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Background: Patients undergoing brain tumor resection experience neurological 
and cognitive (i.e., neurocognitive) changes reflected in altered performance on 
neuropsychological tests. These changes can be difficult to explain or predict. 
Brain connectivity, measured with neuroimaging, offers one potential model 
for examining these changes. In this study, we evaluated whether longitudinal 
changes in brain connectivity correlated with changes in neurocognitive abilities 
in patients before and after brain tumor resection.

Methods: Patients underwent functional and diffusion MR scanning and 
neuropsychological evaluation before tumor resection followed by repeat 
scanning and evaluation 2 weeks post-resection. Using this functional and 
diffusion imaging data, we measured changes in the topology of the functional 
and structural networks. From the neuropsychological testing scores, we derived 
a composite score that described a patient’s overall level of neurocognitive 
functioning. We then used a multiple linear regression model to test whether 
structural and functional connectivity measures were correlated with changes 
in composite scores.

Results: Multiple linear regression on 21 subjects showed that functional 
connectivity changes were highly correlated with changes in neuropsychological 
evaluation scores (R2 adjusted = 0.79, p < 0.001). Changes in functional local 
efficiency (p < 0.001) and global efficiency (p < 0.05) were inversely correlated 
with changes in composite score, while changes in modularity (p < 0.01) as 
well as the patient’s age (p < 0.05) were directly correlated with changes in 
composite score.

Conclusion: Short interval changes in brain functional connectivity markers 
were strongly correlated with changes in the composite neuropsychological 
test scores in brain tumor resection patients. Our findings support the need for 
further exploration of brain connectivity as a biomarker relevant to brain tumor 
patients.
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Introduction

For brain tumor patients, surgical resection can increase longevity 
and enhance quality of life. These benefits are maximized when 
neurosurgeons exercise skill to avoid highly disruptive, surgically-
induced deficits by using tools such as preoperative functional 
imaging and intraoperative stimulation (Luna et al., 2021; Hamer 
et al., 2012; Ellis et al., 2020). However, even when neurosurgeons 
appropriately utilize tools and expertise, many brain tumor patients 
still experience unexpected changes in their neurological and 
cognitive functioning (i.e., neurocognition) following surgery (Lacroix 
et al., 2001; Gulati et al., 2011; Jakola et al., 2011).

One potential means for exploring the relationship between 
changes in neurocognitive function related to observable changes in 
the brain could be to use brain connectivity markers derived from 
neuroimaging. Previous research has indicated the utility of using 
brain connectivity to better understand the effects of brain tumors and 
their treatment. For instance, functional and structural connectivity 
have been shown to have a significant impact on brain tumor patient 
outcomes (Salvalaggio et  al., 2024). Interestingly, structural 
connectivity helps explain glioma infiltration patterns, and the 
disruption of the structural connectome beyond the focal lesion has 
been shown to impact survival (Wei et  al., 2023). Meanwhile, 
functional connectivity has been shown to be altered in regions both 
proximal and distal to gliomas, and the quantity of these abnormal 
connections relates to tumor aggressiveness and cognitive function 
(Stoecklein et  al., 2020). Furthermore, pre-surgical functional 
connectivity has been shown to have utility for predicting patient 
survival and functional status (Luckett et al., 2024; Luckett et al., 2023).

While brain connectivity has proven useful in understanding the 
effects of tumors on brain function, it has not yet been shown whether 
longitudinal changes in connectivity correlate to changes in 
neurocognition. Understanding the relationship between connectivity 
and neurocognition could inform the discovery of biomarkers that are 
relevant for non-invasive patient monitoring and surgical planning. 
To this end, we examined the relationship between graph network 
connectivity and neuropsychological measures in patients before and 
after tumor resection surgery and identified key connectivity markers 
predictive of cognitive and neurological changes.

Methods

Subject enrollment and clinical care

For this pilot study, adult patients (≥19 years old in Nebraska) 
were considered for enrollment if they had a supratentorial primary 
or metastatic tumor or cavernoma for which resective surgery was 
recommended. Subjects could not have had any prior brain treatments 
(surgery, radiation) or a history of a neurodegenerative disorder. After 
consent and enrollment, patients had preoperative clinical, 
neuropsychological, quality of life, and imaging (MRI) evaluations 
within 1 week prior to surgery. Tumor resection was performed via 
craniotomy for resection of their lesion, and the patients received 
standard perioperative clinical care. Two weeks postoperatively, 
clinical, neuropsychological, quality of life, and imaging studies were 
repeated. Healthy control subjects were also enrolled to evaluate the 
effect of repeat testing. For control subjects, no surgery was performed, 

but the same neuropsychological, quality of life, and imaging 
assessments were performed 2 weeks apart.

Neuropsychological testing

Subjects and controls were administered neuropsychological 
evaluations and quality of life (QOL) inventories 
(Supplementary Table S1). This test battery was designed to assess 
cognitive and neurological functions commonly noted in the literature 
to be compromised in patients with gliomas (Johnson et al., 2012; Noll 
et al., 2015; Wefel et al., 2016). Testing domains consisted of basic 
attention, dexterity, executive, language, memory, and speeded 
processing. See Supplementary material for more details.

The total correct or raw scores for each test were converted to 
percentiles based on normative distributions provided by the test 
publisher. To assess the patient’s abilities within a given domain (listed 
in Supplementary Table S1), the reported percentile scores of the tests 
within each domain were averaged, similar to previous studies 
(Johnson et  al., 2012; Armstrong et  al., 2011; Wefel et  al., 2011). 
We computed a single clinical trial battery composite (CTB Comp) 
score per subject from the averaged domain scores. We used this score 
to assess the overall combined changes in neurocognitive functioning 
and impairment per subject.

Image acquisition

In addition to our standard clinical brain tumor MRI protocol at 
the scanning session visits mentioned above, we acquired research 
sequences consisting of high angular resolution diffusion MRI (dMRI) 
and 26 min of high-resolution resting-state functional MRI (rs-fMRI) 
according to the protocol from the Human Connectome Project on 
Development and Aging (HCP D/A; Harms et al., 2018). We used the 
Siemens Prisma 3 T MR scanner at the University of Nebraska 
Medical Center Core for Advanced Magnetic Resonance Imaging 
Facility (RRID:SCR_022468) for all scanning sessions. The HCP D/A 
designed the protocol for the Siemens Prisma scanner to optimize data 
quality and efficiency for developing and aging cohorts (Harms et al., 
2018). This protocol allows for high resolution, 1.5 mm and 2 mm 
isotropic for dMRI and rs-fMRI, respectively. We acquired the dMRI 
data (TR = 3.23 s) with two shells, 1,500 and 3,000 s/mm2, with 92–93 
directions per shell, each acquired twice in opposite phase encoding 
directions and 28 b0 volumes interspersed equally. In addition, 
we acquired a total of 1952 rs-fMRI volumes over four runs for a total 
of about 26 min of rs-fMRI data (TR = 0.8 s). Acquiring a large 
number of volumes over multiple runs has been shown to provide 
enhanced results for mapping functional connectivity in individual 
subjects (Finn et al., 2015; Pannunzi et al., 2017).

Image processing

We performed image processing using an in-house processing 
pipeline written utilizing NiPype (Esteban et  al., 2020) and 
incorporating processing workflows from fMRIPrep (Esteban et al., 
2019a) and related projects (Esteban et al., 2019b). We designed the 
in-house pipeline to allow for enhanced customizability of the image 
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registrations and transformations not offered in fMRIPrep. The node 
definitions were defined by the Schaefer et al. 300 parcellation seven-
network atlas (Schaefer et al., 2018) in FSL’s asymmetric MNI space 
(Evans et al., 2012) as acquired from TemplateFlow (Ciric et al., 2010). 
To account for any distortions caused by surgery or tumor growth, the 
registrations between the preoperative and postoperative T1w scans 
for an individual patient were computed using non-linear registrations. 
All non-linear registrations were performed using the Advanced 
Normalization Tools (ANTs) SyN registration algorithm (Avants 
et al., 2009).

Functional image processing

Head motion correction (Jenkinson et al., 2002) and susceptibility 
distortion correction (Andersson et al., 2003) were performed on the 
rs-fMRI using FSL (Woolrich et al., 2009) and fMRIPrep (Esteban 
et al., 2019a). The alignment between each rs-fMRI scan and the T1w 
image for that scanning visit was computed using a boundary-based 
rigid registration in FreeSurfer (Greve and Fischl, 2009). 
Transformation into MNI space through preoperative T1w space was 
performed in a single step that included head motion and susceptibility 
distortion correction transforms. Due to the TR being much shorter 
than standard fMRI sequences (TR = 770 ms for the rs-fMRI scans 
compared to a TR of about 2.5 s for a standard fMRI scan), we did not 
perform slice timing correction, which is the same approach used by 
the HCP for their processing pipelines (Glasser et al., 2013). To correct 
for artifacts in the BOLD acquisition, we adopted the Power et al. 
approach to denoising by simultaneously applying high-pass and 
low-pass filters, regressing out of 24 motion regressors along with 
global signal, and censoring of high motion timepoints (Power et al., 
2014). Any scanning sessions with less than 5 min of resting state data 
following denoising were excluded from the analysis.

Following preprocessing, the whole brain functional networks 
were constructed with Nilearn (Abraham et al., 2014). The regions of 
interest from the Schaefer et al. parcellation atlas (Schaefer et al., 2018) 
were used as the nodes of the network (Aerts et al., 2018; Cheng et al., 
2015), with the connections between nodes being defined as the 
temporal correlation between the regions of interest. To allow 
consistent comparison between scanning sessions, the networks were 
normalized to only include the connections with correlations at or 
above the 80th percentile (i.e., the network density was set at 20%).

Diffusion image processing

The diffusion imaging data were processed in the native diffusion 
space. The alignment between the diffusion imaging and the T1w 
image for that scanning visit was computed using a rigid registration. 
Additionally, the diffusion data was corrected for head motion 
(Jenkinson et al., 2002), susceptibility distortions (Andersson et al., 
2003), and eddy current distortions (Woolrich et al., 2009; Andersson 
and Sotiropoulos, 2016). Multi-shell multi-tissue constrained 
spherical deconvolution was used to estimate fiber orientation 
distributions (Jeurissen et al., 2014). Next, anatomically constrained 
tractography (ACT) was performed to generate white matter tracts 
for each subject and session (Smith et al., 2012). This method of 
tractography limits the white matter tracts to terminate mainly at the 

boundary between the gray matter and the white matter or within the 
deep gray. Constraining the tractography in this way makes the 
assignment of tracts to cortical regions straightforward. Finally, 
we applied spherical deconvolution-informed filtering of tractograms 
(SIFT) to the white matter tracts to filter out tracts less likely to 
be accurate (Smith et al., 2013). We then constructed the structural 
connectome matrix by counting the number of estimated white 
matter tracts between any two brain regions as defined by the 
Harvard-Oxford atlas transformed through the preoperative T1w 
space (Schaefer et al., 2018). Two nodes of the atlas were determined 
to be connected if five or more reconstructed tracts connect those 
regions. This overall method of reconstructing white matter tracts 
increases the accuracy of the tractography results (Jeurissen et al., 
2019) and has been used previously to estimate the structural 
connectome in brain tumor patients (Aerts et al., 2018).

Graph network measures

With both the functional and structural networks constructed, 
we  computed graph network measures for all scanning visits. 
We focused on whole-brain network measures rather than individual 
nodes or connections due to the variability in the location of the 
tumors, tumor-induced brain disruptions, and surgical treatment. 
We  focused on the following network measures that have shown 
promise in previous brain imaging studies: modularity, clustering 
coefficient, and global/local efficiency.

Modularity measures how well networks can be  divided into 
modules. A module is a subset of nodes that are more densely 
connected to each other than to the rest of the network. A network 
with higher modularity will have modules containing nodes that are 
more closely connected to each other and more loosely connected to 
the nodes of other modules (Newman, 2006; Sun et  al., 2014). 
Similarly, the clustering coefficient is a measure of the degree to 
which brain regions in the network tend to form tightly 
interconnected clusters or communities. Modularity of the functional 
brain network has been shown to be increased in early-onset multiple 
sclerosis (MS) patients and correlated negatively with task 
performance in those patients (Gamboa et al., 2014). The modularity 
of the functional network has also been shown to change in the brains 
of subjects undergoing sleep deprivation as well as those recovering 
from stroke (Ben Simon et al., 2017; Siegel et al., 2018). To compute 
the modularity of the brain networks, we assigned each node to a 
module based on the network assigned by Yeo et al. 7-network atlas 
(visual, somatomotor, dorsal attention, ventral attention, limbic, 
frontoparietal, and default mode; Schaefer et  al., 2018; Yeo 
et al., 2011).

In addition to modularity and clustering coefficient, we  also 
measured the global efficiency (i.e., the efficiency of the parallel 
information transfer in the network) as well as the mean local 
efficiency across all nodes (i.e., the fault tolerance of the network; 
Latora and Marchiori, 2001). All graph network connectivity measures 
were computed using the Brain Connectivity Toolbox for Python1 
(Rubinov and Sporns, 2010).

1 https://pypi.org/project/bctpy/
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In Figure 1, we show some examples of simple graph networks 
and how connections between and within modules change the 
network measures. Figure  1B shows that adding intra-module 
connections to the simple network, shown in Figure 1A, increases the 
clustering coefficient by making the modules form tighter network 
clusters and local efficiency by making the neighbors of many of the 
nodes more fault tolerant to loss of any given node. Figure 1C shows 
that adding inter-module connections decreases the modularity of the 
network by making each of the modules less segregated. Figure 1D 
shows that adding both inter- and intra-module connections produces 
a combination of decreased modularity with increased efficiency and 
clustering coefficient.

Statistical analysis

To evaluate the relationship between brain connectivity measures 
and changes in neuropsychological assessments, we fitted a multiple 
regression linear model. We used both the structural and functional 
connectivity changes along with the demographic variables of sex and 
age as the predictor variables and the composite score changes as the 
response variable. Before fitting the model, we  first removed 
redundant predictors by removing variables that had a Pearson 
correlation of absolute value greater than 0.8 to other predictors. 

We then performed feature selection using LASSO linear regression 
using glmnet in R (Friedman et al., 2010; Team, R.C., 2022). The 
selected features from the LASSO regression were used as the 
predictor variables to the multiple regression model evaluating the 
relationship between the predictors and the composite score changes.

Results

Enrollment

We enrolled a total of 38 patients, 21 of whom had complete sets 
of neuropsychological testing and MRI (Supplementary Table S2). As 
shown in Table 1, the average age at the time of surgery was 50.8 years 
(SD = 11.8). Table 2 shows the distribution of tumor diagnosis and 
tumor location: 51% of the cases were either high- or low-grade 
gliomas, and the cases were almost evenly split between the right 
(51%) and left (49%) hemispheres. After censoring timepoints affected 
by motion, each scanning session contained 12–26 min of resting state 
fMRI data (mean = 23.7 min, standard deviation = 4.2 min). The 
average number of days between scanning sessions was 18.2 days for 
patients and 18.7 for controls. To evaluate the effect of repeat testing, 
seven healthy control subjects were also enrolled, with 6 completing 
all evaluations. While the demographics of the control group were 

FIGURE 1

Example graph networks and corresponding graph theory measures shown in radar charts. The circles represent the nodes of the network while the 
lines represent the edges. Each node belongs to either the purple, blue, or pink module. The radar chart to the right of each network shows the graph 
theory measures of local efficiency (LE), global efficiency (GE), modularity (MOD), clustering coefficient (CC), and density (D) for that network. 
(A) Shows a simple network with three distinct modules. (B) Shows the network from (A) but with added connections (green edges) within each 
module. These within-module connections greatly increase the local efficiency (local fault tolerance) and clustering coefficient and slightly increase 
the modularity and global efficiency. (C) Shows the network from (A) but with added connections between modules which decrease modularity but 
provide a small increase to local efficiency. (D) Shows the network from (A) but with both the within module connections from (B) and between 
module connections from (C) added. Compared to (B), the modularity is decreased due to the between module connections, while compared to 
(C) the local efficiency, global efficiency, and clustering coefficient are all increased due to the added within module connections.
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substantially different from that of the patient group in terms of age 
and education, the use of the control data was limited to the evaluation 
of changes in test scores following surgery and did not affect any of the 
other analyses.

Changes in neuropsychological test scores 
following surgery

The domain scores for Quality of Life, Dexterity, and Memory 
improved in patients postoperatively (p < 0.05), but these changes 
were not significantly different from the controls (Figure  2). The 
control group had a significant increase in the Memory domain scores 

(p < 0.05) but not for any of the other domains. Because none of the 
neuropsychological domain score changes for the patient group were 
different from the controls, we  could not conclude that the 
neuropsychological domain scores changed because of surgery or 
tumor removal. Further analysis on the subset of patients that had 
gliomas showed that these patients followed the same trends as that of 
the entire cohort and had significant increases in memory and 
dexterity scores following surgery.

Feature selection

We removed the changes in mean functional clustering coefficient 
from the analysis because it strongly correlated with changes in 
functional global efficiency, with Pearson r = −0.91 
(Supplementary Figure S2). All features were z-score normalized and 
LASSO regression was used to select the best features. The LASSO 
regularization weight was optimized using 10-fold cross validation. 
The regularization weight resulting in the lowest validation mean-
squared error corresponded to a validation of R2 = 0.55, meaning that 
55% of the variance in the composite scores were explained by the 
predictor variables. This regularization weight was used to train a final 
LASSO model to choose the best predictor variables. This model 
eliminated sex, structural modularity, and structural global efficiency 
from the analysis. The remaining six features were used to fit a 
multiple regression model without regularization on the 21 patients 
with complete neuropsychological testing and MRI.

Multiple linear regression analysis

The multiple regression model showed that changes in 
connectivity was highly correlated with changes in the 
neuropsychological composite scores (R2 = 0.85, R2 adjusted = 0.79, 
F-statistic = 13.4, p < 0.001). Changes in functional local efficiency 
(p < 0.001), functional modularity (p < 0.01), and functional global 
efficiency (p < 0.05) as well as the patient’s age (p < 0.05) were 
significantly correlated with changes in composite neuropsychological 
score, as shown in Figure 3. Functional local efficiency and modularity 
demonstrated the strongest associations with composite score, and 
these associations were maintained when examining only the subset 
of patients with gliomas (Figure  3). Specifically, functional local 
efficiency was inversely correlated with composite score while 
functional modularity was directly correlated.

We also fitted additional multiple linear regression models with 
each of the domain scores, including quality of life, as the outcome 
variable to assess if the relationship between connectivity varied by 
domain. As shown in Supplementary Figure S3, we found that the 
relationship between the domain scores and the connectivity variables 
followed the same trend as that of the main model.

Discussion

This study shows that changes in functional brain network 
connectivity were highly correlated with neuropsychologic measure 
changes in brain tumor resection patients. Specifically, our model 
revealed a strong relationship between neuropsychological test score 

TABLE 1 Subject demographics.

Patients 
enrolled 
(n = 37)

Patients 
complete 
(n = 21)

Controls 
(n = 6)

Age (years)

Mean (±SD) 50.1 (±11.8) 49.2 (±9.9) 32.8 (±3.8)

Range 26–71 33–64 27–37

Handedness

R (%) 33 (89%) 18 (86%) 6 (100%)

L (%) 4 (11%) 3 (14%) 0 (0%)

Education (years)

Mean (±SD) 13.8 (±2.3) 14.5 (±2.4) 19.2 (±1.8)

Range 11–18 11–18 16–21

Sex

M (%) 24 (65%) 16 (76%) 3 (50%)

F (%) 13 (35%) 5 (24%) 3 (50%)

TABLE 2 Patients’ tumor characteristics.

Enrolled (%) Complete (%)

Classification

LGG 5 (14%) 4 (19%)

HGG 14 (38%) 10 (48%)

Met 11 (30%) 3 (14%)

Meningioma 4 (11%) 3 (14%)

Cavernoma 3 (8%) 1 (5%)

Hemisphere

R 18 (49%) 11 (52%)

L 19 (51%) 10 (48%)

Location

Frontal 10 (27%) 6 (29%)

Frontoparietal 1 (3%) 0 (0%)

Occipital 4 (11%) 0 (0%)

Parietal 9 (24%) 6 (29%)

Temporal 11 (30%) 7 (33%)

Frontal/Cingulate 1 (3%) 1 (5%)

Insula 1 (3%) 1 (5%)
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changes and changes in the functional brain connectivity measures of 
local and global efficiency as well as modularity.

The finding that functional modularity was directly correlated 
with neuropsychological measures corroborates previous studies 
showing functional modularity to be a biomarker associated with 
improved cognitive functioning (Siegel et al., 2018; Alexander-Bloch 
et al., 2010; Gallen and D’Esposito, 2019; Jalili, 2017). For instance, 
Siegel et al. found significantly increased functional modularity at 
3 months post-stroke in patients with good recovery from language, 
spatial memory, and attention deficits (Siegel et al., 2018).

The strong inverse relationship between changes in mean functional 
local efficiency and neuropsychological testing scores suggests that 
increasing functional local efficiency may have negative effects on 
neurocognitive functioning in brain tumor patients. Other research 
studies have found functional local efficiency to be negatively correlated 
with cognitive performance (Stanley et al., 2015; Kawagoe et al., 2017; 
Cohen and D'Esposito, 2016). In a study of 29 healthy adults, Stanley 
et al. found that functional local efficiency during working memory 
tasks was inversely correlated to working memory performance 
(Stanley et al., 2015). This finding supports the role of decreased local 
efficiency correlating to better cognitive performance. Interestingly, 
Stanley et al. only found the local efficiency to be predictive of working 
memory performance during task performance and not while the 
subject was at rest (Stanley et al., 2015), while our results show that the 
changes to the local efficiency at rest are highly predictive of overall 
changes to neuropsychological measures. Also supporting the inverse 
role of functional local efficiency in cognitive performance, Kawagoe 
et al. performed a cross-sectional study in elderly individuals and found 
that higher functional local efficiency at rest correlated to lower 

executive function performance and worse physical fitness (Kawagoe 
et al., 2017). While it is not clear as to why better functional local 
efficiency would negatively affect neurocognitive functioning, one 
explanation could be that increased hyper-local integration is a sign of 
adaptation to surgical insult. We hope that future research will further 
elucidate how the brain connectivity of tumor patients relates to their 
neurocognitive functioning.

While functional connectivity measures correlated to changes in 
composite score, we did not see an overall change in the composite 
neuropsychological score following surgery relative to the controls. 
Dexterity and memory functioning scores improved; however, these 
improvements were not significantly different from the control group. 
Because both controls and patients improved in their performance on 
these assessments, it is likely that the improvement in these domains 
represents the improvement due to practice effects rather than surgical 
treatment. Quality of life metrics improved postoperatively in the 
surgery group, indicating that tumor resection had a positive impact 
on patients’ well-being. Similar to the composite scores, changes in 
functional local efficiency and functional modularity were significant 
predictors of changes in quality of life (Supplementary Figure S3).

Structural connectivity changes were not correlated to 
neuropsychological measures in our study. This finding may result 
from several different hypotheses or a combination of them. First, our 
methodology for measuring structural connectome may not 
be  sensitive to variable yet localized changes in white matter 
connections. A more sensitive marker for observing structural 
connectome changes may be fractional anisotropy. Second, structural 
connections may be best explored by looking at integrity of specific 
tracts rather than at network level descriptors such as modularity and 

FIGURE 2

Changes in composite scores in brain tumor patients after tumor resection (blue diamond) and healthy controls (gray square). Quality of Life improved 
post-surgery (p < 0.05), as did Dexterity, and Memory scores (p < 0.005). However, these changes were not significantly different than those in the 
control group of healthy subjects that did not have surgery. Therefore, the improvements in Dexterity and Memory are potentially the result of practice 
increasing both the control and patient scores rather than surgery which would only increase the patient scores. All other cognitive domain scores did 
not statistically change from baseline in either the tumor or control cohort. (*p < 0.05, **p < 0.01).

https://doi.org/10.3389/fnins.2025.1532433
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ellis et al. 10.3389/fnins.2025.1532433

Frontiers in Neuroscience 07 frontiersin.org

local efficiency. Third, our methodology of anatomically constrained 
tractography may be ill suited for tumor patients due to disruption of 
normal anatomy. Fourth, in our patient cohort, structural 
connectivity may be more related to tumor mass effect rather than 
changes in the underlying pathology over this short interval. Lastly, 
structural connections may be  relatively unperturbed because of 
surgical resection.

Tumor resections inevitably involve white matter in addition to 
gray matter. Tractography, which we are not visualizing here, may 
be affected by resection depending upon location of the resection and 
the importance of the tract functionality. There may be some changes 
to the tracts that may not translate into neurologic dysfunction. 
Changes in connectivity are possibly a better means of assessment. 
We know that neurologic function can have “collateral” paths such 
that an injury in an area will not result in an overt neurologic deficit. 
This may occur due to connectivity changes such that other areas or 
structures are “picking up the slack.” Structural and functional 
connectivity changes likely occur in tandem and enable the brain to 
continue to function optimally in circumstances of injury (stroke, 
tumor, surgery, injury, etc.).

Limitations

Our results serve as a preliminary analysis to test the utility of 
brain connectivity markers to explain changes in neuropsychological 

test scores and to identify key connectivity measures most predictive 
of neurocognitive outcomes in brain tumor resection patients. A 
crucial next step is to validate the predictive ability of these brain 
connectivity measures in an independent cohort of patients in a 
longitudinal study.

We modeled the brain connectivity measures together in a single 
multiple linear regression model rather than in separate models. 
Combining the connectivity measures into a single model is 
intuitive, as brain connectivity is complex and unlikely to 
be convincingly captured by a single metric. This approach, however, 
requires that the interpretation of the effects of a single brain 
connectivity metric be made with caution. The coefficients associated 
with each connectivity measure in the model represent the 
relationship between that specific measure and the changes in 
neuropsychological test scores while holding all other variables 
constant. In situ, however, brain connectivity measures do not 
change in isolation, and inferences about changes in neurocognitive 
scores can only be made when accounting for the changes in all 
the variables.

We observed low compliance from our patients for the 
neuropsychological testing, likely due to the mental demands of the 
neuropsychological evaluations under already stressful circumstances 
for the patients (Burke et al., 2019). Interestingly, compliance with MR 
scanning was much higher, indicating that, if robust and replicable 
associations are found, brain connectivity markers could be a less 
burdensome means of tracking cognitive and neurological functioning.

FIGURE 3

Relationship between changes in composite neuropsychological test scores and in brain connectivity for brain tumor resection patients. This figure 
shows the normalized regression estimates (sorted by p value) and 95% confidence intervals of the multiple linear regression model predicting changes 
in the composite neuropsychological score for all patients (blue diamond) as well as the subset of glioma patients (gray circles). Changes in functional 
local and global efficiency were inversely correlated with changes in composite score while changes in functional modularity and age were directly 
correlated with changes composite score. The gliomas subset shows that the relationship between connectivity markers and composite score for 
patients with infiltrative tumors is similar to that of the whole cohort. (*p < 0.05, **p < 0.01, ***p < 0.001).
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Even when patients with significant impairments complied with 
testing, many of the tests were not sensitive enough to measure changes 
in states of impairment. For example, an elderly patient in our study 
presented with language deficits and poor overall neurocognitive 
functioning. This patient was unable to complete most of the assessments 
both preoperatively and postoperatively preventing us from tracking any 
postoperative changes from baseline. However, upon clinical assessment, 
the physician (author MA) noted an improvement in their functioning. 
Therefore, this patient group may be  better monitored with 
neuropsychological measurement tools that can detect changes in the 
levels of impairment without being overly burdensome.

Another factor may be timing. These assessments were conducted 
only 2 weeks apart, and it may be that the neuropsychological testing 
changes are transient and lack clinical relevance. In the postoperative 
period, patients experience the effects of medications, brain shift, 
physical fatigue, sleep deprivation, and other factors that may affect 
brain function. The amount of time necessary for the resolution of 
these changes and their effects is unknown. We selected our time 
interval for testing to isolate surgical effects as well as minimize 
perioperative medication effects.

Conclusion

We found that short interval changes in brain connectivity 
markers were highly correlated with changes in the composite 
neuropsychological test scores. Our findings support the need for 
further exploration of brain connectivity as a biomarker relevant to 
the neurocognitive status of brain tumor resection patients. After 
further validation, brain connectivity markers might aid in tracking 
the effects of treatment on patient cognitive functioning, potentially 
reducing reliance on neuropsychological testing. Future research 
could also explore using anticipated changes in brain network 
topology to better inform surgical approaches. By modeling brain 
networks resulting from different tumor resection strategies prior to 
surgery, it may be possible to identify approaches that optimize brain 
network characteristics and improve patient outcomes. Furthermore, 
future research could also explore changes in brain connectivity that 
result from tumor interactions with neurons. Nonetheless, further 
research is needed to better understand how surgical and other 
interventions affect brain networks and how network changes impact 
neurocognitive outcomes.
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