pNfH CSF levels of 108 patients with ALS were 
comparatively analyzed in relation to three different measures of disease 
progression speed via analyses of covariance, linear and non-linear regressions, 
respectively. These were (a) the D50, depicting a patient’s overall disease 
aggressiveness, (b) cFL, the calculated functional loss-rate as locally derived 
parameter of progression speed, and (c) DPR, the disease progression-rate as 
more commonly used linear approximation of points lost per month in the ALS 
functional rating scale since symptom onset.

Results: All analyses of covariance showed a significant main impact of the 
respective disease progression-speed parameter on pNfH, independent of 
disease phase, presence of frontotemporal dementia, analyzing laboratory, sex 
or clinical onset type, while only age revealed borderline additional influence. 
Notably, CSF pNfH concentration was independent of how far the disease had 
progressed, as neither disease phase nor a direct regression with the quantified 
disease accumulation at the time of lumbar puncture revealed a significant 
correlation. However, the parameter D50 quantifying aggressiveness showed 
the most significant impact on pNfH-levels, as compared to the cFL and even 
more evident in contrast to the DPR. This superiority of D50 was confirmed in 
direct linear and most evident in non-linear regressions with pNfH.
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Conclusion: Overall disease aggressiveness in ALS, as quantified by D50, most 
robustly correlated with CSF pNfH-levels, independent of the time of collection 
during symptomatic disease. This opens perspectives to use CSF pNfH as a 
prognostic outcome measure for future therapeutic interventions in the sense 
of precision medicine.
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1 Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease 
that pre-eminently affects the motoneuronal system and has a median 
survival time of 3 years after symptom onset. The age and site of onset, 
clinical spread and rate of functional decline all vary considerably 
among patients (Foster and Salajegheh, 2019; Feldman et al., 2022). In 
addition patients are often diagnosed with delay or even misdiagnosed 
(Paganoni et  al., 2014; Behzadi et  al., 2021). This considerable 
variability represents a significant challenge for both clinical 
management and the development of new therapies. Accordingly, a 
major focus in the field has been the validation of reliable biomarkers 
that can assist with diagnoses and/or monitor disease progression 
(Dreger et al., 2022; Sanchez-Tejerina et al., 2023). To date, therapeutic 
trials applied outcome measures that are derived from clinical 
observations, mainly the revised ALS Functional Rating Scale 
(ALSFRS-R) or long-term survival rates (Benatar et al., 2022). The 
recent example of the agent Tofersen underlines the importance of 
other outcome measures that were pivotal for its marketing 
authorization tailored to the minority of patients with ALS carrying a 
variant in the SOD1-gene. While the primary outcome measure of 
ALSFRS-R decline failed to reveal a significant effect in the respective 
phase 3 study, it was observed that Tofersen led to greater reductions 
in concentrations of SOD1  in cerebrospinal fluid (CSF), and of 
neurofilament light chains in plasma than placebo (Miller et al., 2022). 
This illustrates the potential of biomarkers to enhance the 
advancement of clinical trials. However, more research is necessary to 
identify and validate specific pharmacodynamic, prognostic, or 
predictive biomarkers in order to ensure that signals observed from 
these surrogates are indeed clinically meaningful (Kiernan et al., 2020).

Studying the central nervous system compartment CSF, 
neurofilaments are widely considered as promising biomarkers for 
various neurodegenerative and neuroinflammatory conditions, due to 
their neuronal specificity (Verber and Shaw, 2020; Abu-Rumeileh 
et  al., 2022). Neurofilaments constitute part of the intermediate 
filament family, comprising light (NfL), middle and heavy chains of 
varying weights and are essential components of the axonal 
cytoskeleton (Gentil et al., 2015; Khalil et al., 2018; Hohmann and 
Dehghani, 2019). They are explicitly expressed during neuronal 
growth and maturation-, in large-myelinated neurons, which make 
them particularly interesting for research in motor neuron diseases 
(Bomont, 2021; Zecca et  al., 2022). The neurofilament isoforms 
assemble and form compound-filaments which provide structural 
stability for the neurons. They are also involved in transport and 
docking of organelles (Yuan et al., 2017; Zucchi et al., 2020). The 
phosphorylation of neurofilament heavy chain tails occurs as post-
translational modification and indicates the interaction with 

neighboring filaments that regulate their axonal transport rate (Gentil 
et al., 2015; Bomont, 2021). Amyotrophic lateral sclerosis is associated 
with significantly elevated CSF-levels of neurofilaments that are likely 
caused by the axonal damage, but may also be directly related to the 
pathophysiological process of this neurodegenerative disease (Khalil 
et al., 2018).

Studies comparing CSF levels of neurofilament light (NfL) vs. 
phosphorylated heavy chains (pNfH) have suggested that the two have 
different sensitivity and specificity for ALS (Poesen and Damme, 
2018). Moreover, a former study by Menke et al. (2015) suggested that 
pNfH correlates better with clinical signs of lower motor neuron 
damage than NfL, that on the other side has been described to 
correlate with upper motor neuron dysfunction. During the 
progressing ALS disease, longitudinal studies revealed that pNfH CSF 
concentrations remain relatively stable, while some studies assessing 
NfL serially reported unstable levels (Lu et al., 2015; Steinacker et al., 
2015; Poesen et al., 2017). This would qualify pNfH as the preferred 
candidate biomarker that may be assessed at any time during the 
symptomatic phase of the disease (Simonini et al., 2021; Dreger et al., 
2022; Heckler and Venkataraman, 2022). In principle, recent studies 
supported that the level of CSF pNfH mirrors the rate of neuroaxonal 
breakdown as it correlated with survival (Steinacker et  al., 2015; 
Simonini et al., 2021; Kläppe et al., 2024). Concerning the association 
with progression speed of the disease, the ALSFRS-R derived disease 
progression rate (DPR) was used as linear approximation of the speed 
of disease progression (Labra et al., 2016), but studying the association 
with CSF concentrations of pNfH yielded mixed results. Some authors 
described a significant correlation with the DPR in limited cohorts of 
patients with ALS (McCombe et al., 2015; Schaepdryver et al., 2018; 
Simonini et al., 2021; Benatar et al., 2024), while others failed to reveal 
such a correlation (Li et al., 2016).

A common reason for the controversial results of these previous 
studies may be  the weakness of the clinical measure, as the DPR 
assumes a linear decline of ALSFRS-R sum scores in progressing 
disease. By contrast, previous large-scale observations showed that the 
rate of decline varies throughout the individual course of the disease 
and follows rather a curvilinear course (Proudfoot et  al., 2016; 
Ramamoorthy et  al., 2022). In addition, the calculation of a 
progression-rate based on a single score, is highly susceptible to the 
known intra-rater and inter-rater variability associated with 
ALSFRS-R scoring (Bakker et al., 2020).

The D50 model of ALS disease progression was developed in order 
to overcome such limitations of traditional clinical metrics. It has already 
proven to facilitate robust correlations with values originating from 
various biomarker signals (Gaur et al., 2023; Magen et al., 2021; Steinbach 
et al., 2021). Briefly, the model characterizes the progressive decline in 
motoneuronal capacity from full health to functional loss (Figure 1). It 
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quantifies overall disease aggressiveness as the time taken to reach halved 
functionality (parameter D50) and further enables the calculation of 
individual disease covered/accumulation (e.g., in distinct phases) and of 
acute descriptors of local disease activity. Strengths of the D50 model in 
comparison to traditional disease metrics are that it takes into account the 
individual clinical course as a whole and reflects its typically curvilinear 
decline of disability more appropriate (Ramamoorthy et al., 2022). It thus 
enables unbiased comparisons of patients with vastly differing time 
courses of the disease in cross-sectional cohorts (so-called pseudo-
longitudinal approach). Furthermore, it reduces noise inherent with 
ALSFRS-R assessment mentioned before, as it incorporates multiple serial 
measurement time-points per patient instead of a singular observation.

In this study, we applied the D50 model to a heterogeneous cohort 
of patients with ALS to investigate if CSF pNfH concentrations would 
correlate with measures of disease progression speed independent of 
disease accumulation. We additionally hypothesized that CSF pNfH 
levels would capture patients’ overall disease aggressiveness (as 
measured by D50) better than parameters measuring local rate of 
progression. If confirmed, this would underscore the potential of 
pNfH as meaningful outcome measure thus reflecting overall disease 
aggressiveness of the symptomatic stages of the ALS disease, 
independent of the time of assessment (i.e., lumbar puncture).

2 Materials and methods

2.1 Participants

All participants were recruited from the Neuromuscular Center at 
Jena University Hospital (Germany) between the years 2013 and 2020 
and written informed consent was obtained prior to study initiation. 
All procedures were approved by the local ethics committee (Nr. 
3,633–11/12) and were conducted in accordance with the Declaration 
of Helsinki and its later amendments. A total of 153 individuals 
diagnosed with motor neuron disease and available CSF samples were 
identified from the local specialized neuromuscular disease database 
(Steinbach et al., 2020). We only included patients who fulfilled the 
Gold Coast criteria for the diagnosis of ALS as assessed by a specialized 
physician (Shefner et al., 2020). To allow stringent D50 modeling and 
comparison with the traditional DPR, we only included individuals 
who met all of the following criteria: (a) ≥2 recorded ALSFRS-R scores 
available, (b) at least one score taken within 20 days before/after CSF 
sampling, (c) at least one score ≥ 35 and (d) at least one score ≤ 36. 
This led to the exclusion of 57 individuals and the final cohort included 
108 patients with ALS (see also Figure 2 for an overview of the study 
procedures). According to patients’ reports of the first site of motoric 
function loss, the clinical onset was allocated to the bulbar or spinal 
(i.e., limbs) region. Furthermore, clinical phenotypes were classified 
as either classic, bulbar, pyramidal, flail arm, flail leg, respiratory or 
pure lower motor neuron as described by Chiò et  al. (2011). The 
presence of comorbid frontotemporal dementia was assessed 
according to the Strong criteria (Strong et al., 2009, 2017).

2.2 CSF sampling and analysis

Cerebrospinal fluid (CSF) samples were obtained via lumbar 
puncture at the Department of Neurology, Jena University Hospital 

following an in-house standard operating procedure. Accordingly, the 
CSF samples were subjected to centrifugation (5,000 × g, 10 min, 4°C), 
aliquoting, and cryopreservation at −80°C within 2 h after lumbar 
puncture until further use. The pNfH concentrations were determined 
using a commercially validated ELISA kit (Biovendor International, 
RD191138300R); assays were performed in accordance with 
manufacturer instructions at one of two European laboratories in 
Germany (n = 56) and Belgium (n = 52) that are accredited for these 
analyses. All samples were analyzed in duplicate, and the intra- and 
inter-assay coefficients of variation were both ≤10% and ≤20%, 
respectively.

2.3 The D50 disease progression model

The D50 Disease Progression Model provides a detailed 
framework to interpret any biomarker signal as it provides 
quantitative measures of disease aggressiveness that are distinct 
from parameters of disease accumulation (Poesen et  al., 2017; 
Steinbach et al., 2020). Briefly, the model calculates an individual 
sigmoidal state transition from functional health to motor function 
loss, based on all available ALSFRS-R scores longitudinally collected 
on a regular basis for the individual patient (Figure  1A). The 
resulting sigmoidal curve can be characterized by two parameters: 
(a) D50, that represents the time in months since symptom onset 
until the time point of halved functionality, and (b) dx, that 
represents the time constant of functional decline, i.e., the steepness 
of the curve. Repeated observations showed that both parameters 
D50 and dx exhibit a direct intercorrelation in different cohorts 
(Poesen et al., 2017; Prell et al., 2019; Steinbach et al., 2020) as also 
confirmed for the patient sample of this study (R2 = 0.86, p < 0.001; 
Figure 1C). Therefore, the D50 value alone can be employed to 
describe the curve and thus provides a discrete descriptor of the 
overall disease aggressiveness of an individual patient. The patients 
of this study were thus categorized into three subgroups of (a) high 
(D50 < 20 months), (b) intermediate (20 ≤ D50 < 40 months), and 
(c) low (D50 ≥ 40 months) disease aggressiveness. The relative D50 
(rD50) parameter is obtained by normalizing the patient’s real-time 
sigmoidal disease trajectory to D50. This results in an open-ended 
reference scale, with 0 representing symptom onset and 0.5 
representing the time point at which functionality is halved 
(Figure 1B). The rD50 provides an individualized quantification of 
disease accumulation, independent of disease aggressiveness, that 
can be calculated for any given time-point and was calculated in 
this cohort for the day of lumbar puncture. Based on the 
observations of rD50 modeling, patients can be classified into one 
of three phases of similar disease progression patterns that they pass 
during the course of their disease: (a) the early semi-stable phase 
I  (0 ≤ rD50 < 0.25), (b) the early progressive phase II 
(0.25 ≤ rD50 < 0.5), and (c) the late progressive and stable phase 
III/IV (0.5 ≤ rD50) (Figure 1B). Besides, the model also provides 
the opportunity to calculate descriptors of local disease activity, for 
any given time point, namely the calculated Functional State (cFS) 
and the calculated Functional Loss-rate (cFL). The latter was 
calculated in this study for the individual time of lumbar puncture 
as it provides a measure of the acute decay rate of points lost per 
month, thus the local steepness of the sigmoidal curve (Figure 1A). 
Patients were categorized into subgroups of (a) fast (cFL > 1), (b) 
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FIGURE 1

D50-modeling of disease progression in the ALS cohort (n = 108). (A) Based on consecutively assessed ALSFRS-R scores (dots), a sigmoidal functional 
decline curve is calculated. The value D50 depicts the individual time in months since symptom onset until halved functionality, indicating the overall 
disease aggressiveness of each individual patient. The curves represent three examples of patients with either high (in red), intermediate (in green), or 
low disease aggressiveness (in blue). Descriptors of local disease activity can be calculated for any given time point (here: day of lumbar puncture): (i) 
the calculated Functional Loss-rate (cFL) that measures the acute decay rate of points lost per month; (ii) the Calculated Functional State (cFS) that 
uses the same scale as the ALSFRS-R score. (B) Normalizing the D50-value onto 0.5 yields the relative D50 (rD50) which measures individual disease 
covered/accumulation, independent of disease aggressiveness and can be calculated for any given timepoint (here: day of lumbar puncture). Based on 
rD50, the disease course can be divided into distinct phases: (a) the early semi-stable Phase I (rD50 < 0.25), (b) the early progressive Phase II 
(0.25 ≤ rD50 < 0.50), and (c) the late progressive/stable Phases III/IV (rD50 ≥ 0.50). (C) Direct correlation of dx, the time constant of functional decline, 
and D50 is highly significant which explains why D50 alone can be used to describe the functional decline. (D) Illustrates the diversification of 
conservatively linear-approximated disease progression rates (DPR; points lost per month) per patient in relation to modeling parameters with only 
minor determination: DPR with dx (R2 = 0.23) and (E) DPR with cFL (R2 = 0.27).
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intermediate (0.5 > cFL ≤ 1), and (c) slow (cFL ≤ 0.5) local loss-
rate. For comparison purposes, the traditional DPR was also 
assessed, as linearly approximated based on the ALSFRS-R nearby 
the day of lumbar puncture and measured in points lost per month 
since symptom onset. Similar borders were applied for 
categorization of the cohort, i.e., (a) fast (DPR > 1), (b) intermediate 
(0.5 > DPR ≤ 1), and (c) slow (DPR ≤ 0.5).

2.4 Statistical analysis

The statistical analyses and graphical representation of the data 
were conducted using the R programming language and the RStudio 
open-source software program (Version 2023.06.1, Posit Software, 
PBC, Boston, MA, United  States) used on macOS Sequoia 15. 
Normality was assessed using the Shapiro–Wilk test with a log-10 

FIGURE 2

Study flow of study procedures. Identification and selection of the study cohort is given, resulting in the final cohort of 108 patients with ALS and ELISA 
quantified concentrations of pNfH in CSF. Three different measures of disease progression speed were calculated: (i) D50 = overall disease 
aggressiveness, (ii) the calculated functional loss-rate (cFL) = locally derived parameter of progression speed and (c) the disease progression-rate (DPR) 
as linear approximation of ALSFRS-R points lost per month since symptom onset. Each of the progression speed parameters was comparatively 
analyzed in relation to CSF pNfH levels via analyses of covariance, linear and non-linear regressions.
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transformation applied to the following continuous variables to allow 
the application of parametric tests: pNfH concentration, D50, cFL 
and DPR.

To assess the differences in log[pNfH]-concentrations across 
distinct D50-derived ALS subgroups, namely low, intermediate, and 
high aggressiveness, a one-way analysis of covariance (ANCOVA) was 
conducted, employing the following covariates: age at LP, presence of 
FTD, sex, laboratory of pNfH measurement, clinical onset region and 
rD50-derived disease phase. In addition, the same methodology was 
applied using subgroups based on the cFL and DPR instead of the D50 
subgroups. The ANCOVAs were followed by post hoc analyses with 
Wilcoxon-Rank-Sum-Testing.

Linear regression models were constructed for each of these 
three disease progression speed variables with log[pNfH] as 
dependent variable. For more in-depth analyses of these potential 
associations, non-linear regression models were applied using the 
goodness-of-fit (chemdeg package; Version 0.1.4) and gls-nls 
(Version 1.3.2) sub-programs in R. The non-linear regression in 
general gives information about the model used for correlation 
with data, with a mathematical function as non-linear (bent) 
output. Subsequently, a goodness-of-fit analysis was conducted, in 
order to assess how well the fitted curve predicts the real data. The 
Akaike Information Criterion (AIC) was employed to compare the 
relative merits of alternative models in order to identify the 
optimal fit for the data in question. A lower AIC-value indicates a 
better prediction. Additionally, the Root-Mean-Square Error 
(RMSE) was employed as a non-negative measure, offering a 
valuable metric for comparing forecasting errors across diverse 
predictive models. The RMSE provides an absolute measure of fit, 
where a lower RMSE value indicates a superior fit of the model, i.e., 
that the prediction is closer to the real values.

3 Results

3.1 Cohort of patients with ALS

The demographic and clinical data of the participants, stratified 
by D50-derived disease aggressiveness subgroups, are presented in 
Table  1. No significant inter-subgroup differences were observed 
concerning sex or age. Notably, disease accumulation at the day of 
sampling, as measured via relative D50 (rD50), did not significantly 
differ between the three aggressiveness subgroups. Accordingly, the 
distribution of rD50-derived phases did not differ either, thus 
confirming independence of disease accumulation and aggressiveness 
in this cohort. Concerning the parameters cFL and DPR, we also 
found significant differences across the aggressiveness subgroups, 
indicating partial but not entire overlapping of these subgroups (see 
also Figure 3).

3.2 CSF pNfH levels reflect disease 
aggressiveness in ALS

The ANCOVA demonstrated a highly statistically significant effect 
for CSF log[pNfH] concentrations across the three disease 
aggressiveness subgroups (p < 0.001, Table  2). In contrast, the 
ANCOVAs applying either the cFL or DPR as grouping variables, 

demonstrated higher but still significant p-values for this factor of 
0.005 or 0.006, respectively, (>0.001) but notably also lower F-values 
(D50: 10.43; cFL: 5.58; DPR: 5.3). In accordance, the post hoc analyses 
indicated statistical significance only for the pairwise comparisons of 
the subgroups from both edges of the grouping, i.e., fast-vs.-slow cFL/
DPR (p < 0.01) (Figure 3). It is of particular importance to note that 
the disease phase did not exert a significant effect on log[pNfH] 
concentrations in any of the ANCOVAs conducted. Accordingly, the 
linear regression of log[pNfH] and rD50 did not reveal a statistically 
significant correlation (Supplementary Figure  1). This indicates 
independence of pNfH levels from disease accumulation. Notably, 
almost all other covariates applied in the ANCOVAs did also not show 
any significant influence. Only the factor age at sampling was nearer 
to the significance threshold for the D50/cFL subgrouping 
(p = 0.09/0.08, Table 2), but decided the threshold for the ANCOVA 
applying DPR subgrouping thus indicating a significant age influence 
on log[pNfH] levels (p = 0.02, Table 2).

The pairwise comparisons of pNfH concentrations in-between the 
D50-derived disease aggressiveness subgroups revealed the most 
conclusive differences, i.e., p < 0.05 for high vs. intermediate subgroup, 
p < 0.01 concerning the low and intermediate subgroup, and p < 0.001 
comparing the low with the high disease aggressiveness subgroup 
(Figure 3A). The subgroups defined by cFL were less discriminative 
concerning pairwise comparisons of pNfH-concentrations that were 
not significantly different between the slow and intermediate subgroup 
(Figure 3B). In DPR-defined subgroups pNfH performed even less 
discriminative especially for the extreme subgroup comparisons (slow 
vs. fast, p < 0.01) (Figure 3C).

The three linear regression analyses, each applying one of the 
parameters assessing disease progression speed, demonstrated all 
statistically significant correlations with log[pNfH] (p < 0.001; 
Figures 4A–C). However, the linear model using log[D50] exhibited 
the highest coefficient of determination (R2) of 0.25 and the lowest 
p-value (Figure 4A) while in comparison log[DPR] performed worst 
(R2 = 0.16; Figure  4C). As the association between CSF pNfH-
concentrations and ALS progression speed parameters is apparently 
not linear, we additionally applied a non-linear regression model to 
further examine the correlation. This exhibited markedly disparate 
plots of correlation-curves with log[pNfH] across all three variables 
(Figures  4D–F). Log[pNfH] revealed a more shaped curve 
(Figure 4D), whereas the non-linear regression-curves for log[cFL] 
and log[DPR] demonstrated a clinched sigmoidal shape 
(Figures  4E,F). In accordance, the non-linear regression model 
applying log[D50] exhibited the most optimal goodness-of-fit 
measures, with an AIC of 20.418 and an RMSE of 0.259.

4 Discussion

In the present study, the principal aim was to examine which 
clinical parameter assessing disease progression speed is best 
correlated with pNfH-concentration in the CSF of patients with 
ALS. In principle, pNfH-levels were able to discriminate in-between 
subgroups as defined by all three disease speed parameters (D50, cFL, 
DPR) respectively (Table 2). However, post hoc analyses showed, that 
only the D50-parameter was able to significantly discriminate pairwise 
across all three aggressiveness subgroups, while this approach failed 
for the slowest subgrouping applying the other parameters 
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(fast-vs.-slow cFL/DPR; Figure 3). The regression models (linear and 
non-linear) did also reveal superiority of the parameter D50 while 
DPR and cFL performed worse in correlation with pNfH-levels 
(Figure 4).

Some studies with limited cohorts investigated potential 
associations between pNfH levels in CSF and disease progression 
in ALS so far, applying the singular disease metric of the linearly 
approximated DPR (Steinacker et al., 2015, 2018; Li et al., 2016; 

TABLE 1 Demographic and clinical data for Patients with ALS (n = 108).

Disease aggressiveness p

Low
(D50 ≥ 40)

Intermediate
(20 ≤ D50 < 40)

High
(D50 < 20)

n 25 46 37 –

Phosphorylated Neurofilament Heavy chain (pNfH) measurement

pNfH [pg/mL]§ 1,482

(666–2,053)

2,432

(1,651–3,332)

3,747.5

(2,115.2–4,683.0)

<0.001*

Laboratory:

Germany/Belgium

16/9 28/18 22/15 0.13

Demographics

Age at lumbar puncture§ 64.67

(58.17–72.17)

65.17

(59.02–71.85)

68.42

(59.58–71.92)

0.4821

Sex [n]: male/female 15/10 25/21 22/15 0.857

D50 disease progression model parameters

D50§ 64.17

(52.60–81.67)

28.56

(23.79–31.02)

15.475

(12.21–18.43)

<0.001*

rD50§ 0.223

(0.155–0.302)

0.232

(0.025–0.275)

0.251

(0.125–0.376)

0.8484

Phase [n] 0.5427

I (rD50 < 0.25) 16 (64%) 27 (58.7%) 18 (48.6%)

II (0.25 ≤ rD50 < 0.5) 9 (36%) 18 (39.1%) 19 (51.4%)

III/IV (rD50 ≥ 0.5) 0 1 (2.2%) 0

Traditional disease metrics

ALSFRS-R at lumbar puncture§ 42 (39–44) 41 (39–44) 39 (36–42) 0.0849

Disease duration at lumbar puncture§[months] 29 (17–46) 12.50 (9–16) 7 (6–10) <0.001*

cFL§ 0.31 (0.18–0.43) 0.77 (0.64–0.87) 1.37 (1.12–2.17) <0.001*

DPR§ 0.17 (0.12–0.33) 0.58 (0.47–0.72) 1.2 (0.75–1.8) <0.001*

Onset region of first symptoms [n] 0.0106*

Bulbar 4 (16%) 18 (39.1%) 20 (54.1%)

Spinal 21 (84)% 28 (60.9%) 17 (45.9%)

ALS Phenotype (Chiò et al., 2011) [n] <0.001*

Classic 3 (52%) 31 (67.4%) 20 (54.1%)

Flail arm 4 (16%) 0 0

Bulbar 3 (12%) 14 (30.4%) 15 (40.5%)

Flail leg 2 (8%) 0 0

Pyramidal 2 (8%) 1 (2.2%) 2 (5.4%)

Pure LMN 1 (4%) 0 0

Presence of FTD [n]: yes/no 1/24 0/46 0/37 0.1872

Riluzole treatment [n]: yes/no 18/7 41/5 34/3 0.06245

Continuous variables with normal distribution are expressed as mean with standard deviation. Categorical variables are expressed as number and percentage. For the comparison of 
demographic and clinical variables among the three aggressiveness subgroups, analyses of variance, Kruskal–Wallis tests or Pearson – χ2 tests were applied where appropriate.
§Non-parametric nominal variables, represented as median and interquartile range.
*Statistical significance at p < 0.05.
ALS, amyotrophic lateral sclerosis; ALSFRS-R, Revised ALS Functional Rating Scale; cFL, calculated Functional Loss-rate; FTD, frontotemporal dementia; pNfH, phosphorylated 
neurofilament heavy chain; DPR, ALSFRS-R-based Disease Progression Rate; rD50, relative D50; LMN, lower motor neuron.
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Poesen et al., 2017; Schaepdryver et al., 2018; Thompson et al., 
2019; Behzadi et al., 2021). Other studies reported correlations 
between CSF pNfH and progressiveness applying linear mixed 
models with more locally assessed disease progression rates 
(Huang et  al., 2020) and another measured the time to 
generalization of clinical symptoms (Li et  al., 2016). It was 
mentioned before that the high inter-patient variability observed 

in ALS disease progression necessitates the usage of a framework 
that can holistically interpret the progression of the disease and 
putative biomarkers. Therefore, the D50 model was applied in this 
study enabling a comprehensive analysis of a well-defined cross-
sectional dataset. An important advantage of this progression-
modeling is that it provides quantifications of disease 
aggressiveness (D50) separately from disease accumulation (rD50, 

FIGURE 3

Cerebrospinal fluid (CSF) pNfH concentrations in pg/ml compared between different ALS subgroups, each stratified by a disease progression speed 
variable show that (A) D50-derived subgroups are best discriminative. (B) cFL-derived subgroups are less discriminative and (C) DPR-derived subgroups 
even worse concerning pNfH levels. With significance levels from post hoc Wilcoxon-Rank-Sum-Testing: * = p < 0.05, ** = p < 0.01, *** = p < 0.001; 
NS, no significance; stratified into D50-derived disease aggressiveness with low (blue; D50 > 40 months), intermediate (green; 20 < D50 ≤ 40 months) 
and high aggressiveness (red; D50 < 20 months).

TABLE 2 Analysis of covariance (ANCOVA).

Tests of between-subjects effects

Dependent variable: Log[pNfH] D50 cFL DPR

Factor df F p df F p df F p

D50/cFL/DPR – subgroups 2 10.4300 0.000078* 2 5.5841 0.005051* 2 5.3046 0.006495*

rD50-derived disease phase (I/II/III and IV) 2 1.0482 0.3722 2 0.4327 0.650009 2 1.8456 0.163373

Age at LP 1 2.8603 0.09397 1 3.0571 0.083517 1 5.5861 0.020077*

Laboratory (Germany/Belgium) 1 1.8809 0.17337 1 1.9764 0.162928 1 3.0878 0.082005

Sex (male/female) 1 2.0517 0.15521 1 1.4934 0.224618 1 3.0543 0.083656

FTD (yes/no) 1 0.9324 0.33662 1 1.1623 0.283632 1 1.7517 0.188745

Onset region of first symptoms (bulbar/spinal) 1 0.4455 0.50603 1 0.1363 0.712762 1 0.0028 0.958209

Analysis of covariance (ANCOVA) results of the filtered cohort applying D50, cFL or DPR subgrouping, respectively.
*Statistical significance at p < 0.05, additionally highlighted in bold.
cFL, calculated Functional Loss-rate; FTD, frontotemporal dementia; LP, lumbar puncture; pNfH, phosphorylated Neurofilament Heavy chain; DPR, ALSFRS-R-based Disease Progression 
Rate; rD50, relative disease covered in disease phase.

https://doi.org/10.3389/fnins.2025.1536818
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Meyer et al. 10.3389/fnins.2025.1536818

Frontiers in Neuroscience 09 frontiersin.org

phase). According to this pseudo-longitudinal approach, we were 
able to show that CSF pNfH levels remain stable throughout the 
symptomatic disease, because we did not find a significant effect 
of disease phase nor a direct correlation between rD50 and pNfH 
(Supplementary Figure  1). This is in line with previous real-
longitudinal studies that also reported stability of pNfH-levels, 
however, owing to the invasive nature of CSF collection, only a 
limited number of patients had been examined via serial lumbar 
punctures before (Steinacker et al., 2015; Gendron et al., 2017; 
Poesen et al., 2017; Huang et al., 2020). The pseudo-longitudinal 
approach applied in this study further confirmed that CSF pNfH 
is strongly associated with patient’s disease aggressiveness, 
independent of how far the disease has progressed at the time of 
sampling. This would promote a broader inclusion of patients in 
therapeutic studies using pNfH as prognostic marker. However, it 
should be noted that the patients included here were in disease 
phases 1 or 2. Otherwise, biomarkers for patients who have 
already progressed to disease phase 3/4 are unlikely to be useful 
for upcoming interventional studies (Benatar et  al., 2022). 
Notably, the only additional parameter that showed borderline 
influence on pNfH levels was age. Increasing neurofilament-levels 
with aging are known from former studies in cohorts of healthy 
individuals (Khalil et al., 2020; Witzel et al., 2024). However, the 
results of this study suggest that in the context of ALS the 
influence of age is of minor importance. It is remarkable that 
although ELISAs were performed in two different laboratories 

(Belgium and Germany) we found no significant impact of the 
factor analyzing laboratory on pNfH levels. A previous study 
testing the same samples in different laboratories in a “round-
robin” comparison revealed low coefficients of variation for 
pNfH-CSF ELISAs, while those for CSF NfL tended to be relatively 
less reliably replicable (Gray et al., 2020). Although this should 
be interpreted with caution it might be that CSF pNfH is the better 
candidate if analyzed in inter-laboratory conditions, perhaps due 
to higher pre-analytical stability. This opens perspectives to use 
our approach in multi-center trials, if standards for biofluid 
collection and neurochemical laboratory analysis are considered 
(Oeckl et al., 2016; Benatar et al., 2020).

After all, it could be demonstrated that pNfH levels in CSF are 
more increased in ALS patients with higher disease aggressiveness, 
even after adjustment for interlaboratory variations, age, sex, 
presence of FTD, ALS onset region and disease phase. Applying 
grouping based on cFL and DPR, pNfH-levels were also partly 
discriminative in-between subgroups, but most noteworthy did not 
reveal any significant differences between slow and intermediate 
subgroups. This superiority of D50  in relation to pNfH is 
remarkable as this parameter is a time constant describing the 
overall course of the whole disease contrary to local, time-
dependent decay-rates such as the cFL. This supports the concept 
that pNfH measured at any time during the disease may serve as 
outcome measure of an individual overall disease trajectory. As 
such, our data suggest that CSF pNfH might be  a suitable 

FIGURE 4

(A–C) Linear regressions of disease progression speed paramters with CSF pNfH showed the highest R2 of 0.25 and the lowest p-value for D50 in 
comparison to cFL and DPR. (D–F) Non-linear regressions also showed superiority for D50 with the best goodness-of-fit meassures (Akaike 
Information Criterion = 20.413 and Root Mean Square Error = 0.259).
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biomarker for therapeutic responses, but further studies are needed 
to assess its potential as outcome measure in ALS, as replications 
in independent cohorts are necessary.

Therefore, one important advantage of the D50-model framework is 
that it can be  applied retrospectively provided that serial ALSFRS-R 
assessments are available per patient. This opens perspectives for multi-
center analyses including highly-frequent clinical (self-)assessments of 
patients from different sources (Maier et al., 2022; Meyer et al., 2023). 
However, thorough review and regular follow-up by personal trained in 
neuromuscular disease is necessary as is a specialized preferably 
milestone-based documentation of such data (Steinbach et al., 2020). 
Although the strong association between CSF pNfH and D50 
demonstrated in this study is promising, it should be noted that it relies 
on observations on a group-level. For the development of a prognostic 
biomarker that is applicable on an individualized level it is likely that a 
combination of surrogates from different sources is needed, such as blood 
biomarkers or imaging (Dreger et al., 2022; Staffaroni et al., 2022).

Former comparative studies measuring pNfH in CSF as well as in 
blood demonstrated good accordance, but still the latter is often not 
analyzed in ALS cohorts on a regular basis (Boylan et  al., 2013; 
Schaepdryver et al., 2018). A recent study suggested that blood-levels 
of pNfH may be less valuable than NfL in association with disease 
progression, however this could be attributed to inaccuracies of pNfH 
blood-assays that are still technically challenging (Sturmey and 
Malaspina, 2022; Benatar et al., 2024). Moreover, although blood-
based biomarkers are easier assessable, this becomes less important in 
the context of repeatedly intrathecal-administered therapeutics such 
as Tofersen or other genetically-based agents currently under 
consideration for ALS (Boros et al., 2022; Wiesenfarth et al., 2024). In 
line with this, recent real-world studies of treatment with Tofersen in 
SOD1 ALS patients showed a marked decline of serum NfL as well as 
CSF pNfH mirroring clinical disease stabilization (Wiesenfarth et al., 
2024; Smith et al., 2025).

It is important to note, that we were not able to provide similar 
comparative analyses of NfL levels (serum or CSF) in combination 
with the clinical parameters, mainly due to the retrospective nature of 
the study. A former analysis studying another cohort of patients with 
CSF NfL levels revealed that there is a strong correlation with D50, 
independent of rD50 (Dreger et  al., 2021). In addition, since 
measurements of neurofilament blood-concentrations (most of all 
NfL) become increasingly available, this opens new perspectives for 
future large comparative studies for which the D50 model provides a 
suitable analysis framework.

Regarding the regression models across the different disease 
progression speed parameters, it is important to note that the 
non-linear regressions were most informative, again demonstrating a 
superiority of the parameter D50. This implies a recommendation for 
future studies to consider non-linear relations between potential 
biomarkers and clinical parameters.

This study is not without limitations. This is a monocentric 
study and replication of the results examining independent 
cohorts is necessary. In addition, comparative studies are needed, 
studying also NfL in CSF as well as serum concentrations of both 
neurofilaments in relation to the clinical parameters. In addition, 
verification through real longitudinal data is necessary to confirm 
if pNfH levels are stable throughout the disease course. Such 
future studies will require well-designed multi-center initiatives 
(Meyer et al., 2024) with implemented standard procedures of 

biofluid collection and laboratory analysis (Oeckl et al., 2016; 
Benatar et al., 2020). Furthermore, genetic profiles of the patients 
with ALS included were not available due to the retrospective 
nature of the study, which is why we could not examine possible 
implications of genetic subtypes on pNfH levels.

In conclusion, we  were able to demonstrate that pNfH is a 
surrogate of overall ALS disease aggressiveness as quantified via 
D50 in a multi-variate and unbiased approach. The modeling thereby 
reduces noise associated with ALSFRS-R assessment and most 
important accounts for the non-linear clinical progression during the 
course of the disease (Proudfoot et al., 2016; Ramamoorthy et al., 
2022). Future, independent multivariate studies are needed 
incorporating different analyte candidates with the principal aim of a 
composite outcome-measure and/or individually applicable 
prognostic biomarker, as urgently needed in the advent of precision 
therapy for ALS (Ashhurst et al., 2022).
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