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Objectives: Early diagnostic separation between glioblastoma (GBM) and solitary 
metastases (MET) is important for patient management but remains challenging 
when based on imaging only. The objective of this study was to assess whether 
amide proton transfer weighted (APTw) MRI alone or combined with dynamic 
susceptibility contrast (DSC) MRI parameters, including cerebral blood volume 
(CBV), cerebral blood flow (CBF), and leakage parameter (K2) measurements, 
can differentiate GBM from MET.

Methods: APTw MRI and DSC-MRI were performed on 18 patients diagnosed 
with GBM (N = 10) or MET (N = 8). Quantitative parameter maps were calculated, 
and regions-of-interest (ROIs) were placed in whole tumor, contrast-enhanced 
tumor (ET), edema, necrosis and normal-appearing white matter (NAWM). 
The mean and max of the APTw signal, CBF, leakage-corrected CBV and K2 
were obtained from each ROI. Except for K2, all were normalized to NAWM 
(nAPTwmean/max, nCBFmean/max, ncCBVmean/max,). Receiver Operating Characteristic 
(ROC) curves and area-under-the-curve (AUC) were assessed for different 
parameter combinations. Statistical analyses were performed using Mann–
Whitney U test.

Results: When comparing GBM to MET, nAPTmax, nCBFmax, ncCBVmax and 
ncCBVmean were significantly increased (p < 0.05) in ET with AUC being 0.81, 
0.83, 0.85, and 0.83, respectively. Combinations of nAPTwmax + ncCBVmax, 
nAPTwmean + ncCBVmean, nAPTwmax + nCBFmax, nAPTwmax + K2max and 
nAPTwmax + ncCBVmax + K2max in ET showed significant prediction in differentiating 
GBM and MET (AUC = 0.92, 0.82, 0.92, 0.85, and 0.92 respectively).
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Conclusion: When assessed in Gd-enhanced tumor areas, nAPTw MRI signal 
intensity alone or combined with DSC-MRI parameters, was an excellent 
predictor for differentiating GBM and MET. However, the small cohort warrants 
future studies.

KEYWORDS

glioma, metastases, CEST, amide proton transfer-weighted imaging, dynamic 
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1 Introduction

Being diagnosed with a brain tumor is often a life-threatening event, 
given that this disease is one of the most lethal forms of cancer, which 
poses a significant medical challenge (Siegel et al., 2023). The majority of 
brain tumors are metastases (American Association of Neurological 
Surgeons, 2023), while the most prevalent type of primary brain tumor 
is glioma with glioblastoma (GBM) being the most common and 
aggressive, classified grade 4 according to the World Health Organization 
(WHO) (Louis et al., 2021). Given their different management strategies, 
accurate differentiation between GBM and solitary metastases (MET) is 
crucial for the clinical outcome. Particularly, early diagnosis of suspected 
metastases without an established primary cancer site may significantly 
affect patient management, depending on whether the histopathological 
diagnosis turns out to be a primary brain tumor or metastases (Campos 
et al., 2009).

MRI is the standard modality for brain tumor diagnosis, 
treatment follow-up, stereotactic biopsies, surgical resection 
strategies, and differentiation between post-treatment effects and 
recurrent tumor growth. Although multiple MRI methods have been 
introduced over the years, diagnostic separation between GBM and 
solitary metastases has remained challenging. For instance, both 
GBM and MET may be hyperintense on gadolinium (Gd)-enhanced 
T1-weighted MRI, with hyperintense tumor and edema on 
T2-weighted MR images. Thus, exploration of more physiological or 
molecular oriented imaging approaches is essential. Since 
angiogenesis forms new tumor vessels, one such technique is 
perfusion weighted MRI for assessing malignancy and monitoring 
the effects of treatment (Law et al., 2004; Boxerman et al., 2006; Law 
et  al., 2006; Geer et  al., 2012). A common perfusion method is 
dynamic susceptibility contrast (DSC) MRI, where a rapid 
intravenous injection of a Gd contrast agent is performed during 
dynamic T2/T2*-weighted imaging (Rempp et al., 1994; Boxerman 
et al., 2006; Knutsson et al., 2010). It has been shown that DSC-MRI 
is a valuable tool for distinguishing GBM from MET, since GBM, as 
a result of an elevated cell proliferation, has an increased cerebral 
blood volume (CBV) in comparison to MET, especially in the 
peritumoral zone (Server et al., 2011; She et al., 2019). However, 
when the blood brain barrier (BBB) is disrupted, quantification of 
CBV will be erroneous due to Gd leakage into the tumor extravascular 
extracellular space (EES). Correcting for leakage (cCBV), which in 
the process also determines a leakage parameter K2, has shown to 
better asses the glioma grade (Boxerman et al., 2006). Compared to 
MET, GBM has a more infiltrative nature with a disrupted BBB, 
making the leakage parameter K2 a suitable additional measure in 
distinguishing these tumor types (Server et al., 2011).

Another promising method for brain tumor imaging is amide 
proton transfer weighted (APTw) MRI. This chemical exchange 

saturation transfer (CEST) MRI technique has a contrast that in 
large part originates from the amide protons in mobile cellular 
proteins and peptides and can be measured indirectly through the 
water signal (Zhou et al., 2003a; Zhou et al., 2003b; Zhou et al., 
2019). APTw MRI of brain tumors has allowed the differentiation 
between high and low-grade gliomas (Bai et al., 2017; Jiang et al., 
2017a; Zou et  al., 2018; Su et  al., 2021; Zhang et  al., 2021) and 
separating recurrent tumor from treatment necrosis (Ma et al., 2016; 
Jiang et al., 2019). A few studies have investigated if APTw MRI also 
has the capability to separate GBM from MET. Yu et  al. (2017) 
showed a high accuracy when measuring the mean APTw 
(APTwmean) signal in the peritumoral region, but no significant 
difference was found within the tumor region itself. Another APTw 
MRI study, however, showed no significance in distinguishing these 
tumor types for peritumoral regions (Kamimura et al., 2019). To 
improve diagnostic performance for distinguishing GBM from MET, 
other MRI modalities have been combined with APTw MRI. For 
example, a study by Chen et al. (2023) combining cerebral blood 
flow (CBF), obtained from arterial spin labeling (ASL), and APTw 
increased accuracy when assessing the peritumoral region. To our 
knowledge, no prior study has assessed whether APTw MRI, in 
combination with CBV, CBF, and K2 obtained from DSC-MRI, can 
improve differentiation between GBM and MET. As such, the 
objective of this study was to investigate the diagnostic performance 
of APTw MRI and DSC-MRI, individually and in combination, in 
distinguishing GBM from MET.

2 Materials and methods

2.1 Patients

Eighteen patients (average age 59 years, 8 females) diagnosed with 
GBM (N = 10) or MET (N = 8) who met the inclusion criteria between 
July 2017 and May 2021 were included in this retrospective study. The 
inclusion criteria were age ≥ 18 and previous routine computed 
tomography (CT) or MRI revealing a suspected brain neoplasm. 
Additional inclusion criteria in the present study were surgery or 
biopsy, with retrospective histopathological diagnosis as GBM or 
MET according to WHO 2021 classification. Seven of the patients had 
previously been included in a separate study investigating the 
radiological value of APTw MRI in differentiating low-grade glioma 
from high-grade glioma (Durmo et  al., 2020). The current study, 
however, is based on a very different scientific hypothesis. 
Furthermore, APTw data were post-processed using different software 
tools. The project was approved by the Swedish Ethical Review 
Authority, and written informed consent was obtained from 
each participant.
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2.2 MRI acquisition protocol

Patients were examined on a 3 T MAGNETOM Prisma scanner 
with a 20-channel head coil (Siemens Healthcare, Erlangen, Germany) 
with a total scan time for the protocol being approximately 45 min. 
Pre-and post-contrast-enhanced T1 magnetization prepared rapid 
gradient echo (MPRAGE), fluid attenuated inversion recovery (FLAIR), 
T2 Turbo spin-echo (TSE), APTw and DSC images were acquired 
during the same session. Sequence parameters can be found in Table 1.

A prototype CEST 3D GRE MRI sequence from the vendor was 
used to acquire 22 slices of APTw images. The saturation module 
consisted of 5 hyperbolic secant pulses of 100 ms with 4 interpulse 
delays (61 ms) using a B1 of 2 μT. Water saturation spectral (Z-spectral) 
acquisition was obtained by applying the saturation module at 21 
frequency offsets over a range of ±5 ppm relative to the whole-brain 
water resonance frequency in 0.5 ppm steps. An unsaturated reference 
image (S0) was acquired at -150 ppm to minimize magnetization 
transfer effects from semisolid macromolecules. To avoid 
T1-relaxation effects from Gd on the saturation, APTw imaging was 
performed before injection of the agent.

DSC-MRI was performed using a single-shot gradient echo-echo 
planar imaging (GRE-EPI) sequence, acquiring 20 slices. The 
Gd-based contrast agents Clariscan® (Marlborough, MA, GE 
HealthCare) and Dotarem® (Billdal, Sweden, Gothia Medical) were 
administered to 12 and 6 patients, respectively, with a target dose of 
0.1 mmol/kg and injection rate of 5 mL/s, approximately 15 s after the 
start of the dynamic series. The contrast agent bolus was followed by 
a 20-mL saline flush, injected at a rate of 5 mL/s.

2.3 Postprocessing

2.3.1 Amide proton transfer weighted imaging
A prototype software developed by Olea Medical® (Olea Medical 

Solutions, La Ciotat, France) was used to process the data and retrieve 
APTw maps. Z-spectral intensities were calculated by normalizing the 
water signal intensities (Ssat) at each saturation frequency offset ( ω∆ ) 
to the intensity without saturation (S0). Voxel-based B0 correction was 
performed by shifting the minimum of the Z-spectrum to 0 ppm. 
APTw (%) was calculated using:
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where Z  is the linear-interpolated Z-spectrum. 1ω∆  and 2ω∆
are the offset boundaries (3.1 ppm and 3.9 ppm, respectively). 

Reduction of fluid artifacts was also performed by applying fluid 
suppression (FS), creating an additional parameter, APTwFS given by 
Schure et al. (2024):
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where Zref is the signal intensity at offset frequency -3.5 ppm and 
the σ’WM correction factor is set to the Z-spectrum intensity at 
-3.5 ppm in white matter (WM). To obtain σ’WM, we  performed 
Bloch-McConnell simulations using the sequence parameters from 
the APTw protocol and WM_3T_001_bmsim.yaml from the 
pulseq-sim library, https://github.com/pulseq-cest/pulseq-cest-
library/. From this, we derived σ’WM to be 0.4, a value similar to 0.35 
used in Schure et  al. (2024), which used different APT 
acquisition parameters.

2.3.2 Dynamic susceptibility contrast MRI
The DSC-MRI images were processed using OLEA Sphere (Olea 

Medical Solutions, La Ciotat, France) using standard tracer kinetic 
theory and a linear fitting algorithm to obtain K2 and leakage-
corrected CBV (cCBV) (Boxerman et al., 2006). The arterial input 
function (AIF) was defined by taking the average of semi-
automatically selected concentration-time curves from voxels within 
the middle cerebral artery (MCA) around the Sylvian fissure 
(Knutsson et  al., 2014). To obtain CBF, deconvolution of the 
concentration-time curve in each voxel with the AIF was performed 
using delay-insensitive singular value decomposition.

2.3.3 Segmentation and regions of interest (ROI)
The images were analyzed using 3D Slicer Segmentation Tool 

(Version 5.6.21) (Fedorov et al., 2012). Regions of interests (ROIs) 
were drawn manually on the morphological T1-MPRAGE post 
Gd-contrast images (T1-Gd), with assistance from FLAIR and 
T1-MPRAGE images (T1). The ROIs were placed in: 1. The 
contrast-enhanced (ET) part of the lesion, described as hyperintense 
in the T1-Gd compared to T1, 2. The lesion’s necrotic area, 
described as the hypointense area within the ET, and 3. the edema, 
described as the hyperintense area on FLAIR excluding the ET and 
necrosis (Figure 1). WT was defined as the full extent of the tumor, 
including the ET, necrosis and edema. ROI was also placed in 
normal appearing white matter (NAWM) in the centrum semiovale 
region. Mean and max values for all parameters were obtained from 

1 Slicer.org

TABLE 1 Parameters of the MRI sequences.

TR (ms) TE (ms) FA (°) FOV (mm2) Acq. matrix Slice thickness (mm) TA (min)

T1-MPRAGE* 1,900 2.54 9 256×256 256×256 1 5:13

FLAIR** 5,000 393 90 256×256 256×256 1 4:25

T2 TSE 6,000 100 90 256×256 256×256 5 2:02

APTw-MRI 10 2.71 12 208×256 104×128 4 6:50

DSC-MRI 1,243 29 60 220×220 128×128 5 1:30

TR, repetition time; TE, echo time; FOV, field of view; Acq. Acquisition; TA, acquisition time. *Inversion time of 900 ms. **Inversion time of 1,800 ms.
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the ROIs. All values, except K2, were normalized to NAWM, 
resulting in nAPTwmean, nAPTwFS,mean, nCBFmean, ncCBVmean and 
nAPTwmax, nAPTwFS,max, nCBFmax, ncCBVmax, respectively. Since 
leakage should be  non-existent in healthy white matter, 
normalization with NAWM would result in large erroneous 
values in K2.

2.4 Statistics

Statistical analyses were performed using IBM SPSS Statistics® 
(IBM Corp, Armonk, NY, USA). A Mann–Whitney U test was 
applied when comparing the different parameters from the GBM 
and MET cohorts, with a p-value of <0.05 considered significant. 
The diagnostic efficacy of the parameters for distinguishing GBM 
from MET was evaluated by assessing Receiver Operating 
Characteristic (ROC) curves and area-under-the-curve (AUC). 
Binary logistic regression was used to evaluate the ability of 
different parameter combinations to distinguish GBM from 
MET. Since the aim was to investigate each parameter/combination 
independently and not risk that truly important differences may 
be  deemed non-significant, we  did not apply any multiple 
comparison correction (Perneger, 1998).

3 Results

Table 2 summarizes clinical patient characteristics. There was no 
statistical significance between the groups with respect to age 
and gender.

Figure 1 shows parametric maps from two patients, one GBM and 
one MET, with the corresponding ROIs overlayed on the T1-Gd. 
Notice that all parametric maps reveal hyperintensity in the lesion 
areas in conventional imaging.

Parameter values, as well as a summary of the Mann–Whitney U 
statistical analysis between GBM and MET for the different parameters, 
are shown in Table 3. For the ET region, nAPTwmax, nCBFmax, ncCBVmax 
and ncCBVmean were significantly higher (p < 0.05) in GBM compared to 
MET. In addition, ET based nAPTwFS,max and WT based ncCBVmean 
showed a trend toward differentiating between GBM and MET (p = 0.06).

The results from the ROC analysis of individual parameters are 
summarized in Table 4, showing that nAPTwmax, nCBFmax, ncCBVmax, 
and ncCBVmean obtained from ET are the most accurate in 
distinguishing GBM from MET (AUC = 0.81, 0.83, 0.85, and 0.83, 
respectively). A combination of the parameters measured in ET, 
resulted in an increase in AUC for nAPTwmax with ncCBVmax, 
nAPTwmax with nCBFmax, and nAPTwmax with K2max (AUC = 0.92, 0.92, 
and 0.85, respectively) (Table  5; Figure  2). Adding K2max to 
nAPTwmax + ncCBVmax did not increase the AUC.

4 Discussion

In this study we investigated if APTw MRI alone or combined 
with DSC-MRI can differentiate glioblastomas from solitary brain 

FIGURE 1

Parametric maps from one GBM patient (first row) and one MET patient (second row). ROIs are overlayed on T1-Gd, showing ET in red, necrosis in 
orange, and edema in blue.

TABLE 2 Patient demographics.

GBM 
(n = 10)

MET 
(n = 8)

p-value

Age (years) 54 ± 18 63 ± 6 0.18

Gender (male:female) 7:3 3:5 0.17

Edema 10 6 0.93

Necrosis 5 2 0.55

MGMT-unmethylated 4

IDH-wildtype 10

IDH, Isocitrate dehydrogenase; MGMT, O6-methylguanine-DNA methyl-transferase.
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TABLE 3 Comparison between GBM and MET for nAPTw, nAPTwFS, nCBF, ncCBV, and K2 for WT, ET, Edema and Necrosis.

GBM (n = 10) MET (n = 8) Mann U

Mean Max SD Mean Max SD Factor U p-value*
nAPTw WT 1.9 12 0.67 1.4 12 0.75 Max 33 0.57

Mean 23 0.15

ET 2.0 4.9 0.60 1.7 4.4 0.74 Max 15 0.03

Mean 24 0.17

Edema 0.89 2.7 0.71 0.87 3.2 0.76 Max 41 1.0

Mean 40 1.0

Necrosis 0.76 4.4 0.86 0.24 3.2 0.45 Max 28 0.32

Mean 27 0.27

nAPTwFS WT 0.92 14 0.42 0.81 6.0 0.30 Max 40 1.0

Mean 42 0.90

ET 1.0 3.2 0.42 0.91 2.3 0.38 Max 18 0.06

Mean 36 0.76

Edema 0.44 1.6 0.38 0.43 1.7 0.36 Max 39 0.97

Mean 38 0.90

Necrosis 0.25 2.1 0.27 0.15 2.1 0.29 Max 29 0.36

Mean 31 0.46

nCBF WT 2.7 178 1.7 1.7 13 1.3 Max 21 0.17

Mean 20 0.14

ET 3.7 18 1.7 2.3 13 1.0 Max 12 0.02

Mean 20 0.14

Edema 1.2 7.1 0.98 0.69 8.5 0.77 Max 24 0.28

Mean 21 0.17

Necrosis 0.25 4.2 0.28 0.25 5.8 0.55 Max 26 0.37

Mean 28 0.48

ncCBV WT 3.0 23 1.7 1.6 12 1.2 Max 19 0.11

Mean 16 0.06

ET 4.3 23 1.8 2.4 12 0.86 Max 11 0.02

Mean 12 0.02

Edema 1.3 8.5 1.1 0.67 8.5 0.75 Max 23 0.24

Mean 19 0.11

Necrosis 0.21 2.4 0.25 0.25 5,5 0.54 Max 26 0.37

Mean 29 0.54

K2 WT −98 4,191 169 −243 1909 346 Max 27 0.42

Mean 32 0.74

ET 77 3,005 335 103 1,420 231 Max 27 0.42

Mean 37 1.0

Edema 5.8 1,021 238 −23 678 28 Max 23 0.84

Mean 20 0.95

Necrosis 24 789 140 −115 368 178 Max 1 0.19

Mean 4 0.86

Significant differences are marked in bold. For the perfusion parameters, n = 9 since one patient did not undergo perfusion weighted MRI. *The statistical significance, p, was set to less or 
equal than 0.05.
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metastases. We showed that the nAPTwmax, nCBFmax, ncCBVmax and 
ncCBVmean in enhancing tumor regions were significantly different in 
GBM compared to MET.

Similar to our study, the parameter APTwmax has previously been 
shown to be more accurate than APTwmean in distinguishing IDH 
mutational status and low-grade from high-grade glioma and 
predicting IDH mutation status (Jiang et al., 2017b; Durmo et al., 

2020). When comparing APTw measures in different regions, 
we found that nAPTwmax in the ET region was the most valuable in 
distinguishing the two tumor types, while the peritumoral region 
showed no significant difference. This is in accordance with a previous 
study by Kamimura et al. (2019). However, these findings contradict 
Yu et al. (2017) where a significant difference in the APTw signal 
intensity in the peritumoral edema between GBM and MET was 

TABLE 4 ROC analysis of individual parameters.

Value Segment Parameter AUC Std. Error p-value* 95% Confidence interval (Lower 
bound – Higher bound)

MAX WT nAPTw 0.59 0.15 0.55 0.30–0.88

nCBF 0.71 0.13 0.12 0.45–0.97

ncCBV 0.74 0.13 0.060 0.49–0.98

K2 0.52 0.18 0.90 0.17–0.88

ET nAPTw 0.81 0.11 0.004 0.60–1.0

nCBF 0.83 0.11 0.003 0.61–1.0

ncCBV 0.85 0.10 0.001 0.65–1.0

K2 0.60 0.17 0.58 0.26–0.93

Edema nAPTw 0.49 0.15 0.93 0.20–0.78

nCBF 0.67 0.14 0.25 0.39–0.95

ncCBV 0.68 0.14 0.20 0.41–0.95

K2 0.45 0.17 0.78 0.13–0.78

MEAN WT nAPTw 0.71 0.13 0.11 0.45–0.97

nCBF 0.72 0.13 0.09 0.46–0.98

ncCBV 0.78 0.12 0.02 0.54–1.0

K2 0.33 0.17 0.31 0.01–0.66

ET nAPTw 0.70 0.13 0.13 0.44–0.96

nCBF 0.72 0.13 0.08 0.47–0.97

ncCBV 0.83 0.10 0.001 0.63–1.0

K2 0.33 0.17 0.33 0.00–0.67

Edema nAPTw 0.50 0.14 1.0 0.22–0.78

nCBF 0.71 0.13 0.12 0.45–0.97

ncCBV 0.74 0.13 0.07 0.48–0.99

K2 0.52 0.18 0.90 0.17–0.88

*Null hypothesis true area equals 0.5. One patient from the GBM group is excluded in this analysis due to missing perfusion data.

TABLE 5 ROC analysis of combined parameters from the ET segment.

Value Parameters AUC Std. Error p-value* 95% Confidence interval (Lower bound – 
Higher bound)

MAX nAPTw + ncCBV 0.92 0.08 0.000 0.76–1.1

nAPTw + nCBF 0.92 0.08 0.000 0.76–1.1

nAPTw + K2 0.85 0.10 0.001 0.65–1.0

nAPTw + ncCBV + K2 0.92 0.08 0.000 0.76–1.1

MEAN nAPTw + ncCBV 0.82 0.10 0.002 0.62–1.0

nAPTw + nCBF 0.75 0.12 0.040 0.51–0.99

nAPTw + K2 0.74 0.13 0.069 0.48–0.99

nAPTw + ncCBV + K2 0.78 0.13 0.035 0.52–1.0

*Null hypothesis true area equals 0.5. One patient from the GBM group is excluded in this analysis due to missing perfusion data.
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demonstrated. Since GBM is by nature invasive, infiltrating GBM 
tumor cells are expected to be present in the peritumoral edema (Patel 
et al., 2024), which in theory should result in a higher APTw signal 
compared to MET (Yu et al., 2017; Patel et al., 2024). Notably, Yu et al. 
used a voxel size of 1.65 × 3.15 × 6.00 mm3, while the voxel size in our 
study was 2 × 2 × 4 mm3 close to a 50% reduction of the volume. A 
larger amount of partial volume effects may lead to tissue mixing with 
the enhanced tumor region and thus an increase of the APTw signal 
in the peritumoral edema. In addition, our sequence has a short 
saturation time, which has previously been shown to enhance 
contributions from proteins in the blood vessels (Durmo et al., 2020), 
which may explain the significance only in Gd-enhanced areas. Other 
differences between these studies were that the whole lesion area was 
segmented in our study while the five smaller ROIs in Yu et al. did not 
cover the full image abnormality. We also calculated the APTw value 
using the integral over multiple frequency points instead of a single 
Z-spectral value at 3.5 ppm (Equation 1).

APTw using fluid suppression reduces contributions from 
protein-containing fluidic compartments in tumors (e.g., liquefactive 
necrosis) by utilizing a correction factor. As can be  seen from 
Equation 2, any region with a Zref value higher than the correction 
factor will lead to APTwFS being lower than APTw. Tissues with long 
T2, such as CSF, and liquefactive necrosis, will have a narrow spectral 
linewidth and thus a decreased APTwFS. In our study, nAPTwFS was 
clearly reduced compared to nAPTw in all lesion regions. However, 
contrary to nAPTw, nAPTwFS did not show any statistical significance 
in distinguishing MET and GBM in ET. One reason for this can 
be  that our APTw maps are more weighted for blood vessels as 
explained above and supported by the measured large decrease in 
nAPTw values when applying the fluid-suppression, while the APTw 
signal at higher saturation strength has a large semisolid component 
that is not removed by fluid correction. Another reason can be that 
the correction factor was set to be the same in all patients. Ideally, this 

factor should be the Zref value in WM at -3.5 ppm in each individual 
patient. This can be achieved by measuring the Z-spectra value in 
WM for each patient since the use of fluid suppression should not 
alter the WM APTw intensity. However, we observed a difference 
between APTwFS and APTw values in NAWM, and this may explain 
the lower statistical significance in nAPTwFS in ET. Therefore, 
individual correction factors may be of value (Schure et al., 2024), and 
in future studies, we aim to incorporate this in the APTwFS processing.

From DSC-MRI we found that nCBFmax, ncCBVmax and ncCBVmean 
measured in ET were significantly higher in GBM than MET for the 
Gd-enhanced tumor region. However, we  found no statistical 
significance for peritumoral edema, while other studies have shown this 
for both nCBV and ncCBV (Server et al., 2011; She et al., 2019; Li et al., 
2020). It is worth noting that in accordance with these studies, our mean/
max values were higher in the peritumoral edema in GBM compared to 
MET (4.3, 24 vs. 2.4, 12). K2 (both mean and max) did not show any 
significant differences between GBM and MET and did not improve the 
diagnostic accuracy. There have been conflicting results between studies 
as K2mean/max showed promise to distinguish GBM from MET in one 
study (Server et al., 2011), but with less accuracy than nCBF and ncCBV, 
while another study showed no statistical difference between the tumor 
types using K2mean (Toh et al., 2014). One issue with K2 is that the leakage 
can produce both an increase in signal due to increased T1 relaxation or 
a decrease due to increased T2* relaxation during and after Gd bolus 
passage. Thus, depending on the imaging parameters used, these effects 
can in principle cancel each other out making K2 quantification difficult 
(Elschot et al., 2023).

Previously, it was shown that combining APTw signal intensity 
and CBF (obtained from ASL MRI), increased the diagnostic 
efficiency for separating GBM and MET (Chen et al., 2023). In this 
study we used DSC-MRI, which has the advantage over ASL of larger 
contrast-to-noise and providing additional parameters (cCBV and 
K2). The goal was to find if any parameter combination could improve 

FIGURE 2

ROC analysis using combined parameters measured in the ET region. The blue lines represent combined parameters: (A) nAPTwmax + ncCBVmax, 
(B) nAPTwmax + K2max, (C) nAPTwmax + ncCBVmax + K2max, (D) nAPTwmean + ncCBVmean, (E) nAPTwmean + K2mean, and (F) nAPTwmean + ncCBVmean + K2mean.
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the diagnostic performance, thus warranting an additional method in 
the MRI examination. In ET, APTwmax alone had an AUC = 0.81 
comparable to ncCBVmax with AUC = 0.85. Combining these, AUC 
increased to 0.92. Thus, the diagnostic accuracy increases substantially 
by combining APTw and DSC-MRI but with the additional drawback 
of having to do a Gd injection.

There are some limitations to this study. First, the small cohort 
size limits the ability to generalize the findings. Therefore, future 
studies with larger sample sizes are warranted. Second, the MET group 
was heterogeneous, with lesions arising from lung adenocarcinoma 
and malignant melanoma. It has been shown that different histological 
types of metastases from the same primary site of origin may show 
different levels of APTw signal, for example squamous cell carcinoma 
and adenocarcinoma of the lung (Xiang et al., 2024). Therefore, a 
homogeneous cohort, including solitary brain metastases from the 
same primary site of origin and histology, may present more similar 
APTw values and thus enable improved separation from gliomas. 
Third, due to hardware limitations, the APTw sequence had a shorter 
total saturation time than recommended in a recent consensus paper 
(Zhou et  al., 2022). This resulted in a lower contrast-to-noise, 
increased contribution from blood vessels (high in protein), and 
reduced contribution from asymmetry in the semisolid tissue 
contribution. Although careful review of the placement of the ROI was 
performed to reduce the risk of including obvious blood vessels in the 
ROI, partial volume effects might still be present.

In conclusion, differentiating GBM from MET is of significant 
clinical value in decision-making and patient management. This study 
shows that APTw MRI and DSC-MRI are valuable tools in 
differentiating between GBM and MET. In addition, the combination 
of APTw MRI and DSC-MRI further increases the ability to 
distinguish the two tumor types using the Gd-enhanced tumor region.
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