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Chronic Fatigue Syndrome (CFS) is a disease characterized by unexplained fatigue 
and impaired cognition for more than 6 months. Recent studies have reported 
declines in large-scale brain networks’ functional connections among patients 
with CFS, and these declines correlated with the patients’ symptom severity. 
However, these reported networks are inconsistent. Brain structure serves as 
the essential architecture supporting brain functional fluctuations. Investigating 
structural alterations could provide insights into functional changes in different 
brain areas and facilitate the clinical diagnosis of CFS. In this study, we recruited 
37 patients with CFS and 34 healthy controls to collect their clinical assessments 
and structural magnetic resonance imaging data. Multiple Voxel Pattern Analysis 
(MVPA) was employed to recognize chronic fatigue-related brain areas, and cortical 
thickness was compared between the two groups. By constructing a predictive 
MVPA classifier with 70% balanced accuracy, we identified five relevant brain areas, 
including the paracentral cortex, precentral cortex, central cortex, intraparietal 
cortex, and superior temporal cortex. Subsequently, the results showed that 
the thickness of these areas had associations with fatigue severity, healthy life 
status, and pain levels among our subjects. Furthermore, compared to healthy 
controls, the thickness reduction was observed in patients with CFS. In summary, 
our study revealed a pathological chronic fatigue pattern for understanding CFS 
and suggested associations between cortical atrophy and CFS, with the aim of 
highlighting potential impacts of chronic fatigue. The trial was registered in the 
Chinese Clinical Trial Registry (ChiCTR2000032577).
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1 Introduction

Chronic fatigue syndrome (CFS) is a disease characterized by unexplained fatigue lasting 
for more than 6 months, unrefreshing sleep disorders, and impaired cognition, which could 
result in low levels of interest in life, work, and social activities, leading to increased physical 
and mental dysfunctions (Efficace et al., 2013). CFS impacts populations broadly, with an 
estimated global prevalence of about 0.89% (Lim et  al., 2020) and about 53.1% among 
individuals who have recovered from COVID-19 syndrome (Korompoki et  al., 2021). 
Furthermore, a recent clinical study reported that approximately 91% of people suffering from 
CFS may not have been formally diagnosed due to insufficient common awareness of the 
condition (Bateman et al., 2021). That is, nowadays, the potential proportion of patients with 
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CFS may have reached an alarming level and urgently deserves 
attention. However, our understanding of CFS remains limited, 
particularly regarding its pathological processes, objective biomarkers, 
and effective therapies.

CFS was thought to be a metabolic and immune inflammation 
disease having high levels of blood lactate and urea nitrogen (Osman 
and Mohamed, 2018; Liu et al., 2018). Results from animal studies 
indicated that the immune inflammation originated from several 
dysfunctional brain areas (Zielinski et al., 2019), and these aberrant 
areas could be divided into two systems. The first is called the broken 
facilitation system, consisting of the orbitofrontal cortex, prefrontal 
cortex, and anterior cingulate cortex; the second is called the activated 
inhibition system, including the insular cortex and posterior cingulate 
cortex. The interaction between the two systems forms a negative 
feedback loop that continuously produces fatigue feelings and 
simultaneously prevents the mind from desiring relaxation (Tanaka 
et al., 2014). This theoretical model emphasized the crucial role of 
brain cortex instead of spinal cord or muscle in the processes of CFS, 
which has been supported by human studies employing non-invasive 
functional magnetic resonance imaging (fMRI) techniques for 
CFS. Two task-designed fMRI trials showed that patients with CFS 
had slower speeds and poorer performance in completing cognitive 
tests, and brain regions, including dorsal anterior cingulate cortex, 
occipitoparietal cortex, and cingulate gyrus, were anomalously 
activated during the cognitive tests, suggesting that these cortices may 
be recruited to compensate for behavioral insufficiencies (De Lange 
et  al., 2004; Caseras et  al., 2008). In contrast to the dynamic 
enhancement in the task state, patients with CFS tend to exhibit 
reductions in the resting state. The default mode network (DMN) is 
the largest brain functional network dominating spontaneous brain 
activities of attention-demanding and mind-wandering during rest, 
involving the prefrontal lobe and temporal lobe (Raichle, 2015). 
Recent fMRI studies reported that patients with CFS had declines in 
both static and dynamic functional connections (FC) of the DMN, 
which could significantly identify patients with CFS, and the decline 
could be moderated as CFS improved (Rayhan and Baraniuk, 2021; Li 
et al., 2022; Wu et al., 2022). Therefore, this may suggest that the 
abnormal brain activity pattern—deficient during rest and excessive 
during activity—could be a pathological process of CFS.

Developing studies consistently demonstrated the FC deficiency 
in CFS. However, the reported brain regions varied significantly. One 
study combining arterial spin labeling (ASL) and fMRI approaches 
showed that patients with CFS had both static and dynamic FCs 
decreased in the precuneus cortex and right superior parietal lobe, 
both of which were related to increasing fatigue (Boissoneault et al., 
2018). Another study reported weakened static FC in the medial 
prefrontal cortex, the inferior parietal lobule, and the DMN, with the 
combination of these regions exhibiting strong diagnostic potential 
for CFS (Shan et al., 2018). Additionally, a study showed reduced FC 
in the sensorimotor, frontal, parietal, and temporal cortices, and these 
reduced FCs were also relevant to increased fatigue severity (Jaeger 
et al., 2019). The disunity of these results raised concerns about the 
stability of FC computations and the possibility of treating FC as 
biomarkers for CFS diagnosis in the future. Practically, FC evaluation 
relies heavily on computational conditions. First, FC is commonly 
used for assessing intrinsic properties or interactions among brain 
functional networks or relationships between prior region seeds and 
whole brain areas, thus the selection strategy of networks and seeds 

determines the differences in FC values. Second, pursuing stable and 
precise FC values requires an fMRI scan lasting more than 30 min 
(Demeter and Greene, 2024), whereas most current trials are unable 
to accommodate this requirement. Consequently, a more reliable 
assessment is recommended to specify altered brain cortices 
related to CFS.

Assessing brain alterations in terms of brain structure could 
be  more effective than brain function. Brain structure is the 
fundamental architecture for brain functional fluctuations. Previous 
studies (Joutsa et al., 2022; Bowren et al., 2022) focusing on brain 
lesions showed that clinical symptoms can be  predicted by the 
integrity of brain structural voxels, which is evaluated by the 
differences between broken and normal voxels, revealing a potentially 
linear and independent relationship of each voxel in structural 
MRI. However, FC values may not show corresponding changes in the 
same areas, as they could compensate through coordinated functional 
networks. Furthermore, increases and decreases in brain structure are 
meaningful for representing local neural alterations and could 
be applied directly in clinic settings, whereas FC values are more likely 
to reflect relative abnormalities comparing other brain regions. In 
addition, the commonly used preprocessing steps for brain structural 
images are more unified and reproducible. Structural images involve 
processing steps of image intensity uniformity correction, tissue 
segmentation, and surface reconstruction, which can be performed 
with fewer parameters to define, whereas processing functional images 
requires first setting up personally preferred parameters for nuisance 
regressions, bandpass filtering, and smoothing. Given this, 
investigating brain structural alterations could be a better choice for 
providing reliable insights into the pathological progress of CFS and 
facilitating its diagnosis.

Accordingly, in this study, we sought to investigate brain structural 
alterations in CFS and identify its pathological brain cortices. We first 
applied multiple voxel pattern analysis (MVPA) to target chronic 
fatigue-related brain areas. Then, we used a general linear regression 
model to examine associations between these areas and clinical 
symptoms. Finally, we compared the thickness of these areas between 
patients with CFS and healthy controls. The study aims to highlight 
the potential impacts of CFS.

2 Materials and methods

2.1 Participants

Due to the high costs of MRI, more than half of previous MRI 
studies in the domain of machine learning included fewer than 50 
subjects (Poldrack et al., 2020). In this trial, we recruited 37 patients 
with CFS and 34 healthy controls (HC) from Dongzhimen Hospital 
affiliated to Beijing University of Chinese Medicine from May 2020 to 
October 2022. The patients with CFS were diagnosed according to 
1994 Fukuda CDC criteria (Fukuda et  al., 1994) which defines a 
patient as someone experiencing chronic fatigue lasting over 6 months 
and this fatigue feeling is not primarily derived from clinical diseases. 
The HC were age-matched people without chronic fatigue. All subjects 
were right-handed and aged between 25 and 65, and none had 
histories of mental disorders or use of psychotropic drugs. Pregnant 
women, lactating women, women who were menstruating during 
MRI scanning, and subjects with abnormal brain structure or a body 
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mass index (BMI) > 45, were excluded. This study was approved by 
the ethics committee of Dongzhimen Hospital affiliated to Beijing 
University of Chinese Medicine with approval number DZMEC-KY-
2019-195 under the Helsinki Declaration of the World Medical 
Association (2013). All subjects provided their informed and signed 
consent. The trial was registered in the Chinese Clinical Trial Registry 
(ChiCTR2000032577).

2.2 Clinical assessments

Three clinical questionnaires were applied. The 36-item short 
form health survey (SF-36) was used to evaluate healthy status; the 
fatigue scale-14 (FS-14) was used to evaluate fatigue severity; the pain 
rating index of McGill pain questionnaire (MPQ-PRI) was used to 
evaluate pain intensity. Patients with CFS tend to have lower SF-36 
score, higher FS-14 score, and higher MPQ-PRI score.

2.3 Structural MRI data acquisition

Structural MRI data were acquired from an MRI scanner (Siemens 
Novus, 3.0T, Germany) at the radiology department of Dongzhimen 
Hospital. Parameters of structural sequence were as follows: repetition 
time = 1,900 ms, echo time = 2.53 ms, flip angle = 9°, phase encode 
direction = anterior to posterior, coverage = whole brain including 
cerebellum, field of view = 250 mm, echo spacing = 7.6 ms, slice 
thickness = 1.0 mm, and volumes = 176.

2.4 Data preprocessing

The structural MRI data were processed through fMRIPrep 20.2.1 
(Esteban et al., 2019) by using the option of anatomical image only. 
Specifically, each subject’s T1-weighted structural image was corrected 
for intensity non-uniformity. The structural image was then 
segmented into tissues of gray matter, white matter, and cerebrospinal 
fluid using OASIS30ANTs template segmented. Further, volume-
based spatial normalization was applied to register the structural 
image to MNI152 space by nonlinear method. Additionally, the 
corrected structural image was processed by the recon-all command 
in FreeSurfer 6.0.1 (Dale et al., 1999) to reconstruct brain surface and 
obtain cortical thicknesses, and the thicknesses were smoothed with 
a Gaussian kernel of 6 mm3. More details can be found at https://
fmriprep.org/en/stable/.

2.5 Data decoding

Multiple voxel pattern analysis (MVPA) was performed using 
Python packages Nilearn 0.9.1 (Abraham et al., 2014) and scikit-
learn (Pedregosa et  al., 2011). First, a random seed was set to 
enhance reproducibility. Second, subjects’ volume-based gray 
matter images in standard space were flattened and randomly split 
into two sets, wherein 35 subjects were in the training set and 36 
subjects were in the test set. Then, we constructed a support vector 
classifier (SVC) with a linear kernel and an L2 penalty in the 
training set and optimized the hyperparameters by half-split 

cross-validation. This validation strategy is reported to have the 
greatest performance in the small sample trials (Valente et al., 2021). 
Subsequently, we applied the classifier to the test set to evaluate its 
predictive ability and significance level using half-split 5,000 times 
permutation tests. Of note, we  performed the decoding on the 
volumetric images because we  wanted to include cortical and 
subcortical areas to achieve higher predictive performance, and 
we  used a balanced accuracy score rather than the actual score 
because of imbalanced subject numbers in the CFS group and 
HC group.

After obtaining the significant classifier, we extracted weighted 
coefficients from the classifier and projected the coefficients onto 
fsaverage space using a non-linear normalization tool (Wu et  al., 
2018). Considering that atlas-based analysis could be more robust and 
meaningful than cluster-based analysis, we mapped the results to the 
Destrieux atlas (Destrieux et al., 2010) and computed probabilistic 
confidence scores for each cortex region. Figure 1 was the flow chart.

2.6 Statistical analyses

All statistics were performed in R 4.2.2. Based on the results 
of Shapiro test, we compared age by Wilcoxon’s test, gender by 
Chi-squared test, BMI by Student’s t test, between the two groups. 
A general linear regression model with stepwise method was 
additionally applied to evaluate association size between  
cortical thicknesses and fatigue scores. The regression model format 
was 1 2 12 1 Thickness Thickness ThicknessY cortex cortex cortexfatigue scores = + + +…+ . 
Finally, the mean value of these cortical thicknesses was compared 
between the two groups by Wilcoxon’s test. Significant values were 
corrected by Bonferroni method.

3 Results

3.1 Clinical assessments comparison

The demographics in Table 1 showed that subjects in the two 
groups were comparable in terms of age, gender, and BMI. And 
expected differences showed in scores of SF-36, MPQ-PRI, FS-14, and 
disease durations between two groups.

3.2 Classifier for recognizing CFS

After training the classifier and optimizing its hyperparameters, 
we  applied the optimized classifier to the test set to evaluate its 
performances. The confusion matrix showed that 14/17 subjects in the 
HC group were correctly predicted, resulting in an accuracy score of 
82%; 13/19 subjects in the CFS group were correctly predicted, with 
an accuracy score of 68% (Figure 2a). The precision-recall matrix 
showed an average precision of 78% (Figure 2b). Additionally, the area 
under the receiver operating characteristic curve (AUC) of the 
classifier was 73% (Figure  2c). Permutation tests showed that the 
balanced accuracy score of the classifier was 70%, with a significant p 
value of 0.023 (Figure 2d). These results indicated that the classifier 
we constructed can significantly distinguish between the CFS and 
HC groups.
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3.3 Chronic fatigue related brain areas

Volume-based weighted coefficients were extracted from the 
significant classifier, and the voxels contributing to recognition were 
scattered in the cerebellum and gray matter (Figure  3a). After 

projecting voxels onto fsaverage template, 12 brain areas stood out, 
including the superior frontal gyrus, central sulcus, superior temporal 
sulcus, paracentral lobule and sulcus, precentral gyrus, and 
postcentral gyrus in the left hemisphere (Figure 3b), and superior 
frontal gyrus, intraparietal sulcus and transverse parietal sulci, 

FIGURE 1

Flow chart of this trial. After preprocessing the original structural MRI data, we constructed the classifier in the volume-based gray matter images. 
Then, we projected the weighted coefficients of the classifier onto brain surface to obtain accurate brain areas related to CFS, which we named the 
chronic fatigue related cortical group. Consequently, we compared the thickness of these areas between the CFS group and the HC group.

TABLE 1 Clinical information comparisons (x ±s).

Groups Comparisons

CFS HC Statistic value p value

Demographics

n 37 34 / /

Age 35.35 ± 11.98** 30.47 ± 11.46** 751 0.159

Gender (M/F) 11/26 10/24 0.001 0.977

BMI 22.69 ± 2.52 21.73 ± 2.98 1.474 0.145

CFS durations (month) 58.68 ± 67.98 / / /

Clinical assessments

SF-36 54.40 ± 14.87 82.74 ± 10.79** 107 <0.001*

MPQ-PRI 7.19 ± 5.01** 1.76 ± 1.88** 1083.5 <0.001*

FS-14 10.24 ± 2.52 4.50 ± 3.75** 1,109 <0.001*

** represents p < 0.05 according to Shapiro test; * represents p < 0.05 according to comparisons between the two groups.
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supramarginal gyrus, orbital gyri, superior temporal sulcus, and 
paracentral lobule and sulcus in the right hemisphere (Figure 3d). To 
sum up, these cortices related to CFS were primarily in the superior 
frontal lobe, central lobe, superior temporal sulcus (Figure  3c), 
occupying 0.85 of the probabilistic confidence score within 
the classifier.

By using a general linear regression model between fatigue scores 
and these cortical thicknesses, five brain areas were retained after 
pruning by stepwise method, including the left paracentral lobule and 
sulcus, left precentral gyrus, left central sulcus, right intraparietal 
sulcus and transverse parietal sulci, and right superior temporal 
sulcus. These five areas showed significant associations not only with 
the FS-14 (adjusted R2 = 0.122, p = 0.019, P of residuals = 0.120) but 
also with the SF-36 (adjusted R2 = 0.219, p = 0.001, P of 
residuals = 0.111) and the MPQ-PRI (adjusted R2 = 0.114, p = 0.024, 
P of residuals <0.001). However, only the SF-36 robustly remained the 
significance when considering multiple corrections (Figure  4). 

Furthermore, this association was only significant in the CFS group, 
not the HC group (p = 0.010, Figure 5).

3.4 Cortical thicknesses comparison

We considered the five brain areas to be the pathological areas for 
CFS, thus we  investigated structural alterations of these areas in 
patients with CFS. Notably, to avoid sensitivity to model coefficients 
and to enhance robustness and reproducibility, we used the average 
value of the five brain areas rather than the weighted coefficient value 
to assess the structural alterations. The average cortical thicknesses 
of the areas showed a significant difference between the CFS group 
and HC group (MeanCFS group  = 2.37 mm, MeanHC group  = 2.43 mm, 
p  = 0.011, Figure  6). And this difference was still obvious after 
eliminating confounding factors of age, gender, and BMI (p = 0.034). 
Additionally, the averaged five cortical thicknesses in the CFS group 

FIGURE 2

Predictive performances of the classifier in the test set. (a) This confusion matrix showed that, among 17 healthy volunteers and 19 patients with CFS in 
the test set, 27/36 subjects were correctly predicted, resulting in 75% actual accuracy score. (b) The precision-recall matrix showed the average 
precision (AP) of the classifier was 78%. (c) The area under the receiver operating characteristic curve (ROC AUC) of the classifier was 73%. The (a–c) 
are three types of measurements to evaluate predictive performances of the classifier. Then we performed half-split 5,000 times permutation tests to 
determine the significant level of the classifier, and results (d) showed that the balanced accuracy score was 70% and the p value was 0.023, suggesting 
that the classifier was statistically significant to recognize CFS.
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showed a marginally significant correlation with the CFS duration 
(Spearman R = −0.28, p = 0.08).

4 Discussion

CFS is reported to have declines in functional connections, but the 
specific brain areas involved are inconsistent. Brain structure supports 
functional fluctuations, thus investigating structural alterations may 
contribute more effectively to clinical diagnosis of CFS and provide 
insights into functional declines. In this study, we  constructed a 
predictive classifier to significantly recognize patients with CFS from 
healthy individuals. Five brain areas were identified by the classifier, 
and these areas showed significant explanation ratios to clinical 
assessments in patients with CFS. Subsequently, we  observed 
decreased cortical thickness in patients with CFS compared to healthy 
controls. These results suggest that the five brain areas we found could 

be pathological regions for CFS, and cortical atrophy may be related 
to long-term fatigue.

To our knowledge, this is the first study employing the MVPA 
method to examine structural alterations for CFS. Analysing all 
voxels of structural images is a powerful strategy to reveal potential 
pathological patterns for diseases, which is based on the simple 
assumption that neural functions or deficits originate from 
insufficiencies in its structural architecture, and this strategy has 
been applied for a long time (Mah et al., 2014). In this study, our 
classifier constructed by all voxels showed the capacity for 
recognizing CFS in terms of many predictive indicators, resulting in 
a stable accuracy score of 70%. Since there has not been same 
research, our accuracy score could be  treated as a comparable 
baseline for future structural models for CFS. As shown by our 
classifier, scattered voxels with high weighted coefficients were in the 
brain surface, occupying a large proportion of weights within the 
model, which showed consistent with the previous study conducting 

FIGURE 3

Chronic fatigue related brain areas. We extracted the volume-based weighted coefficients (a) from the significant classifier. The red scatters 
represented the brain areas contributing to the recognition of CFS; most of them were shown on the surface. After projecting the weighted 
coefficients onto surface space, six regions in the left hemisphere (b) and six regions in the right hemisphere (d) stood out. The names in the first row 
with underscores were labels from the Destrieux atlas, and the names in the second row were the full names. Different colours represented different 
cortices, and the number represented the sum value of the weighted coefficients within each cortex. The (c) was the overview map of the 12 cortices 
related to CFS.
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dysfunctional areas of CFS in the brain cortices (Tanaka et al., 2014). 
To accurately target the CFS related brain areas, we then projected 
voxels to the brain surface and classified them according to an 
anatomic atlas.

As revealed by our classifier, five brain areas were apparently 
relevant to CFS, including the left paracentral lobule and sulcus, left 
precentral gyrus, left central sulcus, right intraparietal sulcus and 
transverse parietal sulci, and right superior temporal sulcus. Our 
results showed these five areas have significant explanation ratios to 
scores of SF-36, FS-14, and MPQ-PRI (Figures 4, 5). These brain areas 
are meaningful. The paracentral lobule and sulcus, precentral gyrus, 
and central sulcus are near the motor cortex and related to our 
somato-cognitive actions (Gordon et  al., 2023). Previous studies 
showed that the reduced thickness in the paracentral lobule cortex 
could be a potential symbol for individuals at high risk of mental 
illnesses (Sasabayashi et al., 2021), while the reduced thickness in the 
precentral sulcus might lead to higher rates of suicidal tendencies and 
mood dysfunctions (Papmeyer et al., 2015). Additionally, the reduced 
thicknesses in the paracentral and precentral gyrus may make 
individuals vulnerable to psychosis (Takayanagi et  al., 2020). The 
superior temporal cortex is the primary region for multi-sensory 
integration with somatosensory, auditory, and visual stimulation, 
cooperating with motor-related cortices to perform cognitive 
functions and tasks. If reduced thickness is observed in this region, it 

would result in anxiety and depressive symptoms with cognitive 
impairments, emotional symptoms, and poor sleep quality (Wang 
et  al., 2021). These related results indicated the five brain areas 
we found could be critical regions for regulating mental dysfunction 
in CFS, suggesting close connections between CFS and psychiatric 
disorders. In fact, several studies have demonstrated that CFS and 
depression have strong co-occurrences and shared pathological 
pathways (Chaves-Filho et al., 2019; Maes, 2011), and about 30% of 
patients with CFS experience depressive symptoms (Maes, 2009; 
Loades et al., 2016; Loades et al., 2021). However, whether CFS can 
be defined as a type of psychiatric disorder requires further study. For 
these five brain areas, we named them ‘the chronic fatigue cortical 
group’, which could facilitate our understanding of chronic fatigue. In 
the future, studies could focus on this cortical group to investigate the 
dose-effect relationship between the integrity of this pathological 
group and fatigue severity to promote the clinical diagnosis of CFS.

Compared to the healthy group, the five brain areas showed 
a significant thickness decline in the CFS group, and the decline 
was still obvious after excluding demographic confounds. 
Further, thicknesses of the five brain areas showed a moderate 
anticorrelation with CFS durations, although the anticorrelation 
was not statistically significant due to our small sample size. 
These results indicated that limited cortical atrophy may occur 
in individuals affected by fatigue for a long time, although 

FIGURE 4

Association between SF-36 scores and cortical thicknesses in all subjects. Results of a general linear regression model showed that thicknesses of 
these five brain areas had a significant association to SF-36 scores.
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we  cannot specify whether the durations and the atrophy are 
causally related. Previous literature includes two studies focusing 
on potentially cortical thickness declines in patients with CFS, 

but each drew a different conclusion. One study conducted a 
whole-brain analysis on CFS, reporting thickness reductions in 
the caudal middle frontal gyrus and precuneus (Thapaliya et al., 
2022), while another study concluded no global grey matter 
thickness differences between patients with CFS and healthy 
individuals (van der Schaaf et al., 2017). Our results emphasized 
the relationship between cortical atrophy and chronic fatigue, 
further specifying that the atrophy could be limited to five brain 
areas related to CFS. Compared to the previous two studies, our 
trial, based on advanced machine learning method, provided 
more precise pathological regions. Additionally, our trial 
exhibited relationships between the cortical atrophy and fatigue 
severity, healthy status, pain severity, and symptom duration in 
patients with CFS. However, further longitudinal studies are 
required to investigate potential causality between cortical 
atrophy and chronic fatigue.

One interesting result of this study that drew our attention was 
that the healthy status scores, rather than the fatigue severity scores, 
exhibited the highest explanatory ratios and robust significance. 
We identified two possible reasons. First, the assessments of fatigue 
severity we used only had 14 questions, fewer than the healthy status 
questionnaire with 36 questions. More items and scoring ranks may 
provide higher resolution for better model fitting. Second, and more 
importantly, fatigue severity evaluated by FS-14 may not precisely 
reflect chronic fatigue and acute fatigue, because healthy volunteers 
could have acute or broad fatigues derived from work stresses and 
social competition. From Table 1, the fatigue severities of our HC 
group were 4.50 ± 3.75, and seven subjects in the group were assessed 

FIGURE 5

Association between SF-36 scores and cortical thicknesses in the two groups. The association between cortical thicknesses and SF-36 scores was 
significant only in the CFS group, not the HC group.

FIGURE 6

Group comparison of cortical thickness.
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as having moderate fatigue severities (score > 7) on the day they were 
recruited, even though they reported being healthy and having no 
history of long-term fatigue. This is reasonable and cannot be simply 
attributed to the possible loose criteria for healthy volunteers in our 
trial. In practice, acute fatigue is often considered an early stage of 
chronic fatigue and is broadly present. For instance, occupational 
fatigue is one of the common sources of acute fatigue, such as 12-h 
shift nurses (Chen et al., 2014), car drivers, and aircraft pilots (Hu and 
Lodewijks, 2020), while temporary inflammation is another common 
source of acute fatigue in healthy subjects (Lasselin et  al., 2020). 
Unlike chronic fatigue, healthy individuals with acute fatigue can 
recover by themselves through sufficient relaxation, although acute 
fatigue may temporarily recur when fatigue-inducing factors arise. 
Compared to the FS-14 questionnaire, the SF-36 could evaluate 
lifestyle changes in subjects over 1 month, which may potentially 
provide details to help distinguish between acute and chronic fatigue. 
Hence, we thought that unless a new questionnaire assessing fatigue 
in multiple dimensions and time points is developed, the SF-36 could 
possibly be considered a better outcome for studying CFS in some 
cases under the current situation. Future studies could focus more on 
the distinct pathological patterns of acute and chronic fatigue.

The limitations of this study include that our sample size could 
potentially restrict the reliability of our results, although the number 
of participants in our study exceeded most previous similar studies, 
several conclusions from this study may require a large, multi-center 
study with a more diverse patient pool to enhance statistical power 
and improve reliability. Second, our study focused on the brain surface 
and ignored subcortical regions, which means the pathological 
patterns we revealed could be incomplete, such as the critical role of 
amygdala in CFS. Third, several conclusions from this cross-sectional 
study could be influenced by explanatory bias and observer effects. 
Finally, anxiety and depressive scores were not included in the analyses 
of this study, although we ensured that the recruited subjects had no 
histories of mental disorders or psychotropic drug use. Our future 
study will investigate these conclusions in patients with depression 
and anxiety.

5 Conclusion

In conclusion, we constructed a classifier to recognize CFS and 
identified pathological patterns for chronic fatigue. Five brain areas, 
including the left paracentral lobule and sulcus, left precentral gyrus, 
left central sulcus, right intraparietal sulcus and transverse parietal 
sulci, and right superior temporal sulcus, were associated to clinical 
symptoms of CFS, and patients with CFS exhibited cortical atrophy in 
these five areas. Our study could promote the understanding of CFS 
and kindly remind potential impacts of chronic fatigue. Besides, the 
pathological patterns we  revealed could contribute to clinical 
diagnosis of CFS.
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