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Introduction: Smoking is associated with significant alterations in sleep architecture. 
Previous studies have revealed changes in the subjective sleep of young smokers, 
but research on objective sleep assessment using polysomnography (PSG) is limited. 
This study aims to explore electroencephalography (EEG) power and sleep spindle 
activity during the sleep of young smokers, as well as to assess the relationship 
between sleep and smoking variables.

Methods: We collected overnight PSG data from 19 young smokers and 16 non-
smokers and assessed nicotine dependence and cumulative effects using the 
Fagerstrom Nicotine Dependence Test (FTND) and pack-year. Power spectral 
analysis and sleep spindle detection are used to analyze EEG activity during sleep.

Results: Compared to the non-smokers, young smokers showed increased 
alpha power in the frontal and central regions and decreased delta power in the 
central region. The frontal region showed enhanced sleep spindle duration and 
density. Notably, both relative alpha power and sleep spindle duration in frontal 
showed a positive correlation with Pack-year.

Discussion: Sleep EEG power and sleep spindle activity in frontal may serve as 
biomarkers to assess the sleep quality of young smokers. It may improve the 
understanding of the relationship of sleep and smoking.
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1 Introduction

The 2023 Global Tobacco Epidemic Report pointed out that tobacco use remains one of 
the greatest public health threats, causing over 8 million deaths annually (Organization, W.H, 
2023). Smoking, as a leading preventable cause of death, is associated with an increased risk 
of cardiovascular diseases and cancer (Ambrose and Barua, 2004; Sasco et al., 2004; Wen et al., 
2023). Previous Electroencephalogram (EEG) studies found that smoking may affect EEG 
activity (Yin et al., 2016; Dong et al., 2021; Li et al., 2022; Wang et al., 2022; Wang et al., 2024). 
For example, the increased alpha coherence between the frontal lobes in young smokers was 
related to inhibitory control (Wang et al., 2022). The reduced resting-state EEG power in 
young smokers was associated with poorer performance on inhibitory control tasks (Dong 
et al., 2021). Therefore, studying young smokers is essential to understanding the impact of 
smoking on brain development and health outcomes.

Recent studies have shown that smoking may affect sleep quality and brain activity during 
sleep (Truong et al., 2021; Grigoriou et al., 2024). Subjective and objective sleep quality are 
important in evaluating sleep quality (Stanyer et al., 2021). Studies based on the Pittsburgh 
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Sleep Quality Index (PSQI) showed that smokers had poorer 
subjective sleep quality (Grigoriou et al., 2024). Polysomnography 
(PSG) is the gold standard for assessing objective sleep structure, 
which includes electroencephalography (EEG), electromyography 
(EMG), and electrooculography (EOG; Burchard and Chidekel, 2024). 
By visually scoring the PSG data and classifying sleep stages, the 
macro and micro structures of sleep were further analyzed (Truong 
et al., 2021). Previous PSG studies showed that smokers may exhibit 
alterations in their macro sleep structure, including reduced rapid eye 
movement (REM) sleep, increased N1 and N2 sleep, prolonged sleep 
onset latency (SOL) and wake time after sleep onset (WASO; Zhang 
et al., 2006; Grigoriou et al., 2024).

Moreover, smoking may influence the microstructure of sleep, 
such as EEG power and spindle activity during sleep (O'Reilly et al., 
2019; Truong et al., 2021). During NREM sleep, smokers exhibited 
decreased delta power and increased alpha power, which closely 
resemble the EEG patterns observed in individuals with insomnia 
(Truong et al., 2021; Zhao et al., 2021; Guo et al., 2023). PSG studies 
in young nonsmokers have shown that transdermal nicotine affects 
sleep spindle activity (O'Reilly et al., 2019). The stimulant effects of 
nicotine are important potential factors influencing sleep architecture, 
including the impact on neurotransmitter systems and melatonin 
secretion. Previous studies demonstrated that nicotine binds to 
nicotinic acetylcholine receptors (nAChRs) in the brain, leading to the 
release of neurotransmitters (Costa and Esteves, 2018; von Deneen 
et al., 2022; Wen et al., 2024; Wen et al., 2025). This process likely 
enhanced wakefulness and reduced sleep depth and may have 
influenced neural circuits related to brain reward systems, potentially 
altering motivation and behavior (Zhang et al., 2006; Yu et al., 2017; 
Wang et  al., 2019). Melatonin secretion played a critical role in 
facilitating sleep onset and regulating the sleep–wake cycle (Zisapel, 
2018). By stimulating neurotransmitter release, nicotine may have 
disrupted melatonin secretion, thereby affecting sleep architecture 
(Georgakopoulou et al., 2024).

Compared to middle-aged and older smokers, there are fewer 
studies on the sleep of young smokers (Patterson et al., 2018; Pataka 
et al., 2021; Truong et al., 2021). Young adults are aged between early 
and middle adulthood. During this time, the sleep patterns is changing 
and may be affected by the nicotine in cigarettes (Li et al., 2018; Purani 
et al., 2019). Our aim is to investigate both the macro and micro sleep 
structures of young smokers and analyze the relationship between 
sleep structure changes and smoking-related variables. 
We  hypothesized that the sleep structure in young smokers were 
changed compared with non-smokers, which may be correlated with 
smoking characteristics.

2 Materials and methods

2.1 Participants

Nineteen young smokers (mean age: 20.43 ± 1.03 years) and 16 
matched non-smokers (mean age: 19.88 ± 1.03 years) were included 
in this study. All participants were the undergraduate students of 
Inner Mongolia University of Science and Technology (IMUST). 
Therefore, they exhibited similar lifestyle habits and dietary patterns, 
including regular sleep–wake schedules, academic routines, and eating 
habits typical of university students. These common characteristics 
helped minimize variability due to external factors. Every participant 

was right-handed as measured by the Edinburgh Handedness 
Questionnaire (Casey, 2015). The smokers were diagnosed with 
nicotine dependence according to the Diagnostics and Statistical 
Manual of Mental Disorder-V (DSM-V). Non-smokers were recruited 
by posters during the same period.

Exclusion criteria for both nonsmokers and Smokers included: (1) 
current use of sedative hypnotics; (2) current diagnosis of major 
mental conditions (i.e., major depression, major anxiety, 
schizophrenia), severe physical diseases (i.e., acute or chronic heart, 
hepatic or renal failure); (3) neurological disorder with changed EEG 
activities (i.e., Parkinson’s disease, Alzheimer’s disease or seizure 
disorder); (4) diagnosed with other substance use disorder according 
to DSM-V.

2.2 Procedure

Participants who satisfied both the inclusion and exclusion criteria 
were invited to participate in this study. Prior to the PSG recording, 
participants were required to complete a series of standardized 
questionnaires including Pittsburgh sleep quality index (PSQI), Self-
Rating Anxiety Scale (SAS), Self-rating depression scale (SDS), 
Insomnia Severity Index (ISI), Self-Rating Scale of Sleep (SRSS) to 
evaluate sleep quality and the degree of anxiety and depression (Morin 
et al., 2011; Dunstan and Scott, 2020; Liu D. et al., 2021). For smokers, 
we tested the Fagerstrom test for nicotine dependence (FTND) for 
nicotine dependence and pack-year to assess the cumulative effect of 
nicotine (Heatherton et al., 1991). Finally, each participant underwent 
overnight PSG recording. This study was approved by the Research 
Ethics Committee of the First Affiliated Hospital of Baotou Medical 
College of IMUST (2020001) and informed consent was obtained for 
all subjects. No smoking cessation programs, medications, or other 
interventions were implemented during the study.

2.3 Polysomnography

The participants underwent overnight, supervised, laboratory-
based video polysomnography. We recorded PSG data during the 
period from 10 PM to 6 AM. The lights were turned off at 10 PM, and 
the subjects were instructed to remain in bed and attempt to fall 
asleep. The subjects woke up at a fixed time, which was 6 AM. For this 
study, sleep recordings were analyzed on a subset of the recording 
montage, including frontal (F3, F4), central (C3, C4) and occipital 
(O1, O2) electrodes, recorded with a vertex reference (Cz) and 
re-referenced off-line to averaged mastoids. The entire night’s sleep 
data were divided into multiple 30-s epochs according to American 
Academy of Sleep Medicine (AASM) standards, and manual sleep 
stage scoring was performed (Berry et al., 2012). Macro sleep variables 
were analyzed based on the results of sleep staging. Among them, 
Time in Bed (TIB) was defined as the total Time from the start of 
recording to waking up the next day. SPT was defined as the time from 
the first non-awake stage to the last non-awake stage. WASO is the 
total recording time of awake phase during SPT. Total Sleep Time 
(TST) was the recording time of the whole night except the waking 
stage. Sleep Efficiency (SE) was used to describe the proportion of TST 
in TIB. SOL is latency to first epoch of any sleep stage except wake 
stage. Sleep Maintenance Efficiency (SME) was defined as the 
percentage of TST over SPT. The absolute and relative durations 
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(Percentage of duration of each stage in TST) of N1, N2, N3 and REM 
were calculated. The N1, N2, N3 and REM latencies are the times from 
the beginning of the sleep record to the specific sleep stages.

2.4 EEG data preprocessing

We chose N2 sleep for EEG data analysis because N2 is the most 
stable during sleep and has the largest proportion during sleep (Liu 
S. et al., 2021). EEG data were processed by MNE-python (Gramfort 
et al., 2013). Raw data were imported and down-sampled to 100 Hz. 
Bandpass filter between 0.1 and 40 Hz were subsequently applied. 
Independent component analysis (ICA) was performed using 
Fast-ICA algorithm. Experienced researchers then visually inspected 
these components to identify and exclude those related to 
electromyographic (EMG) and ocular artifacts. The remaining 
components were used to reconstruct artifact-free EEG signals. The 
identified artifacts were manually detected and removed (Hyvärinen 
and Oja, 2000). Finally, the EEG was visually inspected again to 
remove epochs with excessive noise or artifacts. The impedance of 
each EEG electrode was kept below 10 kΩ.

2.5 EEG data analyses

The multitaper method was used to calculate the power spectral 
density of artifact-free, continuous, non-overlapping 6-s epochs on 
EEG electrodes, which was used to compute the relative signal power 
in typical frequency bands, including delta (0.5–4 Hz), theta (4–8 Hz), 
alpha (8–12 Hz), sigma (12–16 Hz), and beta (16–20 Hz). The 
resulting power values were averaged across different epoch and 
normalized to the total signal power (0.5–20 Hz) for inter-group 
comparisons. The multitaper method used multiple discrete prolate 
spheroidal sequence (DPSS) tapers to average the power spectrum 
obtained from the EEG signal, which can better reduce the bias and 
variance of spectrum estimation compared with the Welch method 
and other single taper methods (Prerau et  al., 2017). Automatic 

spindle wave detection method was adopted for sleep spindle 
detection (Lacourse et al., 2019). Specifically, the 1-30 Hz EEG signal 
(EEGbf) and the 12–16 Hz EEG signal (EEGσ) were obtained by FIR 
filter. Sleep spindles were identified by calculating the relative power 
of EEGσ in EEGbf and the moving Pearson correlation coefficient and 
Root mean square (RMS) of EEGσ in EEGbf with a sliding window of 
300 ms and a step size of 100 ms. Finally, we calculated the spindle 
characteristics, including the average amplitude, duration, and density 
(spindles per minute, spm) of spindles in the range of 12 to 16 Hz for 
each EEG channel.

2.6 Statistical analysis

First, Shapiro–Wilk test was used to determine the normality of 
the data before analysis. According to the normality results, Welch-t 
test or Mann–Whitney U test was used to analyze the differences of 
sleep variables or scale scores. We controlled the false discovery rate 
by FDR correction. The correlation between macro sleep variables, 
scale scores and EEG activity during sleep were analyzed by Pearson’s 
correlation coefficient or Spearman’s correlation coefficient. p < 0.05 
was considered statistically significant.

3 Results

3.1 Demographics and scores on the 
subjective scale

Demographic variables and scale scores are presented in Table 1. 
No significant difference in age and education level were found 
between young smokers and non-smokers. In the subjective scale 
scores, although young smokers showed a decreasing trend in PSQI 
scores (p = 0.056), there were no significant difference between young 
smokers and non-smokers across all scale scores, including 
assessments related to sleep status as well as anxiety and depressive 
mood evaluations.

TABLE 1 Demographic variables and subjective scale scores.

Smokers Non-smokers p-value

Demographic variables

Age(years) 20.4 ± 1.1 19.5 ± 1.7 0.3

Sex Male Male –

Education(years) 14.4 ± 0.77 15.1 ± 1.4 0.3

Pack-year 1.4 ± 0.94 – –

Subjective scale scores

PSQI 5.3 ± 2.7 4.1 ± 2.1 0.056

ISI 17.2 ± 3.8 6.3 ± 4.3 0.11

SRSS 19.4 ± 4.2 3.7 ± 4.6 0.15

SAS 37.9 ± 7.6 44.0 ± 9.1 0.21

SDS 39.8 ± 9.8 47.2 ± 13.1 0.36

FTND 2.4 ± 1.6 – –

Values are expressed as means ± standard deviations. PSQI, pittsburgh sleep quality index; ISI, insomnia severity index; SRSS, self-rating scale of sleep; SAS, self-rating anxiety scale; SDS, 
self-rating depression scale; FTND, fagerstrom test for nicotine dependence.
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3.2 Association between sleep 
characteristics and smoking status

Table 2 shows the relationship between macro sleep structure and 
smoking status. Among young individuals, smokers had longer N1 
latency (mean: 37.6 ± 51.6 min; p < 0.05) and SOL (mean: 
24.3 ± 17.6 min; p < 0.05), as well as reduced N2 sleep (mean: 
150.8 ± 38.9 min; p < 0.05) and SPT (mean: 385 ± 66.0 min; p < 0.05) 
compared to non-smokers. The sleep latency of N2 and N3 exhibited 
similar trends to the N1 latency. The proportions of each sleep stage, 
SE, and SME showed no significant differences between young 
smokers and non-smokers.

3.3 Association between EEG activity and 
smoking status

Figures  1, 2 present the EEG relative power under different 
smoking status. We found that young smokers exhibited a decrease in 
delta power (t = 3.07, p < 0.01) and increase in alpha power (t = 3.26, 
p < 0.01) at C4 electrode during N2 sleep. No significant differences 
were found in the other three frequency bands (theta, sigma, beta). 
Additionally, significant increase in alpha power was also observed at 
F4 electrode in young smokers (U = 59.0, p < 0.01). The activity of 
sleep spindle waves under different smoking statuses is illustrated in 
Figure 2. Young smokers exhibited greater spindle density (U = 64.0, 
Hedges’g = 0.49, p < 0.01) and longer duration (U = 63.0, 
Hedges’g = 0.50, p < 0.01) compared to non-smokers at F4. No 
significant inter-group differences were found in spindle amplitude.

Additionally, we  investigated the relationship between micro-
sleep structure and macro-sleep structure. At C4 electrode, relative 
delta power did not show significant correlation with SPT (r = −0.035, 
p > 0.05) but it was negatively correlated in non-smokers (r = −0.524, 
p = 0.04). Similarly, we also found that in young non-smokers, relative 
alpha power at the C4 electrode was positively correlated with the 
proportion of N2 sleep (r = 0.53, p = 0.035) but no significant 
correlation in young smokers. (r = −0.419, p = 0.074).

Finally, we  investigated the relationship between smoking 
variables (pack-year and FTND) and microstructure of sleep. Through 
correlation analysis, we found that relative alpha power at F4 electrode 
in young smokers was positively correlated with pack-year (r = 0.602, 
p < 0.01). The duration of sleep spindles at F4 electrode in young 
smokers was positively correlated with pack-year. (r = 0.512, 
p = 0.025).

4 Discussion

In this study, we used PSG to assess sleep quality in young smokers 
and the relationship between sleep variables and smoking-related 
variables. In subjective sleep assessments, we failed to find significant 
different PSQI scores in young smokers compared with non-smokers 
but it exhibited a rising trend as p = 0.056. Similar to previous studies, 
results of macro sleep structure indicated that young smokers had 
reduced SPT, decreased N2 sleep and prolonged SOL and N1 latency 
(Yosunkaya et al., 2021; Mauries et al., 2023).

Young smokers showed changes in sleep microstructure, 
including reduced delta power and increased alpha power at C4 

TABLE 2 Multivariable associations between sleep macrostructure and smoking status.

Macro sleep variables Smoker Non-smoker p-value

TIB (min) 420.3 ± 74.4 459.0 ± 73.7 0.133

SPT (min) 385.8 ± 66.0 438.7 ± 74.1 0.035

WASO (min) 62.5 ± 33.3 72.5 ± 48.3 0.788

TST (min) 323.3 ± 61.5 366.1 ± 77.3 0.084

N1 (min) 18.1 ± 11.9 22.1 ± 17.03 0.665

N2 (min) 150.8 ± 38.9 183.5 ± 41.11 0.023

N3 (min) 77.3 ± 20.9 79.7 ± 25.73 0.764

SOL (min) 24.3 ± 17.6 13.8 ± 8.532 0.029

Latency of N1 (min) 37.6 ± 51.6 19.1 ± 22.35 0.031

Latency of N2 (min) 34.5 ± 22.7 21.5 ± 15.33 0.067

Latency of N3 (min) 49.1 ± 41.1 27.8 ± 14.95 0.053

Latency of REM (min) 74.1 ± 45.4 90.8 ± 47.3 0.298

REM (%) 23.5 ± 4.34 22.1 ± 4.9 0.402

NREM (%) 76.5 ± 4.34 77.8 ± 4.95 0.402

N1 (%) 5.6 ± 3.59 5.84 ± 3.64 0.857

N2 (%) 46.6 ± 7.78 50.2 ± 6.941 0.155

N3 (%) 24.2 ± 6.18 21.7 ± 4.938 0.193

SME (%) 83.9 ± 7.47 83.3 ± 11.76 0.806

SE (%) 77.4 ± 9.78 79.6 ± 11.55 0.385

Values are expressed as means ± standard deviations. TIB, time in bed; SPT, sleep period time; WASO, wake after sleep onset; TST, total sleep time; SE, sleep efficiency; SME, sleep maintenance 
efficiency.
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electrode. An enhancement in alpha power at F4 electrode was 
found, which positively correlated with pack-year. It is noteworthy 
that enhanced spindle density and prolonged spindle duration in 
young smokers was observed, which was correlated with pack-
year. We explored the association between the macrostructure and 
microstructure of sleep. In young non-smokers, we  found 

associations between relative power including delta and alpha 
power and macro sleep structure, which were not observed in 
young smokers.

Firstly, our study similarly showed that no significant difference 
of PSQI score in young smokers compared with non-smokers, but 
we found the trend of the increase of PSQI score. Middle-aged and 

FIGURE 1

The EEG activity differences at the C4 electrode during N2 sleep. (A) Young smokers exhibited a decrease in delta power (t = 3.07, p < 0.01) and an 
increase in alpha power (t = 3.26, p < 0.01). (B) Relative delta power did not show a significant correlation with SPT (r = −0.035, p > 0.05) but it was 
negatively correlated in non-smokers (r = −0.524, p = 0.04). Relative alpha power at C4 electrode was positively correlated with N2% (r = 0.53, 
p = 0.035), while it was disappeared in young smokers (r = −0.419, p = 0.074). *p < 0.05, **p < 0.01.
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elderly smokers have poorer subjective sleep quality based on the 
PSQI questionnaire (Liao et  al., 2019; Purani et  al., 2019). Single 
cohort study involving 405 young smokers showed that 36% of young 
smokers had poor sleep quality (PSQI >5; Dugas et  al., 2017). 
Significant difference of PSQI between young non-smokers and 
smokers were not reported in other studies (Cohen et  al., 2020; 
Al-Mshari et al., 2022).

Secondly, we found decreased delta power and increased alpha 
power during N2 sleep in young smokers, which was similar to the 
findings in insomnia PSG study (Zhao et al., 2021). The effect of 
sleep by nicotine may be a reason for changes in EEG power during 
sleep (Saint-Mleux et al., 2004; Sharma et al., 2015). Transdermal 
nicotine patches may increase alpha power during first 

NREM-REM sleep cycle and decrease the delta power during N2 
sleep in young smokers (Choi et al., 2017). Animal study similarly 
showed that nicotine indirectly inhibited the sleep-promoting 
neurons in the ventrolateral preoptic area while directly activating 
neurons related to the arousal system (Saint-Mleux et al., 2004). 
Additionally, we  observed a significant negative correlation 
between relative delta power during NREM sleep and SPT in 
non-smokers. In the two-process model of sleep regulation, EEG 
delta power was often used as an indicator of the S process, 
reflecting the release and recovery of sleep pressure (Davis et al., 
2011). The correlation between delta power and SPT might have 
reflected the homeostatic regulation of sleep pressure, suggesting 
that the brain required higher delta activity when sleep pressure 

FIGURE 2

The association between EEG activity at the F4 electrode during N2 sleep. (A) Compared to young non-smokers, alpha power was higher in smokers 
(U = 59.0, p < 0.01). (B) Young smokers exhibited higher spindle density (mean spindle density:4.8 spm, 95% confidence intervals (CI): [0.55, 3.01], 
Hedges’g = 0.49, p < 0.01) and longer duration (mean spindle duration: 0.94 s, 95% CI: [0.04, 0.14], Hedges’g = 0.50, p < 0.01). (C) Relative alpha power 
in young smokers was positively correlated with pack-year (r = 0.602, p < 0.01). The duration of sleep spindles in young smokers was positively 
correlated with pack-year. (r = 0.512, p = 0.025). *p < 0.05, **p < 0.01.
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had not been sufficiently released. Previous studies demonstrated 
that both delta power during NREM sleep and the duration of 
NREM sleep increased following sleep deprivation (Achermann, 
2004; Long et  al., 2021). The regulation of sleep was known to 
involve multiple neurotransmitters, including acetylcholine and 
gamma-aminobutyric acid (Jones, 2020). In smokers, this 
association might have been attenuated due to the stimulant effects 
of nicotine and its influence on neurotransmitter systems.

Finally, during N2 sleep, we  observed an increase in spindle 
duration and density at the F4 electrode in young smokers, which was 
positively correlated with pack-year. Sleep spindles are generated by 
thalamic reticular neurons and thalamocortical neurons, which are 
extensively projected to the cortex and hippocampus (Andrillon 
et al., 2011; Fernandez and Lüthi, 2020). Previous studies showed that 
nAChRs were related to sleep spindles (Ozaki et al., 2012; Ni et al., 
2016). The use of acetylcholinesterase inhibitors can restore sleep 
spindle waves in patients with neurodegenerative diseases (Ozaki 
et  al., 2012). Animal study showed that sleep spindles could 
be generated by activating nAChRs in the thalamic reticular nucleus 
(Ni et al., 2016). Our study showed that the spindle activity in young 
smokers was enhanced and correlated with pack-year. The interaction 
between nAChRs and sleep spindles supplied a possible explanation 
for the enhancement of the spindle activity in young smokers: 
nicotine binds to nAChRs, which increases the activity of sleep 
spindles in young smokers. In fact, young non-smokers show 
enhanced spindle activity after transdermal nicotine administration 
(O'Reilly et  al., 2019). It indicated that changes of sleep spindle 
activity in young smokers may be  related to nicotine in tobacco 
rather than other substances in tobacco.

5 Limitation

In this study, a comprehensive analysis of the subjective and 
objective sleep quality of young smokers was conducted. However, 
our study still has some limitations. First, the sample size in our 
study is relatively small. Second, in our participant selection, 
we focused solely on male smokers. In future research, we will 
continue to investigate the long-term effects of sleep spindle 
activity in young smokers on memory consolidation and 
emotional regulation, which will contribute to a better 
understanding of the relationship between smoking, sleep, and 
cognitive performance.

6 Conclusion

This study mainly focused on the macro and micro sleep 
structures of young smokers and the association between sleep 
structure and smoking. Sleep EEG power and spindle activity may 
assess sleep quality in young smokers, which may provide new insights 
into the relationship between smoking and sleep.
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