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Multiple-timepoint arterial spin labelling MRI is a non-invasive imaging technique 
that permits measurement of both cerebral blood flow and arterial transit time, 
the latter of which is an emerging biomarker of interest for cerebrovascular health. 
Quantification of arterial spin labelling data is challenging due to the low signal to 
noise ratio and non-linear tracer kinetics of this technique. In this work, we introduce 
a new quantification method called SSVB that addresses limitations in existing 
methods and demonstrate its performance using simulations and acquisition data. 
Simulations showed that the method is more accurate, particularly for estimating 
arterial transit time, and more robust to noise than existing techniques. On high 
spatial resolution data acquired at 3 T, the method produced less noisy parameter 
maps than the comparator method and captured greater variation in arterial transit 
time on a cross-sectional cohort.
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Introduction

Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) 
technique that permits the measurement of perfusion in the brain. Using strong magnetic 
gradient fields applied for a short time across the neck, inflowing blood-water is magnetically 
inverted shortly before an image of the brain is acquired, after which tracer kinetic modelling 
can be used to quantify the rate and speed of blood flow (Chappell et al., 2017; Buxton et al., 
1998). By capturing the dynamics of inflowing label, multiple-timepoint ASL permits the 
measurement of both cerebral blood flow (CBF) and arterial transit time (ATT), the latter of 
which is an emerging marker of cerebrovascular health, for example associated with 
Alzheimer’s disease and coronary artery disease (Nielsen et al., 2017; MacIntosh et al., 2015). 
Estimating ATT from multiple-timepoint arterial spin labelling (ASL) data is however 
challenging due to the non-linear signal model based on tracer kinetics and the inherently low 
signal-to-noise ratio (SNR) of this imaging technique (Chappell et al., 2017). This is particularly 
true in white matter, which has lower CBF and longer ATT than cerebral grey matter (thus 
reducing SNR), but is implicated in a range of neurological disorders such as schizophrenia 
and vascular dementia (Wright et al., 2014; Barker et al., 2014).

Existing methods for ATT estimation adopt a number of strategies to deal with this 
challenge. Signal-weighted delay (WD) approximates ATT using a first-order moment 
calculation that is simple to implement and robust to noise, though the accuracy of the 
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approximation is bounded by the choice of post label delays (PLD) 
used and it is unclear how to adapt the method to handle variable label 
durations, as used for example in Hadamard-encoded schemes in 
which multiple boluses are delivered (Dai et al., 2012; von Samson-
Himmelstjerna et al., 2016). Non-linear least squares (NLLS) is widely 
available in software libraries but is vulnerable to noise, for which 
reason the data is commonly smoothed in pre-processing to increase 
SNR, or hard constraints on ATT may be implemented. FSL BASIL 
adopts a variational Bayesian (VB) approach that offers a more 
principled treatment of low SNR data via the use of priors, but this 
requires advance knowledge of the normative range of ATT which 
may not be available in certain populations (Chappell et al., 2023).

In this work we introduce a new method for perfusion estimation 
on multiple-timepoint ASL data and demonstrate its performance on 
both simulation and acquisition data. Compared to existing methods, 
Structured Stochastic Variational Bayes (SSVB) is a VB method that 
produces more accurate estimates, is more robust on low SNR data, 
and produces less noisy parameter maps.

Theory

Bayesian inference is an attractive strategy for model-fitting ASL 
data because it allows parameter constraints to be implemented in a 
principled manner (mitigating against low SNR) and quantifies the 
uncertainty of the resulting estimates (Chappell et al., 2009; Woolrich 
et  al., 2009). Bayesian inference seeks to obtain the posterior 
distribution on model parameters conditioned on the modality 
specific signal model and the data that has been acquired. For all but 
the simplest problems, derivation of the true posterior is generally 
intractable due to the integrals that must be performed. Variational 
Bayesian (VB) techniques circumvent this problem by approximating 
the posterior using a simpler distribution with well-known properties, 
which is optimised to make the approximation as accurate as possible 
(Penny et al., 2003). Specifically, VB seeks to minimise the Kullback–
Leibler divergence between the approximate and true posterior, which 
is equivalent to maximising the free energy
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Where θ  represents the physiological parameters of interest, y the 
samples of data, ( )q θ  the approximating posterior distribution, 
( )|p y θ  the likelihood, and ( )p θ  prior distribution for the parameters. 

Noise is explicitly modelled in the likelihood, typically as a zero-mean 
Gaussian distribution. Qualitatively, this expression can be seen as 
maximising the log-likelihood (a best fit to the data) whilst minimising 
the divergence of the approximating posterior from the priors which 
enforces the constraints on parameter estimates. Priors can be either 
distributional, for example a Gaussian of specified mean and variance; 
or spatial, which in the context of imaging encodes the belief that 
neighbouring voxels should not differ substantially from each other. 
Spatial priors have a similar effect to spatial smoothing which is 
commonly used in neuroimaging but have the key advantage of being 
able to determine the optimal amount of smoothing from the data 
itself rather than requiring the user to specify a value (Chappell et al., 
2011; Penny et al., 2005).

FSL BASIL is an existing implementation of VB for ASL that uses 
an analytic formulation in which the signal model is linearised via a 
Taylor expansion, after which iterative update equations are derived 
via the calculus of variations (Chappell et al., 2009; Chappell et al., 
2023). Though computationally fast, this approach has a number of 
drawbacks: firstly, in order to keep the derivation of update equations 
tractable, the parametric distributions that are used to represent the 
prior and posterior are generally restricted to the exponential family 
(e.g., Gaussian, often referred to as the ‘conjugate-exponential’ 
restriction), which may not be appropriate in a particular application. 
Secondly, should the analytic form of priors or noise model change, it 
is necessary to re-derive the update equations from scratch.

In recent years, the increasing use of neural networks has been 
accompanied by improvements in optimisation techniques based on 
fast and efficient gradient descent which have been released to the 
public in libraries such as TensorFlow and PyTorch (Abadi et al., 2016; 
Paszke et al., 2019). The availability of these alternative optimisation 
techniques offers a new possibility for implementing VB, namely, 
direct optimisation of the expression for free energy. Specifically, using 
a Monte Carlo sampling technique, an approximation for ( )F θ  may 
be obtained by drawing L samples of θ , the physiological parameters 
of interest, from the posterior ( )q θ , where * denotes a sample.
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This is the objective function for SSVB that is directly optimised 
via gradient descent [a more detailed derivation is given in (Chappell 
et  al., 2020)]. The first term approximates the log-likelihood, 
encouraging a good model fit to the data, and the second term 
penalises divergence of the model parameters from the prior. In this 
work, a multi-variate normal distribution over CBF and ATT has been 
used without covariance, and zero-mean Gaussian noise is assumed 
(the noise variance is a parameter of the model). Under these 
assumptions, the log-likelihood may be expressed as
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where N  is the number of observations (number of ASL images 
that have been acquired), φ  is the noise precision (inverse variance) 
and the latter term represents the sum of squared differences between 
the model prediction for the current parameters θ  and the 
acquired data y.

Within SSVB, a spatial prior is used to implement adaptive (data-
driven) smoothing of the parameter maps, which is beneficial to 
mitigate against the low SNR of ASL. A first-order graph Laplacian 
operator is used, represented by the v x v matrix D  where v is the 
number of voxels, off-diagonal elements are 1 if the corresponding 
row and column voxels are adjacent, and the diagonal elements are the 
negative sum of that voxel’s number of direct neighbours (−6 in the 
case of a fully-connected voxel). The prior for a single model 
parameter iθ  may then be expressed as
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Where α  represents the spatial precision, the weight given to the 
spatial prior, and is a target of the optimisation itself. This means the 
amount of smoothing is automatically determined from the data and 
need not be specified by the user, which should better preserve spatial 
detail and generalise well across datasets without requiring hand-
tuning, as has been observed in previous work (Zhao et al., 2017; 
Chappell et al., 2011).

The stochastic approach offers a number of advantages 
over analytic VB. For example, prior and posterior distributions 
no longer need to be  drawn from the same family which 
removes the conjugate-exponential restriction. Secondly, because 
the free energy is optimised directly, it is no longer necessary 
to derive update equations which permits greater 
flexibility in modifying priors or noise models between 
different applications.

The ASL model used in this work is the Buxton single-
compartment pseudo-continuous ASL (PCASL) model (Buxton et al., 
1998), in which the magnetisation signal arriving in a voxel may 
be expressed as piecewise function

 

( ) 1

1 11

0 1

0 1

0 for

2 1 for

2 1 for

app

app appb

t t
T

a app

t tt
T T

a app
T

t t

M t M fT e t t t

M fT e e t te
τ τ

τ

τ

−∆

−∆ −∆

−

− −−

< ∆

= − ∆ ≤ < ∆ +

− ∆ + ≤







 
  
     
  
  
     

Where 1 1
1 1

app
f

T T λ= + , t  is the time since of the start of label 
creation (magnetic inversion of blood), f  is perfusion, Ät  is arterial 
transit time, 0aM  is the equilibrium magnetisation of arterial blood, 

1T  and 1bT  are the longitudinal relaxation times for tissue and blood 
water respectively, and τ  is the label duration.

Methods and materials

Datasets

Simulation data
Two simulation datasets were used. The first of these (“grey 

paper”) used the optimal sampling scheme proposed by Woods et al. 
(2024) for perfusion measurement when ATT is expected to be in the 
range of 0.5 to 2.5 s specifically a 2.05 s label duration, 9 PLDs of 0.200, 
0.775, 0.775, 0.775, 1.800, 2.275, 2.475, 2.675, 2.800 s with 4 repeats at 
each PLD. The second (“HCP ASL”) used the sampling scheme of the 
HCP Lifespan ASL dataset detailed in the following paragraph, 
specifically a 1.5 s label duration at 5 PLDs of 0.2, 0.7, 1.2, 1.7 and 2.2 s 
with 6, 6, 6, 10 and 15 repeats, respectively. For both datasets, data was 
simulated on an isotropic voxel grid of 5 voxels in each dimension. 
Ground truth CBF was held constant at 60 units whilst ATT was 
varied from 0.5 to 3.0 s inclusive in steps of 0.25 s. Zero-mean 
Gaussian noise with standard deviations (SD) of 10 to 40 inclusive in 
steps of 10 was added to each dataset to represent varying SNR. CBF 
was not varied because the PCASL signal scales linearly with CBF and 
would thus be equivalent to varying SNR. Noiseless signal curves for 
a range ground truth ATT values from each sequence are shown in 
Figure 1.

HCP ASL
The Human Connectome Project (HCP) Lifespan ASL dataset 

contains high spatial resolution multiple-timepoint ASL for over 3,000 
subjects aged between 5 and 100+ years; a subset of 90 subjects (51 
female, mean 31 years old, minimum 8 and maximum 88) was used 
in this work. This dataset was used because it used a sampling schedule 
specifically designed to capture ATT, should contain a wide range of 

FIGURE 1

Simulated PCASL signal curves from each sequence (without noise) for a variety of ground truth ATT.
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FIGURE 2

Bias in estimation of ground truth CBF (left) and ATT (right) as a function of ground truth ATT. The fan around each line represents variation across 
different SNR levels. SSVB’s estimates showed the lowest bias across the full range of simulation parameters. The y-axis has been restricted for clarity; 
the full range of results is given in Supplementary Figure 1. This figure is also re-drawn as Supplementary Figure 3 with noise SD on the x-axis to enable 
bias to be visualised as a function of noise.

ATT [a parameter that is known to increase with age (Feron et al., 
2024)] and has a relatively challenging SNR (a consequence of the 
high spatial resolution), both of which make it difficult to accurately 
estimate perfusion. ASL data was acquired with the aforementioned 
sampling scheme at 2.5 mm isotropic resolution on a Siemens Prisma 
3 T scanner. A calibration image was acquired at the same resolution 
with 8 s TR. T1 anatomical scans were also acquired at 0.8 mm 
isotropic. Further details of the acquisition are given in (Harms 
et al., 2018).

HCP ASL data was pre-processed using the HCP ASL minimal 
pre-processing pipeline version 0.1.5.post14 (stages 0 to 6 inclusive) 
to correct acquisition-related geometric and intensity artefacts and 
register the ASL/calibration images to the anatomical images (Kirk 
et al., 2024). Anatomical images were pre-processed using the HCP 
structural minimal processing pipelines, during which structural 
segmentation was performed using FreeSurfer (Glasser et al., 2013; 
Fischl, 2012). After perfusion estimation, reference region calibration 
was performed using the mean M0 value of ventricular CSF (Pinto 
et al., 2020).

Inference methods

SSVB version 0.2.0 running on Python 3.11 using TensorFlow 
2.16 was used for stochastic inference. A spatial prior was used on 
both CBF and ATT. RMSProp with a learning rate of 0.1 was used 
for optimisation (Ruder, 2017). After 50 successive steps without 
a decrease in cost, optimisation was reverted to the previous best 
state and the sample size increased by 1 from an initial starting 
size of 2; optimisation was run until 5 such reversions had taken 
place (typically around 1,000 epochs on a complete image, taking 
about 5 min with 8GB of RAM, or approximately twice as long as 
FSL BASIL).

Three comparator methods were used. FSL BASIL (“BASIL”) was 
used for conventional analytic VB inference, with a spatial prior for 
CBF whereas a normal distribution prior with mean 1.3 s and standard 
deviation 0.5 s was used on ATT (Chappell et al., 2009; Chappell et al., 
2023). Signal weighted decay (“WD”) was implemented in two stages: 
first, using the first moment calculation to obtain ATT estimates and 
then providing these as fixed values to FSL BASIL to estimate CBF 
(Dai et al., 2012). Non-linear least squares (NLLS) was implemented 
using the FSL FABBER tool with –method = nlls. No constraints were 
implemented on either CBF or ATT, nor was any data pre-processing 
used (for example spatial smoothing). Like SSVB, BASIL explicitly 
models acquisition noise using a zero-mean Gaussian, whilst NLLS 
and WD make this assumption implicitly. On the basis of simulation 
results, only SSVB and BASIL were run on the HCP ASL 
acquisition data.

Evaluation methods

For the simulation datasets, the mean across voxels of CBF and 
ATT estimates produced by each method was calculated, and the bias 
with respect to ground truth expressed as a percentage of ground truth.

For the HCP ASL dataset, the FreeSurfer DKT segmentation 
labels were grouped into five major cortical structures (frontal, 
temporal, parietal, occipital and cingulate) and the median CBF/ATT 
estimate reported within each by resampling the respective 
parameter maps onto the same voxel grid using trilinear 
interpolation. Methodological differences in parameter estimates 
were analysed using paired t-tests. Linear regression was used to 
investigate the relationship between age and CBF or ATT. Statistical 
significance for all tests was set at p = 0.05 and correcting for multiple 
comparisons between the five cortical structures reduced the 
threshold to p = 0.01.

https://doi.org/10.3389/fnins.2025.1536752
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kirk et al. 10.3389/fnins.2025.1536752

Frontiers in Neuroscience 05 frontiersin.org

Results

Simulation data

Figure 2 shows bias in estimation of ground truth parameters 
from simulated data using the grey paper sequence. Across the full 
range of true ATT and SNR levels, SSVB’s estimates showed 
consistently low bias (always less than 12% averaged across noise 

levels) in both CBF and ATT. The most substantial bias of −12% was 
observed in ATT for true ATT = 0.5 s. BASIL produced similar results 
to SSVB for true ATT between 1.0 s and 2.5 s but showed greater bias 
outside this range (19% in ATT for true ATT = 0.5 s and − 30% in 
CBF for true ATT = 3.0 s). WD showed large positive bias for true 
ATT < 1.5 s (e.g., 20% in ATT at true ATT = 1.0 s) and NLLS showed 
large positive bias for true ATT > 2 s (e.g., 30% in ATT at true 
ATT = 2 s).

FIGURE 3

Bias in estimation of ground truth CBF (left) and ATT (right) as a function of ground truth ATT. The fan around each line represents variation across 
different SNR levels. SSVB’s estimates showed the lowest bias across the full range of simulation parameters, though performance deteriorated for true 
ATT > 2.5 s. The y-axis has been restricted for clarity; the full range of results is given in Supplementary Figure 2. This figure is also re-drawn as 
Supplementary Figure 4 with noise SD on the x-axis to enable bias to be visualised as a function of noise.

FIGURE 4

CBF maps (calibrated to ml/100 g/min) for subject HCA6007044 demonstrated the ability for high spatial resolution ASL to reveal fine anatomical detail 
in perfusion. There was broadly high agreement between SSVB and BASIL, though SSVB estimated slightly higher perfusion in posterior regions, visible 
for example in the sagittal view of the occipital lobe.
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Figure 3 shows bias in estimation of ground truth parameters 
from simulated data using the HCP ASL sequence. For true 
ATT < 2.5 s, SSVB’s estimates showed consistently low bias (less than 
13% in both CBF and ATT); BASIL performed similarly for true 

ATT < 2.0 s. WD showed large positive bias for true ATT < 1.5 s 
(e.g., 30% in ATT at true ATT = 1.0 s) and NLLS showed large 
positive bias for true ATT > 2.0 s (e.g., 25% in ATT at true 
ATT = 2.0 s).

FIGURE 6

Distributions of cortical CBF estimates produced by each method, separated by sex. Both methods produced broadly similar estimates in all lobes, and 
both methods produced higher CBF estimates in females than males.

FIGURE 7

Distributions of cortical ATT estimates produced by each method, separated by sex. In all cortical lobes, the estimates produced by SSVB covered a 
wider range of values than BASIL. For both methods, males tended to have longer ATT than females; the difference was more pronounced for SSVB.

FIGURE 5

ATT maps (s) for subject HCA6007044 demonstrated substantial differences between the two methods: SSVB’s estimates were both less noisy and 
covered a wider range of ATT values. ATT estimated by SSVB in posterior WM was substantially higher than BASIL.
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HCP ASL data

Figures 4, 5 show CBF and ATT maps produced by SSVB and 
BASIL for a single subject of the HCP ASL dataset. Whilst there was 
high similarity in the CBF maps (both exhibiting anatomical detail 
consistent with the high spatial resolution of the data), SSVB’s ATT 
map showed a much wider range of values, with notably longer ATT 
in white matter (WM) or watershed regions.

Figure 6 shows the distribution of cortical CBF estimates produced 
by each method across the dataset. No significant differences in CBF were 
observed between methods (comparisons given in 
Supplementary Table 1). Both methods found females to have higher CBF 
by approximately 5–8 mL/100 g/min, though this was significant only in 
the occipital lobe (comparisons are given in Supplementary Table 2).

Figure  7 shows the distribution of cortical ATT estimates 
produced by each method. Across all cortical lobes, SSVB 
produced estimates covering a wider range of values than 
BASIL. Comparing methods within individuals, SSVB’s ATT 
estimate was significantly higher in all lobes except the cingulate 

(comparisons are given in Supplementary Table  4). For both 
methods, males were observed to have longer ATT than females 
but these differences were not significant (comparisons are given 
in Supplementary Table 5).

Figure 8 shows linear regression coefficients for CBF against age 
(all regressions were significant). In all cortical lobes, SSVB revealed 
a shallower (less negative) gradient and weaker correlation coefficient 
than BASIL, though the differences were not very substantial (for 
example, −0.27 vs. −0.21 in the occipital lobe). Numerical values are 
reported in Supplementary Table 3.

Figure 9 shows linear regression coefficients for ATT against 
age (all regressions were significant). In all cortical lobes, SSVB 
revealed a steeper relationship between age and ATT (the gradient 
was 2–3 times larger than for BASIL) with an approximately equal 
or larger correlation coefficient (particularly in the occipital, 
parietal and temporal lobes). Numerical values are reported in 
Supplementary Table 6.

Figure  10 shows the interaction between age and 
methodological differences for ATT and CBF, restricted to the 

FIGURE 8

Linear regression coefficients of CBF (dependent) against age (independent) within each cortical structure. Numerical values used to draw this plot are 
given in Supplementary Table 3.

FIGURE 9

Linear regression coefficients of ATT (dependent) against age (independent) within each cortical structure. Numerical values used to draw these plots 
are given in Supplementary Table 6.
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occipital lobe (which is most posterior and therefore typically has 
extended ATT). Methodological ATT differences were found to 
increase with age, such that SSVB estimated longer ATT in elderly 
subjects with a correlation of 0.61. Subject-wise ATT differences 
were in turn found to correlate (R = 0.72) with CBF differences 
such that longer ATT estimates were associated with higher 
CBF estimates.

Discussion

Simulation results showed that SSVB was the most accurate 
and robust inference method over the range of simulation 
parameters investigated (Figures 2, 3). Particularly notable was the 
extra accuracy for ground truth ATT > 2.0 s, and consistency 
across SNR levels. These results indicate that SSVB is better suited 
to subjects with long ATT and low CBF (equivalent to low SNR), 
which is often the case for elderly cohorts or in neurodegenerative  
disease.

Results from HCP ASL data demonstrated the benefits of SSVB’s 
capabilities in ATT estimation. SSVB’s ATT maps were visibly less 
noisy than BASIL’s (Figure  5) and revealed expected anatomical 
features such as watershed regions or elongated ATT in WM. In 
agreement with previously reported results, both SSVB and BASIL’s 
ATT estimates increased with age, though the slope of the relationship 
was 2–3 times greater with SSVB than BASIL (Figure 9). Coupled with 
the smaller regression slope observed for SSVB between CBF and age 
(Figure 8), and the mapping of methodological ATT differences to 
CBF differences (Figure  10), this suggests that the extent of CBF 
decrease with age which has been previously reported is at risk of 
being overestimated if ATT is not accurately estimated.

Addressing between-method differences specifically, differences in 
ATT were most pronounced in elderly HCP ASL subjects (Figure 10), 

which is consistent with prior knowledge that ATT is elongated in 
elderly subjects, and consistent with the simulation results which 
revealed greater methodological differences for true ATT > 2 s 
(Figure 3). Potential sex differences in ATT were observed (Figure 7; 
Supplementary Table 4), though the number of subjects in the dataset 
was insufficient to reach statistical significance. If confirmed on a larger 
dataset, these would be an interesting addition to previously-reported 
sex differences in CBF (Leidhin et al., 2021).

Finally, the visual quality of the HCP ASL parameter maps 
demonstrated the potential of high spatial resolution 
ASL. Although ASL is often acquired at low spatial resolution to 
mitigate low SNR, the quality of SSVB’s maps showed that 
sophisticated perfusion estimation methods can “look through” 
noise to recover anatomical details that would otherwise be lost at 
low spatial resolution. This observation is consistent with the 
robust performance of SSVB on low SNR simulation data, and 
echoes previous work investigating the feasibility of high-
resolution ASL (Kashyap et al., 2024).

Future work could investigate whether the extra flexibility 
afforded by SSVB can be  exploited advantageously. For example, 
though MRI acquisition noise is routinely approximated as a zero-
mean Gaussian distribution, a Rician distribution is theoretically more 
appropriate, and could be implemented in SSVB.

Conclusion

SSVB is a new method for estimating perfusion from multiple-
timepoint ASL data that offers increased accuracy and robustness 
compared to existing methods. Simulations show that the gains in 
performance over existing methods are greatest for true ATT > 2 s, 
which is pertinent for the study of elderly or potentially diseased 
populations. When run on high spatial resolution HCP ASL data, 

FIGURE 10

Linear regressions of methodological ATT differences (SSVB-BASIL) against age (left panel); and methodological ATT differences against CBF 
differences (right panel). Both panels are drawn for the occipital lobe only and both regressions were significant. ATT differences were observed to 
increase with age with reasonable correlation (0.61), such that SSVB estimated approximately 0.6 s higher ATT in 80-year-old subjects. These ATT 
differences correlated with CBF differences between the methods (R = 0.72), where are longer SSVB ATT estimated also implied a higher CBF estimate.
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SSVB produced ATT maps with low noise and expected anatomical 
features such as watershed regions.
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