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Spatial frequency preferences of 
representations of indoor and 
natural scene categories in 
scene-selective regions under 
different conditions of contrast
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Introduction: Scene-selective regions were shown to be significantly affected by 
spatial frequencies (SF) and have different sensitivities to low spatial frequencies 
(LSF) and high spatial frequencies (HSF). However, previous studies mainly 
focused on the neural activations or the neural patterns in a single SF band.

Methods: To investigate the extent to which the information of a single SF is used 
in scene category representations, we not only decoded the scene categories in 
each SF, but also used the neural patterns to LSF or HSF to decode the patterns 
to non-filtered (NF) scenes based on fMRI data using multivoxel pattern analysis 
(MVPA). As luminance contrast was shown to follow statistical regularities along 
with SF, we performed the decoding analyses separately in two conditions of 
contrast where the contrast of LSF and HSF was unmodified or equalized.

Results: The results showed distinct SF preferences in the two contrast conditions, 
showing that luminance contrast has a significant role in SF processing. In addition, 
we  also performed the above analyses only within natural and indoor scenes, 
respectively. The results showed the scene-selective regions were more efficient 
in distinguishing natural scene categories in LSF, and the LSF was preferentially used 
along with high luminance contrast in recognition of natural scenes. On the other 
hand, humans preferentially used HSF information in distinguishing indoor scenes.

Discussion: This distinct SF preferences maybe caused by the different aspects 
of information conveyed by LSF and HSF, as well as the different strategies of 
spatial perception in natural and indoor scenes recognition.
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Introduction

Complex visual scenes can be interpreted in different levels of properties, including objects, 
spatial layouts, as well as low-level properties, such as color, orientation and spatial frequencies 
(SF). Previous research mainly focused on the primary visual cortex (V1) in the processing of 
low-level visual scene properties, which showed sensitivities to these properties such as spatial 
frequency, orientations, and luminance contrast (Furmanski and Engel, 2000; Boynton, 2005; 
Tanaka and Sawada, 2022; Schuurmans et al., 2023). The processing of high-level categorical 
information of scenes was localized and mainly researched on several occipitotemporal brain 
regions, including the parahippocampal place area (PPA), retrosplenial cortex (RSC) and 
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occipital place area (OPA) (Epstein and Kanwisher, 1998; Bar and 
Aminoff, 2003; Yichen and Sheng, 2024), which were typically called 
“scene-selective regions.” The scene-selective regions showed higher 
activations in scene viewing compared to viewing other categories of 
visual stimuli (Epstein and Kanwisher, 1998; O'Craven and Kanwisher, 
2014). Multivoxel pattern analysis (MVPA) also showed distinctive 
patterns of neural responses in these regions to different categories of 
scenes in the form of photographs and line drawings (Walther et al., 
2009; Walther et al., 2011; Brandman and peelen, 2019). In addition, 
scene-selective regions have also been indicated in the processing of 
spatial layouts of scenes, such as spatial geometry and expanse (Russell 
et al., 2003; Kravitz et al., 2011; Mccormick et al., 2021). The PPA has 
also been indicated in the processing of object-related information, 
including space diagnosticity, object co-occurrence, and contextual 
associations (Cant and Xu, 2012; Nestmann et  al., 2022), showing 
greater activations for scenes with incongruent objects (Goh et al., 2004; 
Rémy et al., 2014). These studies showed the scene-selective regions 
involve in the processing of mid-level scene components, not solely in 
the processing of high-level semantic information.

However, recent findings have shown that the neural responses in 
scene-selective regions can be  significantly affected by low-level 
properties, such as SF, orientations and rectilinearity (Rajimehr et al., 
2011; Nasr et al., 2014; Kauffmann et al., 2015a,b; Kreiman and Serre, 
2020). SF was especially highlighted in causing different levels of neural 
activations in scene-selective cortices in different types of filtering 
(Peyrin et al., 2004; Rajimehr et al., 2011; Kauffmann et al., 2015a,b; 
Perfetto et al., 2020). Nevertheless, previous univariate analyses have 
showed diverse results. Several recent studies suggest higher activations 
in scene-selective regions to high spatial frequency (HSF) scenes 
(Rajimehr et al., 2011; Canário et al., 2016; Berman et al., 2017), while 
there were also studies showing higher activations to low spatial 
frequency (LSF) scenes (Peyrin et al., 2004; Schettino et al., 2011). 
Although numerous studies have investigated the neural activations to 
different SF, only a few studies have focused on the patterns of neural 
responses in scene representations activated by different SF. A recent 
study using MVPA found that neural patterns could be better decoded 
by SF than by image content (Watson et al., 2016), suggesting that 
neural patterns could also be affected by SF. A latest MVPA decoded 
different scene categories within each SF band and observed higher 
accuracies in HSF (Berman et al., 2017). However, the decoding within 
a single SF could only reflect the abilities to dissociate scene categories 
in a certain type of SF. High accuracy in HSF does not necessarily imply 
that the same information is prioritized in natural scene viewing. 
Therefore, it is of greater importance to investigate the extent to which 
the category-specific neural patterns to scenes in a certain SF is 
represented in the patterns to unfiltered scenes by performing cross-
decoding analysis between different SF.

Conversely, prior studies predominantly employed luminance 
contrast equalization in SF processing research. However, luminance 
contrast across SF scenes exhibits statistical regularities, approximately 
adhering to a 1/fα function, leading to a significantly higher contrast in 
LSF images compared to HSF after filtering. As a result, using contrast 
equalization may result in irrelevant analyses of the SF processing of 
visual scenes (Kauffmann et al., 2015a,b). In order to reveal the impact 
of luminance contrast on SF processing, one previous study has 
researched on the neural activations with and without equalization of 
root mean square (RMS) contrast in a scene categorization task 
(Kauffmann et al., 2015a,b). The RMS contrast, which corresponds to the 

standard deviation of luminance values, has been proven to be the most 
reliable measure of the visibility of broadband filtered images 
(Liu-Shuang et al., 2022). Results showed distinct SF preferences in PPA 
and RSC, which confirmed the impact of luminance contrast on the 
sensitivities to different SF in scene-selective regions. Consequently, it is 
vital to investigate the effect of luminance contrast on SF processing in 
representation of scene categories. In addition, different SF mainly 
convey different aspects of information in visual scenes. As LSF 
information mainly captured the coarse blobs and patches, and HSF 
information mainly revealed the detailed edges, the global information 
of scenes is principally conveyed by LSF, while local and detailed 
information is mostly conveyed by HSF. Studies have shown that LSF 
activated the brain regions related to peripheral vision, while HSF 
activated the regions dedicated to foveal vision (Sasaki et  al., 2001; 
Henriksson et al., 2007; Canário et al., 2016), but there was also an 
interaction between low and high SF information processing (Revina 
et  al., 2017; Takeda et  al., 2021; Schuurmans et  al., 2023). In scene 
recognition, humans typically are more involved in local space processing 
for indoor scenes than natural scenes, which may rely more on global 
perception (Epstein, 2005; Henderson et al., 2007). Computer vision 
studies have also showed that indoor scenes have a greater proportion of 
horizontal and vertical edges than natural scenes, and the differentiation 
between man-made scene categories reside mainly in the relationship 
between these edges (Torralba and Oliva, 2003). Natural scenes, such as 
beach and mountain, typically contain more LSF information. The 
distinct preferences for spatial SF in neural patterns may arise from the 
differences in spatial frequency distribution between natural and indoor 
scenes, as well as variations in perceptual mechanisms.

In this study, we mainly focused on the SF preferences in the 
neural representations of visual scene categories in scene-selective 
regions. Participants observed scenes under various SF conditions, 
encompassing non-filtered (NF) scenes, LSF scenes, and HSF scenes 
in a block-designed experiment. In order to investigate the impact of 
luminance contrast on SF processing, we referred to the design in 
(Kauffmann et  al., 2015a,b), and set 2 conditions of luminance 
contrast, LUM and RMS. In LUM condition, the contrast of LSF and 
HSF scenes were unmodified after filtering, while in RMS condition, 
all images were normalized to the same luminance contrast. In these 
two conditions, we used MVPA to decode the scene categories within 
each SF to investigate the sensitivities of the scene-selective regions to 
the scene category information in each SF, and further decoded the 
neural patterns to NF scenes by that of LSF and HSF scenes to 
investigate the SF preferences in actual scene viewing. The 
classification accuracies were statistical analyzed in each contrast 
condition to see if the SF preferences differ between the two contrast 
conditions. In addition, in order to know whether the role of SF in 
category representations differ between indoor and natural scenes, 
we performed the above decoding analyses within indoor and natural 
scene categories, respectively, and analyzed the SF preferences.

Materials and methods

Participants

Twenty-seven right-handed healthy subjects (age: 18–32, 14 
females) with normal or corrected-to-normal vision participated in 
this study. This study was carried out in accordance with the 
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recommendations of Institutional Review Board (IRB) of Tianjin 
University. The protocol was approved by the IRB of Tianjin 
University. All subjects gave written informed consent in accordance 
with the Declaration of Helsinki. All subjects were compensated for 
their time after the experiment.

Experimental stimuli

The visual stimuli were grayscale images from 2 natural scene 
categories (beach, mountain) and 2 indoor scene categories 
(bathroom, bedroom). Each scene category comprised 120 images. 
The original images were downloaded from the Internet and were 
resampled to a size of 600  ×  600 pixels. Before spatial frequency 
filtering, all images were equalized in mean luminance and contrast to 
obtain a mean luminance of 0.5 and an RMS contrast of 0.23 
(corresponding to a mean gray scale of 128 and an RMS contrast of 60 
on a 256 gray-level scale) using the SHINE toolbox (Willenbockel 
et al., 2010). These images were used as the non-filtered scenes (NF) 
in the LUM condition. Afterwards, spatial frequency filtering was 
performed by first performing Fourier transform on the images, then 
using Gaussian function as the transfer function, adjusting its 
parameters as needed to achieve low-pass or high pass filtering, then 

multiplying the transfer function with the frequency domain image, 
and finally performing inverse Fourier transform to convert the 
processed frequency domain image back to the spatial domain, 
obtaining the filtered image. The LSF scenes were generated by 
removing the spatial frequency content above 1 cycles per degree 
(cpd), and the HSF scenes by removing the spatial frequency content 
below 5 cpd at FWHM. The cut-off frequencies were selected 
consistent with a previous study on the SF processing of scenes and 
faces (Rajimehr et  al., 2011). With 4 scene categories and 3 SF 
conditions, we got 4 × 3 = 12 conditions of images for each contrast 
condition. The contrast of the images in the 3 SF conditions were then 
modified to form the 2 contrast conditions. In the LUM condition, the 
contrast of the images were left unchanged. In the RMS condition, the 
images in all 3 SF conditions were normalized to an RMS contrast of 
0.12 (30 on a gray-level scale). This contrast value was chosen between 
the contrast value of LSF and HSF images in the LUM condition, to 
avoid affecting one SF condition more than the other. The example 
stimuli in the 2 contrast conditions were displayed in Figure 1. Table 1 
displayed the luminance contrast calculated in each category and SF 
condition in LUM or RMS. The images were presented through the 
high-resolution stereo 3D glasses of the VisuaStim Digital MRI 
Compatible fMRI system, subtending approximately 22.5° × 22.5° of 
visual angle.

FIGURE 1

Experimental stimuli. The whole set of stimuli consists of 4 scene categories: beach, mountain, bathroom and bedroom, the first two are natural 
scenes, and the latter two are indoor scenes. Each category comprises 120 original images, which are used as the non-filtered scenes (NF) in the LUM 
condition. The LSF and HSF images are obtained by removing the SF content above 1 cpd and below 5cpdin SF filtering. In LUM condition, the contrast 
of LSF and HSF images are left unchanged. In the RMS condition, the luminance contrast of all images was normalized to an RMS contrast of 0.12. 
Note that for illustration purpose, the image displayed is substantially smaller in size than the actual stimuli in the fMRI experiment.
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Experimental design

The main experiment was conducted in two separate sessions, in 
which the visual scene images in one contrast condition: LUM or RMS 
were presented. Each session consisted of 4 runs, and each run was 
composed of 12 blocks, lasting for 8 min and 10s. Each block lasted 
for 30s, in which 30 images from the same scene category and the 
same SF condition were presented. Each image was presented for 
500 ms, interleaved with a 500 ms gray screen with a fixation cross in 
the center, which was equal in mean luminance to the scene images. 
The order of the stimulus blocks in each run and image presentations 
in each block was randomized. Blocks were separated by a 10-s 
baseline of fixation, in which the same gray screen used in the 
interstimulus interval was presented. Subjects performed a “one-back” 
repetition detection task to maintain attention in which they were 
asked to press a button when two consecutive images were identical.

An additional localizer run was performed after the main 
experiment in the first session. The design of the localizer run refers 
to the procedures in (Macevoy and Epstein, 2011). Subjects viewed 
four kinds of color images: scenes, faces, objects, and phase-scrambled 
objects in a total of 16 blocks. Images had a resolution of 600 × 600 
pixels (corresponding to approximately 12° × 12° of visual angle). 
Each block presented 25 different images of a single kind consecutively, 
so each kind of stimuli occupied for 4 blocks. Each image was 
presented for 800 ms. A central fixation cross was superimposed on 
all images. Blocks were separated by a 10-s interval of baseline. The 
localizer run lasted for 8 min 10s.

Behavioral experiment

To confirm that the spatial frequency filtering process did not 
disrupt the participants’ abilities to perceive the categories of the 
scenes, we conducted an additional behavioral experiment. Another 
22 participants (12 females, age 22–32) performed a scene 
categorization task on the visual stimuli which were used in the fMRI 
experiment. The behavioral experiment consist of two separate runs, 
in which the images in the LUM or RMS condition were presented. In 
each run, there are 12 conditions (3SF × 4 scene categories) as the 
fMRI experiment, and in each condition, 10 images were randomly 
selected from the whole stimuli set in the fMRI experiment. The 
original images of all the selected images were not repeated. Each run 
consisted of 120 trials. In each trial a fixation cross was presented for 
1,000 ms, and an image was presented for 500 ms, as in the fMRI 
experiment, and followed by a gray screen for 2,500 ms or until the 
participant made a response. The participants were instructed to press 
a button to indicate the scene category of the presented image as 

quickly and as accurately as possible. A chin rest was used to maintain 
the viewing distance, making the visual angle subtend approximately 
22.5°, as in the fMRI experiment. Participants’ responses were 
recorded using the E-prime software.

fMRI data preprocessing

Data were preprocessed using SPM8.1 Five volumes at the 
beginning of each run were discarded before the following data 
processing. Functional images were corrected in slice timing and 
motion corrected with respect to the first volume of each run with a 
six-parameter rigid body transformation. Structural T1-weighted 
images were co-registered to the mean functional image for each 
participant and then segmented into white matter, gray matter and 
cerebral spinal fluid (CSF). The generated mapping parameters were 
then used to spatially normalize the realigned images into the standard 
Montreal Neurological Institute (MNI) space at 3 × 3 × 3 mm3 (Liang 
et al., 2017; Liang et al., 2018; Yang et al., 2018). Only the data in the 
localizer run were spatially smoothed using a 6 mm full width half 
maximum (FWHM) Gaussian kernel.

MRI acquisition

All functional data were acquired using a 3.0 T Siemens scanner 
equipped with an 8-channel head coil at Yantai Affiliated Hospital of 
Binzhou Medical Univeristy. T2*-weighted images were acquired using 
an echo-planar image (EPI) sequence (TR = 2,000 ms, TE = 30 ms, 
voxel size = 3.1 × 3.1 × 4.0 mm3, matrix size = 64 × 64, slices = 33, slice 
thickness = 4 mm, slice gap = 0.6 mm, flip angle (FA) = 90°). 
T1-weighted anatomical images were acquired with a three-dimensional 
magnetization-prepared rapid-acquisition gradient echo (3D MPRAGE) 
sequence (TR = 1900 ms, TE = 2.52 ms, TI = 1,100 ms, voxel 
size = 1 × 1× 1 mm3, matrix size = 256 × 256, FA = 90°). Foam pads and 
earplugs were used to reduce the head motion and scanner noise.

ROI definition

Scene-selective functional regions PPA, RSC and OPA were 
defined bilaterally from the localizer run, all of which were defined 
using the contrast of scenes>faces + objects, and drawing an 8 mm 

1 http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

TABLE 1 Mean luminance contrast of each scene category in each contrast condition.

SF LUM RMS

Beach Mountain Bathroom Bedroom Beach Mountain Bathroom Bedroom

NF 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00

LSF 0.24 ± 0.02 0.24 ± 0.03 0.23 ± 0.02 0.23 ± 0.01 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00

HSF 0.04 ± 0.01 0.05 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00

Mean luminance contrast (mean ± standard deviation) for each scene category, in 3 SF conditions (NF, LSF, and HSF) for each contrast condition (LUM and RMS). Luminance values were 
normalized in the range [0 1].
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radius sphere around the peak voxel in each hemisphere. Most clusters 
were thresholded at uncorrected p < 0.005 with a cluster extent of 
k = 20 voxels. The thresholds were relaxed in few regions in certain 
subjects up to uncorrected p < 0.05. The peak voxel of PPA was 
selected in the posterior parahippocampal-collateral sulcus region, 
RSC in the restrosplenial cortex-posterior cingulate-medial parietal 
region, and OPA in the transverse occipital cortex. The RSC region 
was not identified in two subjects. Figure 2 shows the localization 
results of a representative subject.

Univariate analysis

We first performed a univariate analysis on the ROIs by calculating 
the percent signal change in the scene-selective ROIs in all SF 
conditions using the marsbar software (http://marsbar.sourceforge.
net/) in LUM and RMS conditions to investigate differences in neural 
activations between different SF conditions when the luminance 
contrast was unmodified or equalized. A 2 (contrast condition: LUM 
vs. RMS) × 2 (SF: LSF, HSF) repeated-measure analysis of variance 
(ANOVA) was performed on the percent signal change to examine the 
main effect of SF and the interactions between SF and contrast. Due 
to that the contrast of LSF images was decreased and that of HSF 
images was increased in the RMS condition, we did not manifest the 
main effect of contrast in this study.

Multivoxel pattern analysis

Two types of MVPA analyses were performed to examine the SF 
selectivity in scene-selective regions, Single-SF decoding analysis and 
Cross-SF decoding analysis.

Decoding in single SF

Firstly, we  performed a decoding analysis in each single SF 
condition to examine the abilities to distinguish scene categories in 

each SF for each scene-selective cortex. For each contrast session, 
we extracted the unsmoothed functional images in each SF condition. 
Intensity images were z-score normalized for each functional run in 
order to eliminate the baseline shifts in different runs. A support 
vector machine (SVM) classifier was implemented using lib-SVM to 
classify the scene categories in each SF condition for each scene-
selective ROI. The time courses were shifted 2 TRs to account for the 
hemodynamic lag. Decoding was performed separately for each SF 
condition (NF, LSF, HSF). Each volume in each block was used as one 
sample and labeled with its corresponding scene category, so there’re 
15 × 4 = 60 samples for each category in each SF condition. A leave-
one-run-out cross-validation was adopted, using each of the 4 runs as 
test data, and the other 3 runs as training data. The accuracies in each 
iteration were averaged to represent the decoding accuracy in each SF 
for each subject. A one-tailed one-sample t-test was performed to test 
the significance against chance (0.25) on the decoding accuracies. 
Two-tailed paired t-test between the accuracies of the LSF and HSF 
conditions were also performed to examine the differences in the 
abilities to distinguish scene categories between the 2 SF. The above 
decoding procedure was conducted identically and separately for the 
two contrast conditions. A 2 (contrast condition: LUM vs. RMS) × 2 
(SF: LSF, HSF) repeated-measure analysis of variance (ANOVA) was 
performed on the classification accuracies to examine the main effect 
of SF and the interactions between SF and contrast. In addition, the 
same decoding analysis was applied specifically to only the natural or 
indoor scenes to examine whether the decoding results differ between 
the broad scene categories.

Decoding across SF

A Cross-SF decoding was also performed to specially investigate 
the degree of representations of LSF or HSF information in NF scenes 
in order to inspect the spatial frequency preferences of scene 
representations in scene-selective cortex. The decoding process was 
similar to the single-SF decoding experiment, except that the SVM 
classifiers were trained on either the LSF or HSF data, and tested on 
the NF data, to examine the extent to which the information in either 

FIGURE 2

ROI localization results of a representative subject, thresholded at uncorrected p < 0.005 with a cluster extent k = 20 voxels. Peak voxel was selected in 
each cluster and each ROI was created by drawing an 8 mm sphere around that voxel. The MNI coordinates of the peak voxels of this subject are: 
LPPA, −24 −48 −9; RPPA, 21 −48 −12; LRSC, −18 −63 12; RRSC, 18 −60 12; LOPA: −30 −78 27; ROPA: 33 −75 27.
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SF was represented when the original scene images were viewed. A 
one-tailed one-sample t-test was performed to test the significance 
against chance (0.25) on the decoding accuracies. The spatial 
frequency preferences in normal scene viewing were determined by 
the two-tailed paired t-tests between the classification accuracies 
when the classifier was trained with functional images in LSF or HSF 
condition. As in the experiment of decoding in single SF, the cross 
decoding procedure was conducted identically and separately for the 
two contrast conditions. A 2 × 2 repeated-measure ANOVA was also 
performed. The above procedure was additionally conducted 
specifically to the natural or indoor scene categories.

Results

Univariate analysis results

In univariate analysis, percent signal change was calculated in the 
3 scene-selective regions in NF, LSF and HSF conditions regardless of 
scene categories. In LUM, two-tailed paired t-test on all ROIs showed 
significantly higher activations in LSF than HSF scenes were observed 
(PPA: t(26) = 5.854, p < 0.001; RSC: t(24) = 3.742, p = 0.001; OPA: 
t(26) = 3.667, p = 0.001), and high activations in NF than HSF (PPA: 
t(26) = 9.344, p < 0.001; RSC: t(25) = 3.430, p = 0.002; OPA: 
t(26) = 4.578, p < 0.001). Higher activations were also observed in NF 
than LSF in PPA and OPA (PPA: t(26) = 8.683, p < 0.001; OPA: 
t(26) = 2.601, p = 0.015). In RMS conditions, two-tailed paired t-test 
showed that no significant differences in activations between LSF and 
HSF was observed, although results showed higher activations in NF 
than LSF in PPA (t(26) = 2.141, p = 0.042) and RSC (t(24) = 4.426, 
p < 0.001), and higher activations in NF than HSF in PPA 
(t(26) = 3.366, p = 0.002). Two-way ANOVA on the signal change 
showed significant main effect in SF in PPA (F(1, 26) = 16.571, 
p < 0.001) and RSC (F(1, 24) = 4.851, p = 0.037), and significant 
interactions in all 3 ROIs (PPA: F(1, 26) = 29.397, p < 0.001; RSC: F(1, 
24) = 20.693, p < 0.001; F(1, 26) = 16.555). RSC showed deactivations 

in all conditions, possibly because of its location in the default mode 
network (DMN), which shows deactivations in attention-demanding 
tasks (Raichle et al., 2001; Singh and Fawcett, 2008). The mean percent 
signal change is showed in Figure  3. Two-way ANOVA showed 
significant main effect in SF in PPA and RSC (PPA: F(1, 26) = 16.571, 
p < 0.001; RSC: F(1, 24) = 4.851, p = 0.037), and significant 
interactions between SF and contrast in all 3 ROIs (PPA: F(1, 
26) = 29.397, p < 0.001; RSC: F(1, 24) = 20.693, p < 0.001; F(1, 
26) = 16.555).

Single-SF decoding results

One-tailed one-sample t-test showed that when the decoding was 
applied to all 4 categories, the scene categories could be significantly 
decoded in all SF in the LUM condition for all the 3 ROIs: PPA (NF: 
t(26) = 5.590, p < 0.001; LSF: t(26) = 5.735, p < 0.001; HSF: 
t(26) = 3.282, p = 0.015), RSC (NF: t(24) = 4.077, p < 0.001; LSF: 
t(24) = 4.518, p < 0.001; HSF: t(24) = 3.956, p < 0.001), and OPA (NF: 
t(26) = 4.526, p < 0.001; LSF: t(26) = 3.852, p = 0.001; HSF: 
t(26) = 3.658, p < 0.001). Two-tailed paired t-tests showed no 
significant difference in accuracies between different SF. In the RMS 
condition, the result was similar for all the 3 ROIs (PPA-NF: 
t(26) = 5.008, p < 0.001; PPA-LSF: t(26) = 8.374, p < 0.001; PPA-HSF: 
t(26) = 6.711, p < 0.001; RSC-LSF: t(24) = 6.444, p < 0.001; RSC-HSF: 
t(24) = 2.856, p = 0.009; OPA-NF: t(26) = 4.357, p < 0.001; OPA-LSF: 
t(26) = 4.357, p < 0.001; OPA-HSF: t(26) = 3.952, p < 0.001), except 
that the decoding was not significant in RSC in the NF condition. 
Paired t-tests showed significantly higher accuracies in LSF than NF 
(t(24) = 4.076, p < 0.001). No significant effect was revealed in the 2 
way repeated-measure ANOVA on the accuracies from the two 
contrast conditions.

When the decoding procedure was restricted to natural scenes, in 
LUM condition, one-tailed one-sample t-test showed that the 
categories could be decoded significantly above chance in NF and LSF 
conditions in all 3 ROIs (PPA-NF: t(26) = 2.369, p = 0.013; PPA-LSF: 

FIGURE 3

Univariate analysis results. For each condition of contrast (LUM or RMS), percent signal change was calculated in each scene-selective ROI in NF, LSF, 
and HSF conditions. Error bars indicate standard errors; *p < 0.05, **p < 0.01, ***p < 0.001.
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t(26) = 4.776, p < 0.001; RSC-NF: t(24) = 2.385, p = 0.013; RSC-LSF: 
t(24) = 3.647, p < 0.001; OPA-NF: t(26) = 2.114, p = 0.022; OPA-LSF: 
t(26) = 3.641, p < 0.001). The scenes could not be classified above 
chance in the HSF condition. Two-tailed paired t-test showed 
significant higher accuracies in NF and LSF conditions than in HSF 
(NF vs. HSF: t(26) = 2.326, p = 0.028; LSF vs. HSF: t(26) = 3.453, 
p = 0.002) in PPA, and higher accuracy in LSF than HSF in RSC 
(t(24) = 2.116, p = 0.045). In the RMS condition, one-tailed 
one-sample t-test showed that the categories could be significantly 
classified in all SF conditions in PPA (NF: t(26) = 2.163, p = 0.02; LSF: 
t(26) = 4.921, p < 0.001; HSF: t(26) = 3.661, p < 0.001) and OPA(NF: 
t(26) = 2.111, p = 0.023; LSF: t(26) = 3.951, p < 0.001; HSF: 
t(26) = 2.916, p = 0.004), and significantly classified in LSF and HSF 
conditions in RSC (LSF: t(24) = 3.857, p < 0.001; HSF: t(24) = 2.832, 
p = 0.005). Two-tailed paired t-tests revealed significantly higher 
decoding accuracies in LSF than HSF and NF in PPA (LSF vs. HSF: 
t(26) = 2.314, p = 0.029; LSF vs. NF: t(26) = 2.679, p = 0.013), and 
significantly higher decoding accuracy in LSF than NF in RSC 
(t(24) = 3.301, p = 0.003). Two-way ANOVA revealed significant main 
effect of SF in all 3 ROIs (PPA: F(1, 26) = 14.972, p = 0.001; RSC: F(1, 
24) = 5.564, p = 0.027; OPA: F(1, 26) = 6.476, p = 0.017). Two-tailed 
paired t-tests between LSF and HSF regardless of contrast condition 
showed significantly higher classification accuracies of LSF than HSF 
images in all ROIs (PPA: t(53) = 4.108, p < 0.001; RSC: t(49) = 2.378, 
p = 0.021; OPA: t(53) = 2.063, p = 0.044).

When the decoding was restricted to the indoor scenes, no ROI 
could significantly classify the indoor scene categories in any SF in 
LUM condition. However, in RMS condition, one-tailed one-sample 
t-test showed that the indoor scenes could be classified in HSF in PPA 
(t(26) = 1.910, p = 0.034) and OPA (t(26) = 1.968, p = 0.03) 
significantly above chance, and marginal significantly in RSC 
(t(24) = 1.481, p = 0.076). The scenes could also be  significantly 
classified in LSF in OPA (t(26) = 1.969, p = 0.03). Although the 
average decoding accuracy in HSF was higher than in LSF, no 
significant difference was revealed in the paired t-tests. No significant 
effect was revealed in the two-way repeated-measure ANOVA. The 
average classification accuracies in the Single-SF decoding analysis is 
showed in Figure 4.

Cross-SF decoding results

Cross decoding analysis was performed by training the classifier 
on either the neural responses to LSF and HSF scenes and testing on 
the responses to NF scenes. When decoding was applied to all 4 scene 
categories, significant difference was revealed in the classification 
accuracies between the 2 contrast conditions. In LUM condition, 
one-tailed one-sample t-test showed that the accuracies were 
significantly above chance (25%) when the classifiers were trained on 
the neural responses to LSF scenes in PPA and OPA (PPA: 
t(26) = 3.940, p < 0.001; OPA: t(26) = 1.981, p = 0.029), and marginally 
significant in RSC (t(24) = 1.584, p = 0.063). Classification accuracies 
were not significantly above chance in any of the ROIs when the 
classifiers were trained on the responses to HSF scenes. Two-tailed 
paired t-tests showed significant higher accuracies when the LSF 
scenes were used than HSF scenes in all 3 ROIs (PPA: t(26) = 6.119, 
p < 0.001; RSC: t(24) = 3.294, p = 0.003; OPA: t(26) = 4.880; 
p < 0.001). On the contrary, in the RMS condition, one-tailed 

one-sample t-test showed that the neural responses to NF scenes could 
all be significantly classified by the responses to HSF scenes (PPA: 
t(26) = 6.782, p < 0.001; RSC: t(24) = 3.519, p = 0.001; OPA: 
t(26) = 5.657, p < 0.001). Only PPA could significantly decode the NF 
scenes by training on the LSF scenes (t(26) = 2.429, p = 0.011). 
Two-tailed paired t-tests revealed significantly higher classification 
accuracies when the NF scenes were decoded by HSF scenes than LSF 
scenes in all 3 ROIs (PPA: t(26) = 2.157, p = 0.04; RSC: t(24) = 2.526, 
p = 0.019; OPA: t(26) = 4.537, p < 0.001). Significant interaction 
between SF and contrast was found in the two-way ANOVA on the 
accuracies from the two contrast conditions (PPA: F(1, 26) = 33.988, 
p < 0.001; RSC: F(1, 24) = 20.982, p < 0.001; OPA: F(1, 26) = 45.925, 
p < 0.001).

When the decoding was restricted to natural scene categories, 
one-tailed one-sample t-test showed that the neural responses to NF 
scenes could be decoded by the responses to LSF scenes in all 3 ROIs 
in the LUM condition (PPA: t(26) = 2.225, p = 0.018; RSC: 
t(24) = 2.086, p = 0.024; OPA: t(26) = 2.106, p = 0.023). Two-tailed 
paired t-tests showed that significant higher accuracies were observed 
compared to training on HSF scenes (PPA: t(26) = 6.585, p < 0.001; 
RSC: t(24) = 5.607, p < 0.001; OPA: t(26) = 6.974, p < 0.001). 
Moreover, the accuracy of training on HSF scenes is significantly 
lower than the chance level. However, the one-tailed one-sample t-test 
results turned to be different in the RMS condition, in which the 
accuracies were significantly above chance when the classifiers were 
trained on the responses to HSF scenes in PPA (t(26) = 4.471, 
p < 0.001) and OPA (t(26) = 2.148, p = 0.021). The NF scenes could 
also be  decoded by LSF scenes in PPA, but less significant 
(t(26) = 1.760, p = 0.045). No significant difference in accuracies was 
revealed in the two-tailed paired t-tests. All 3 ROIs showed significant 
main effect in SF (PPA: F(1, 26) = 11.141, p = 0.003; RSC: F(1, 
24) = 10.391, p = 0.004; OPA: F(1, 26) = 15.173, p = 0.001) and 
interaction (PPA: F(1, 26) = 32.976, p < 0.001; RSC: F(1, 24) = 13.661, 
p = 0.001; OPA: F(1, 26) = 28.882; p < 0.001) in the two-way 
ANOVA. Two-tailed paired t-tests regardless of the contrast 
manipulation showed significant higher accuracies when the classifiers 
were trained by LSF than HSF data (PPA: t(53) = 2.902, p = 0.005; 
RSC: t(49) = 3.056, p = 0.004; OPA: t(53) = 2.982, p = 0.004), but due 
to the respective results in each contrast condition and the interaction 
revealed, we think this may mainly be caused by the relative large 
differences in accuracies in the LUM condition.

When the decoding was performed on the indoor scene 
categories, one-tailed one-sample t-test showed that the decoding 
accuracies were significantly above chance in all 3 ROIs when the 
classifiers were trained by the responses to HSF scenes (PPA: 
t(26) = 3.166, p = 0.002; RSC: t(24) = 2.048, p = 0.026; OPA: 
t(26) = 3.850, p < 0.001). None of the accuracies was significantly 
above chance when the classifiers were trained by LSF scenes. 
Two-tailed paired t-tests showed significantly higher decoding 
accuracies when the NF scenes were decoded by the HSF than by LSF 
scenes in PPA (t(26) = 2.400, p = 0.024) and OPA (t(26) = 2.759, 
p = 0.010). In the RMS condition, one-tailed one-sample t-test 
showed that the NF scenes could be decoded only by HSF scenes in 
OPA (t(26) = 2.188, p = 0.019). Two-tailed paired t-tests showed the 
accuracies of NF scenes decoded by HSF scenes were also significantly 
higher than that of NF scenes decoded by LSF scenes in OPA 
(t(26) = 5.250, p < 0.001). Moreover, the accuracy of training on LSF 
scenes is significantly lower than the chance level. The decoding 
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accuracies in other conditions were not significant. Two-way ANOVA 
on the classification accuracies showed significant main effect in SF 
in all 3 ROIs (PPA: F(1, 26) = 10.092, p = 0.004; RSC: F(1, 24) = 6.384, 
p = 0.019; OPA: F(1, 26) = 25.074, p < 0.001). No significant 
interaction was revealed in any of the 3 ROIs. The average 
classification accuracies in the Cross-SF decoding analysis is showed 
in Figure 5.

Behavioral experiment results

In order to confirm that the filtering process did not disrupt the 
subjects’ abilities to categorize scenes, a separate behavioral 
experiment was conducted. The classification accuracies were high 
(above 90%) in all SF conditions in the 2 contrast conditions. In LUM 
condition, the accuracies were NF: 97.61 ± 3.23%, LSF: 96.48 ± 3.05%, 

FIGURE 4

Single-SF decoding results. Mean accuracies across all subjects in the 3 scene-selective ROIs in NF, LSF and HSF are calculated in LUM and RMS 
conditions when the decoding was performed in all 4 categories, only in natural scenes, and only in indoor scenes. The dashed lines indicate chance 
level. Error bars indicate standard errors; *p < 0.05, **p < 0.01, ***p < 0.001.
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HSF: 95.80 ± 3.05%, and the RT were NF: 580 ± 197 ms, LSF: 
591 ± 199 ms, HSF: 595 ± 209 ms. In RMS condition, the accuracies 
were NF: 95.11 ± 4.19%, LSF: 95 ± 4.15%, HSF: 92.50 ± 3.93%, and 
the RT were: NF: 613 ± 185 ms, LSF: 606 ± 204 ms, HSF: 
600 ± 184 ms. No significant difference in accuracies and RT was 
found except in RMS condition, the accuracies in NF and LSF were 
significantly higher than HSF (NF vs. HSF: t(21) = 3.279, p = 0.004, 
LSF vs. HSF: t(21) = 4.387, p < 0.001). The results showed no 

disruption of scene categorization abilities of subjects by spatial 
frequency filtering.

Discussion

In this study, we mainly focus on the representation of the high-
level category-specific information in the scene-selective regions 

FIGURE 5

Cross-SF decoding results. Mean accuracies across all subjects in the 3 scene-selective ROIs are calculated in LUM and RMS conditions when the 
neural patterns of responses to NF scenes were decoded by that of LSF or HSF scenes in all 4 categories, only in natural scenes, and only in indoor 
scenes. The dashed lines indicate chance level. Error bars indicate standard errors; *p < 0.05, **p < 0.01, ***p < 0.001.
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when the low-level scene properties was constrained to a certain SF 
band, as well as the SF preferences in scene perception by performing 
Cross-SF decoding experiment when the neural patterns of scenes in 
a specific SF was used to decode the patterns of response to the NF 
scenes. In addition, we also test the results of the above experimental 
procedure when the scope of decoding was constrained to indoor or 
natural scenes and when the luminance contrast of filtered scenes was 
either unmodified or equalized. Results have shown distinct patterns 
of SF preferences before and after the contrast equalization, as well as 
in the different scopes of scenes: the natural and indoor scene 
categories. The results cast doubts on simply using contrast 
equalization in spatial frequency analysis and propose that the spatial 
frequency preferences may differ in different ranges of scenes.

Distinct SF preferences in overall scene 
category representations in 2 contrast 
conditions

First, we performed univariate analysis to investigate the neural 
activations in different SF condition in LUM and RMS conditions. The 
results showed different outcomes in the two contrast conditions, 
indicating higher activations in HSF compared to LSF under RMS 
conditions. This discrepancy in results might be  caused by the 
differences in presentation time of stimuli and the tasks required for 
the participants. Then single-SF and cross-SF decoding analyses were 
performed on all 4 categories to coarsely investigate the SF preferences 
with and without manipulation of luminance contrast. When the 
decoding procedure was performed in a single SF, the classification 
accuracies were supposed to mainly reflect the abilities to distinguish 
scene categories in a single SF band, such as LSF or HSF. The scenes 
could be decoded in any SF band in the two contrast conditions. In the 
decoding on all scene categories, the accuracies did not show significant 
difference between the 2 SF band, in both contrast conditions. These 
results suggest that the category information could at least be preserved 
and processed by the scene-selective regions in a single SF band no 
matter the contrast is modified or not.

On the other hand, the Cross-SF decoding results mainly reflected 
the similarities between the patterns of response to LSF or HSF and NF 
scenes, which can be  regarded as the extent to which LSF or HSF 
information is used in scene understanding in scene-selective regions. In 
the LUM condition, the NF scenes could be decoded successfully using 
LSF scenes, whereas the HSF scenes failed to be decoded, particularly 
under natural scene conditions where the decoding accuracy of HSF 
scenes was significantly below chance level, despite the presence of 
single-SF decoding experiment showed that scenes could be successfully 
decoded in HSF. However, the opposite results were observed in the RMS 
condition, where the NF scenes could be decoded by the HSF scenes. The 
NF scenes could only be decoded by LSF scenes in PPA. Based on the 
findings from facial emotion recognition studies, it is evident that the 
differential processing of low spatial frequency (LSF) and high spatial 
frequency (HSF) plays a crucial role in scene category preference. 
Previous research has shown that luminance contrast alone also accounts 
for the coarse-to-fine processing of humans, but was weaker compared 
to the condition when the SF and contrast were both different 
(Kauffmann et al., 2015a,b). It is stated in a previous study that color 
contrast in coarse blobs (LSF information) can facilitate human scene 
segmentation (Oliva and Schyns, 2000). The color contrast may 
be predominantly revealed in the luminance contrast in our study when 

the images were conversed to grayscale. We infer that LSF illustrated in 
previous studies in the perception of coarse scene layout and scene gist 
(Oliva and Schyns, 2000; Oliva and Torralba, 2006; Schyns and Oliva, 
2010) may bind with the high contrast associated in serving these 
functions, causing the higher accuracies of decoding by LSF scenes in the 
LUM condition.

After the contrast was increased in the HSF condition, the edges in 
scenes become more salient, and subjects could more easily interpret the 
geometric structure of the scenes from the long contours(Walther et al., 
2011; Nasr et al., 2014). Therefore, similar to previous studies that used 
contrast equalization on spatial frequency processing (Peyrin et al., 2004; 
Berman et al., 2017), the HSF images in RMS condition in our study 
resemble more to the hand-writing scenes, which showed successful 
decoding in a previous study (Walther et al., 2011). In addition, the 
reduction of contrast in the LSF may have disrupted human abilities in 
perceiving scene spatial structures, causing lower similarity between the 
neural patterns between LSF and NF. Our results in the RMS condition 
seem to be consistent with recent single-SF decoding studies showing 
significant higher accuracies in HSF condition (Berman et al., 2017; 
Perfetto et al., 2020), because LSF naturally contain more contrast than 
HSF which leads to not normalizing contrast leaves HSF stimuli at a 
visible disadvantage. When decoding natural scenes, HSF information 
acts as a negative interference, and this interference is mitigated under 
RMS conditions. However, as previous studies have pointed out that 
contrast values across spatial frequencies follow statistical regularities 
(Torralba and Oliva, 2003; Guyader et  al., 2004), the result after 
equalizing the luminance contrast in the analysis might not reflect the 
real scene perception process in the human visual system. Two-way 
ANOVA on the accuracies in the Cross-SF decoding experiment in the 
two contrast conditions additionally confirmed the interaction between 
spatial frequency and contrast. As a result, the contrast might be an 
indispensable component in spatial frequency processing, and equalizing 
the luminance contrast should be used with caution in studying human 
spatial frequency processing.

SF preferences in decoding of indoor or 
natural scene categories

Another aspect revealed in the analysis was the different SF 
preferences in distinguishing indoor and natural scene categories. In 
the single-SF decoding performed on the natural scene categories, NF 
and LSF scenes could be successfully decoded, and the accuracies of 
decoding LSF scenes were significantly higher than decoding HSF 
scenes in both contrast conditions. Paired t-tests regardless of contrast 
condition also showed significant higher decoding accuracies in LSF 
compared to HSF. This result indicate that the scene-selective regions 
are more sensitive to natural scene categories in LSF than 
HSF. Cross-SF decoding in the condition also showed the successful 
decoding of NF scenes by LSF scenes in the LUM condition, which 
substantiated the LSF is mainly used in the representation of natural 
scene categories in the scene-selective regions. The LSF was suggested 
to activate peripheral activations in the brain regions (Sasaki et al., 
2001; Henriksson et al., 2007), and provide information of global 
structure and coarse spatial layout of scenes (Schyns and Oliva, 2010; 
Kauffmann et al., 2015a,b). Natural scene categories, such as beach, 
mountain and field, usually contain large patches of blobs in similar 
luminance level, so people tend to recognize their categories from the 
peripheral vision of global structure rather than foveal vision of 
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details. Consequently, people may preferentially use the LSF 
information in natural scene perception. As stated in the above 
section, the high contrast may collaborate with LSF in serving the 
above functions. However, in the Cross-SF decoding on natural scenes 
in the RMS condition, the NF scenes could be decoded by HSF scenes 
in PPA and OPA, and could only be  decoded by LSF scenes in 
PPA. This might because the long contours more saliently reflected the 
global scene structure after the contrast was increased (Walther et al., 
2011), making HSF dominate after the contrast was reduced in LSF 
which disrupted the global scene perception.

In contrast, when the decoding was constrained to the indoor 
scenes, the NF scenes could be  successfully decoded by the HSF 
scenes in all ROIs in the LUM condition, and showed significant 
higher accuracies than decoded by LSF scenes. However, in the RMS 
condition, the NF scenes could only be decoded by the HSF scenes 
in PPA, although the single-SF decoding were successful in all ROIs. 
The results show that when concerning indoor scenes, HSF served a 
more important role in scene categorization. Unlike the differences 
between natural scenes in global structure, the indoor scenes have 
less distinctions in global structure, but more differences in details 
such as the inner objects. They have been indicated to involve more 
processing of local 3D space than outdoor scenes (Epstein, 2005; 
Henderson et al., 2007). Although the long contours in HSF can also 
represent global structure, the majority of HSF information usually 
capture the detail information and local space, especially the object 
shape. Interestingly, the similarities between HSF and NF scenes 
decreased in the RMS condition. This might be due to the reason that 
manually adjusting the contrast disturb the SF processing, and cause 
irrelevant analysis of HSF information which might not be actually 
contained in the NF scenes.

Therefore, we infer that the differences in SF preferences in natural 
and indoor scenes may be caused by the different strategies of human 
beings in categorizing different kinds of scenes. Natural scenes may 
more be perceived based on the global spatial layouts, and the indoor 
scenes on the local space details and objects. A previous study has 
shown the preferences in SF may vary in different kinds of tasks which 
require local or global processing (Flevaris et al., 2010; Flevaris and 
Robertson, 2016; Lu et al., 2018). The primary information represented 
by a specific SF and recognition strategy for scene categories 
determines which SF is preferentially utilized in perceiving those 
scenes. The diverse results of neural activations in scene-selective 
regions revealed in previous univariate studies (Peyrin et al., 2004; 
Rajimehr et al., 2011; Kreiman and Serre, 2020) might be due to the 
strategies used in different task demands and presentation time. As a 
result, the SF processing in human scene perception might be studied 
in more detail because humans interact with scenes in different ways 
and perform different tasks in certain scenes.

However, our research still has some limitations. The limited scope 
of indoor and outdoor scene categories in this study restricts our ability 
to generalize inferred characteristics. Moreover, selecting a single cutoff 
frequency for both high and low frequencies limits the spatial frequency 
resolution, hindering precise evaluation of specific contributions. 
Behavioral experiments have already explored the SF sampling strategies 
of observers differ with varying stimuli and task characteristics at higher 
temporal and spatial frequency resolutions (Wiesmann et al., 2021). 
Therefore, in further research on the brain processing mechanisms of 
scene processing, experimental conditions such as increasing spatial 
frequency resolution, increasing the categories of scene images, and 
controlling the spatial layout of scene images can be used to further 

investigate which spatial frequency mainly affects the perception of 
spatial layout and the specific role of brightness contrast in it.

Conclusion

In this study, we researched on the SF preferences in human scene 
perception by investigating the patterns of response when subjects 
viewed scenes in different SF band. Specifically, we investigated the 
extent to which each SF information was used in perception of 
unfiltered scenes. We also examined the effect of contrast equalization 
on SF processing and the differences in SF preferences between natural 
and indoor scenes. It is observed that luminance contrast has a 
significant effect on SF processing of scenes and high luminance 
contrast may collaborate with LSF information in perceiving the 
global spatial layout. Furthermore, our observations indicate that 
natural scene perception primarily relies on LSF information, whereas 
indoor scenes predominantly rely on HSF information. The distinct 
SF preferences may be due to the different strategies of global and local 
perception in different scope of scenes. However, it should be noted 
that although the Cross-SF decoding was not successful for certain SF 
in certain conditions, it does not necessarily mean that the 
corresponding SF in not used in the scene-selective regions. It is 
possible that the SF that was not successful in Cross-SF decoding may 
still serve a supplementary role in scene representation, but not 
provide much high-level information. The results in our study casts 
doubts on the use of contrast equalization in research on SF processing 
and suggest the SF processing in visual scene perception should 
be investigated in a more detailed range.
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