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Introduction: Rehabilitation devices assist individuals with movement disorders 
by supporting daily activities and facilitating effective rehabilitation training. 
Accurate and early motor intention detection is vital for real-time device 
applications. However, traditional methods of motor intention detection often 
rely on single-mode signals, such as EEG or EMG alone, which can be limited 
by low signal quality and reduced stability. This study proposes a multimodal 
fusion method based on EEG–EMG functional connectivity to detect sitting and 
standing intentions before movement execution, enabling timely intervention 
and reducing latency in rehabilitation devices.

Methods: Eight healthy subjects and five spinal cord injury (SCI) patients 
performed cue-based sit-to-stand and stand-to-sit transition tasks while EEG and 
EMG data were recorded simultaneously. We constructed EEG–EMG functional 
connectivity networks using data epochs from the 1.5-s period prior to movement 
onset. Pairwise spatial filters were then designed to extract discriminative spatial 
network topologies. Each filter paired with a support vector machine classifier to 
classify future movements into one of three classes: sit-to-stand, stand-to-sit, or 
rest. The final prediction was determined using a majority voting scheme.

Results: Among the three functional connectivity methods investigated—
coherence, Pearson correlation coefficient and mutual information (MI)—the 
MI-based EEG–EMG network showed the highest decoding performance 
(94.33%), outperforming both EEG (73.89%) and EMG (89.16%). The robustness 
of the fusion method was further validated through a fatigue training experiment 
with healthy subjects. The fusion method achieved 92.87% accuracy during the 
post-fatigue stage, with no significant difference compared to the pre-fatigue 
stage (p > 0.05). Additionally, the proposed method using pre-movement 
windows achieved accuracy comparable to trans-movement windows (p > 0.05 
for both pre- and post-fatigue stages). For the SCI patients, the fusion method 
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showed improved accuracy, achieving 87.54% compared to single- modality 
methods (EEG: 83.03%, EMG: 84.13%), suggesting that the fusion method could 
be promising for practical rehabilitation applications.

Conclusion: Our results demonstrated that the proposed multimodal fusion 
method significantly enhances the performance of detecting human motor 
intentions. By enabling early detection of sitting and standing intentions, this 
method holds the potential to offer more accurate and timely interventions 
within rehabilitation systems.

KEYWORDS

multimodal, human-machine interface, electroencephalography, surface 
electromyography, muscular fatigue, pre-movement intention detection

1 Introduction

Functional movement disorders resulting from brain or spinal 
cord lesions often lead to loss of independence in daily activities and 
significantly impact patients’ quality of life (Langhorne et al., 2009; 
Savic et al., 2018). A key focus of rehabilitation for individuals with 
SCI or other neurological impairments is the restoration of basic 
motor functions, such as sitting and standing, which are fundamental 
functional movement in daily life.

Robotic-assisted rehabilitation devices have demonstrated 
promising potential for enhancing functional recovery of movement, 
compared to traditional methods (Nam et al., 2017; Carpino et al., 
2018). These robotic systems can promote recovery of movement and 
facilitate neuroplasticity through intensive and repetitive motor 
training (Edgerton and Roy, 2009; Mekki et al., 2018). Compared to 
passive movement, active engagement of patients leads to more 
substantial motor function improvements (Hogan et al., 2006; Hu 
et al., 2009; Krebs et al., 2009). Human–machine interfaces (HMIs) are 
widely used for the active control of rehabilitation devices (Esposito 
et al., 2021). In HMI systems, accurate and early decoding of motor 
intentions is crucial for real-time applications, allowing robotic 
devices to respond promptly to the patient’s voluntary movements. 
This would enable more proactive assistance for individuals with 
spinal cord injuries or other movement impairments, ultimately 
improving rehabilitation outcomes. However, only a few studies have 
focused on the early detection of movement intentions in the context 
of lower limb function (Shafiul Hasan et al., 2020).

Over the recent decades, bioelectrical signals, force, and velocity 
have been used to detect human movement intentions (Blank et al., 
2014). For bioelectrical signals, electroencephalogram (EEG) and 
surface electromyogram (EMG) are commonly employed for 
controlling rehabilitation and assistive robotic devices (Ang and Guan, 
2013; Leonardis et al., 2015; Lin et al., 2023). Pre-movement brain 
activity changes in the EEG signals have been used to detect movement 
intentions for tasks such as sitting and standing (Bulea et al., 2014; 
Li C. et al., 2023), walking (Sburlea et al., 2015), wrist extensions (Bai 
et al., 2011) and finger movements (Wang et al., 2020). EMG signal 
changes occur approximately 20–150 ms prior to muscle contraction 
(Norman and Komi, 1979; Lu et al., 2024), which has been shown to 
reliably predict movement intention before the onset of physical 
movement (Kirchner et  al., 2014; Trigili et  al., 2019). In contrast, 
methods based on force and velocity information inevitably limited 
by time delays, as these signals can only be  measured after the 
initiation of limb movement.

However, relying solely on single-modality EEG or EMG cannot 
fully meet the requirements for effective active control. For instance, 
muscle fatigue from repetitive contractions and insufficient residual 
myoelectric activity in patients can reduce the accuracy of motion 
intentions decoding using EMG (Enoka and Duchateau, 2008; 
Cipriani et al., 2011). While EEG signals have a lower amplitude and 
are prone to interference from noise, such as environmental artifacts 
or non-motor-related brain activity, making them less accurate and 
reliable (Leeb et  al., 2011; Li et  al., 2017). Fusing multimodal 
bio-signals show potential in leveraging complementary information 
and providing a more accurate and comprehensive description of 
user’s movement intention, thus improving the recognition efficiency. 
Recent research studies have proposed approaches for the fusion of 
EEG and EMG to recognize upper/lower limb motion. Jacob Tryon 
et al. proposed an EEG–EMG fusion method for classification using a 
Weighted Average fusion method (Tryon and Trejos, 2020). A 
Convolutional Neural Network (CNN) model based on EEG–EMG 
fusion was developed to classify task weight during dynamic elbow 
flexion–extension movements (Tryon and Trejos, 2021). Yang et al. 
proposed a fusion approach using the functional connectivity and 
graph convolutional network, improving the accuracy and reliability 
of hand motion recognition (Yang et al., 2022). Al-Quraishi et al. 
developed a technique for fusion of EEG and EMG based on 
discriminant correlation analysis combined with different 
classification models for identifying bilateral ankle joint movements 
(Al-Quraishi et al., 2021). Chowdhury et al. used band-limited power 
time-courses (CBPT) to extract the cortico-muscular feature 
associated with EEG and EMG to classify hand grasp movements 
(Chowdhury et al., 2019). Jiang et al. present a multimodal EEG–EMG 
fusion network E2FNet for various hand motor intent recognition 
(Jiang et al., 2024). A classifier combing EEG and EMG features was 
implemented to detect upper limb movement intentions in chronic 
stroke patients, with the goal of controlling wearable robotic systems 
(Jo et al., 2022). Li et al. proposed a hybrid EEG–EMG movement 
recognition method that employs a sequential learning model 
incorporating a Graph Isomorphic Network to process a sequence of 
graph-structured data derived from EEG and EMG signals (Li 
H. et al., 2023). Combined temporal and spectral features of EEG and 
time domain features of EMG could improve single-trial movement 
classification in SCI patients with residual EMG, which indicated the 
feasibility and usability of using HMI system for motor rehabilitation 
of patients with SCI (Leerskov et al., 2020). However, these current 
fusion strategies have some shortcomings in terms of practical 
applications of robotic rehabilitation systems. First, the EEG–EMG 
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functional coupling information is often ignored, while the functional 
coupling is essential for movement preparation and execution. Given 
that EEG and EMG signals are nonlinear and complex (Stam, 2005), 
more suitable functional coupling methods should be investigated. 
Second, the feasibility of using pre-movement windows for 
classification tasks in the control of assistive and rehabilitation devices 
needs further assessment, as decoding movement intention in 
pre-movement state enables parallel control rehabilitation devices 
alongside real movement execution. Third, the robustness of the 
fusion method against the muscular fatigue should be  evaluated. 
Finally, the feasibility to detect the intention based on the fusion of 
EEG and EMG for the SCI patients should be explored to demonstrate 
its potential for clinical applications.

This study proposed a multimodal fusion method for detecting 
sitting and standing intentions based on EEG–EMG functional 
connectivity, utilizing signals recorded prior to movement execution. 
A supervised learning model was developed to extract discriminative 
spatial patterns from EEG–EMG functional connectivity networks. 
Various connectivity methods, including coherence (COH) (Zhang 
et al., 2023), correlation coefficient (CC) (Chowdhury et al., 2019), 
and mutual information (MI) (Kim et al., 2017), were investigated to 
identify the approach that offers the best performance for detecting 
sitting and standing movement intentions. The feasibility of utilizing 
time windows prior to movement onset for intention detection was 
examined by evaluating classification accuracy across different 
durations, including 2, 1.5, 1, 0.75, and 0.5 s. In addition, we compared 
the performance of pre-movement windows with trans-movement 
and ongoing movement windows to demonstrate that reliable 
intention detection can be achieved prior to the movement onset. To 
assess the practical reliability of the proposed approach, its robustness 
was evaluated under muscular fatigue conditions. Preliminary tests 
were also conducted on SCI patients to validate its potential in clinical 
settings. This method aimed to improve the accuracy and 
responsiveness of assistive and rehabilitation devices, and provided a 
promising solution for real-time intention detection.

2 Materials and methods

2.1 Subjects and experimental paradigm

We recruited 8 healthy subjects (2 female, 6 males; 21–27 years 
old) without any lower limb pathology or neurological abnormalities 
and 5 SCI patients (1 female, 4 males; 24–39 years old) in this study. 
The demographic and clinical characteristics of SCI patients are 
reported in Table  1. All participants were informed about the 

experimental procedure and sign the consent form before the 
experiment. The studies involving humans were approved by Zhejiang 
Provincial People’s Hospital. The studies were conducted in accordance 
with the local legislation and institutional requirements.

The experiments involving both healthy subjects and SCI patients 
were conducted in quiet and controlled environments. For the healthy 
subjects, EEG and EMG signals were recorded in a laboratory 
environment with soft non-fluorescent lighting in the room to prevent 
any flicker or light interference that could affect the EEG signals. The 
experiments with SCI patients were performed in a controlled 
environment at a local hospital, under the supervision of specialized 
medical staff. A visual cue-based paradigm was used in this study, as 
shown in Figure 1A. Each trial started with the subjects sitting in the 
chair for 5 s. They were asked to initiate sit-to-stand when the progress 
bar advanced to the specified position (“move”), and then maintained 
the current state for 3 s. Afterwards, the progress bar updated and gave 
similar visual cue to initiate the transition of stand-to-sit. Thus, each 
trial consisted of one sit-to-stand and one stand-to-sit transition. For 
the healthy subjects, the task consisted of three procedures, the first of 
which was a pre-fatigue stage, followed by a fatigue training procedure 
and a post-fatigue stage. For both pre-fatigue and post-fatigue 
procedures, each procedure includes 40 trials. During fatigue training 
period, each subject performed continuous sit-to-stand and stand-
to-sit exercises. This process was repeated for 3 min, or until the 
subjects was exhausted (Al-Quraishi et al., 2021). For the SCI patients, 
each patient completed a total of 40 trials, which included 40 sit-to-
stand and 40 stand-to-sit transitions.

2.2 Data acquisition and pre-processing

EEG and EMG data were acquired simultaneously. The EEG 
signals were recorded using active Ag/AgCl electrodes (64 Channels, 
NeuSen W) with 22 channels (FZ, F1-F4, FCZ, FC1-FC4, CZ, C1-C4, 
CP1-CP4, PZ, P3, P4) placed on the scalp according to the 10–20 
system (see Figure 1B). The recorded signals were sampled at 1 kHz 
and referenced to the channel CPz. The channel AFz was used as the 
ground. The impedance of all selected electrodes was reduced to 5 
kΩ. The raw recorded EEG data were bandpass filtered from 0.5 to 
45 Hz by utilizing a zero-phase fourth-order Butterworth filter. The 
common average reference (CAR) was conducted to re-referenced 
EEG signals to eliminate the global background activity. Afterward, 
we performed Infomax independent component analysis (ICA) using 
the EEGLAB toolbox (Delorme and Makeig, 2004). The resulting 
independent components (ICs) were classified with the ICLabel 
algorithm into brain and artifactual categories (Pion-Tonachini et al., 
2019). In this study, ICs with probabilities for the artifactual classes 
(“Muscle,” “Eye,” “Heart”) were higher than 70% were labeled as 
artifacts and removed. The cleaned EEG signals were then 
reconstructed by back-projecting the remaining components into the 
original electrode space.

The EMG signals were recorded at 1.5 kHz with a wireless 
Noraxon Desktop DTS system (Noraxon, USA). The EMG signals 
from bilateral Rectus Femoris (RF), Vastus Lateralis Oblique (VLO) 
and Vastus Medialis Oblique (VMO) muscles were recorded with 6 
channels. The raw EMG signals were bandpass filtered of 15–300 Hz 
and notch filtered of 48–52 Hz by using a fourth-order Butterworth 
filter. Afterward, the Teager-Kaiser energy operator (Solnik et al., 

TABLE 1 Demographic and clinical characteristics of SCI patients.

Patient Age Sex Injury 
level

ASIA Time since 
injury 

(months)

P1 29 male L2 D 17

P2 37 female C4 D 7

P3 24 male L4 C 5

P4 39 male C6 D 5

P5 34 male C5 D 4
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2008) was applied to detect actual movement onset from EMG 
recordings. The threshold T was set as T = μ + h*σ, where μ and σ 
were the mean and standard deviation of the baseline signal (from 
−2 to −3 s prior the onset of visual cue), and h was set to 5 
empirically. If there were more than 20 consecutive points that 
exceeded T, we  identified the first sample as the actual 
movement onset.

The pre-processed EEG and EMG signals were segmented to 6-s 
trials (−4 to 2 s from the movement onset). Based on the previous 
study (Bulea et al., 2014) that used a 1.5-s window prior to movement 
onset for intention detection, we defined the “intention” period as 
[−1.5 0] s for initial analysis. The “rest” period was set as the 1.5-s 
window from [−4–2.5] s. Time 0 s corresponds to the actual 
movement onset. To further investigate the impact of window length, 
we compared various window lengths prior to movement onset (2, 1.5, 
1, 0.75, and 0.5 s). For each window, we obtained 22-channel EEG 
data, 6-channel EMG data and 28-channel EEG–EMG data.

2.3 Functional connectivity analysis

After preprocessing, the functional connectivity values of each of 
the two channels are computed. When constructing the networks, 
three approaches of functional connectivity are employed to represent 
the couplings of EEG–EMG, EEG–EEG and EMG–EMG. We calculate 
the COH, CC and MI between pairwise electrodes, and they are 
computed by (1–3), respectively:

 ( )2 / ·xy xy xx yyC P P P=  (1)

where xyC  is the coherence of x and y, xyP  is the cross-spectral 
density of the paired signals x and y, xxP  and yyP  are the respective 
auto-spectral densities. COH within 13–30 Hz is set as the edge weight 
in this study;

 ( ) ( )cov , / ·xy x yr x y σ σ=  (2)

where xyr  is the Pearson coefficient, ( )cov ,x y  is the covariance 
between the paired signals x and y, xσ  and yσ  are the standard 
deviations of x and y;

 

( )
( ) ( )

,
xy

x y

x y
MI

x y
ρ

ρ ρ
 

=   
 

∑∑
 

(3)

where xyMI  is the mutual information between x and y, ( ),x yρ  
means the joint probability distribution of x and y, and ( )xρ  and ( )yρ  
are the probability distributions of x and y, respectively. For the CC 
and MI calculations, we utilized the broadband frequency range of the 
preprocessed EEG and EMG signals.

For each trial window, 22*22 EEG–EEG, 6*6 EMG–EMG, and 
28*28 EEG–EMG adjacency matrices were constructed using the 
three different measurement methods mentioned above, respectively. 
For each network, the adjacency matrix is standardized by min-max 
standardization. Then, we applied multi-class discriminative spatial 
network pattern features procedure to extract spatial filters and 
features (Li et al., 2024).

2.4 Features extraction and classification

A supervised learning model was developed to identify sitting and 
standing intentions. The goal of the model is to determine the optimal 
projection to maximize the difference by maximizing the variance in 
the network of one movement while minimizing the variance in the 
network of another movement. We  designed spatial filters that 
maximizing the variance of one class while minimizing the variance 
of another class. Specifically, iM  denotes the network matrix of class i
, and jM  denotes the network matrix of class j. Their spatial covariance 
matrix is defined as (4) and (5):

FIGURE 1

(A) Experimental paradigm and visual cues for sit-to-stand and stand-to-sit transitions within a single trial; reprinted with permission from Li C. et al. 
(2023). Copyright 2023, IEEE. (B) Electrode positions for recording EEG and EMG signals.
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where iN  and jN  are the number of trials of class i and class j, 
respectively. Spatial filters are selected to maximize the ratio of the 
transformed data variance between two classes, as shown in (6):

 
( ) 2|ar |g max . . || 1

T
i T

jTw j

w C wJ w s t w C w
w C w

= =

 
(6)

where w is the spatial filter and 2||·||  is the 2L -norm. We used the 
method of Lagrange multipliers, and reformulated the constrained 
optimization problem:

 
( ) ( ), 1λ λ= − −T T

i jL w w C w w C w
 

(7)

where λ represents the Lagrange multiplier. To find the optimal w 
and λ, we take the derivative of (7) with respect to w and λ, and set 
them to 0, as shown in (8):

 
0, 0

λ
∂ ∂

= =
∂ ∂

L L
w  

(8)

For this optimization problem, we solve the generalized eigenvalue 
problem (9):

 
λ=i jC w C w

 (9)

where λ represent the eigenvalue of the generalized eigenvalue 
equation and w is the corresponding eigenvector. The solution for 
multiple spatial filters involves (10):

 ( ) 1−
= ∑j iC C W W

 (10)

where W  represents the spatial filters, and ∑  is the eigenvalue 
diagonal matrix. We selected the 2 largest and 2 smallest generalized 
eigenvalues to obtain a set of the most discriminative spatial filters. 
Support vector machine (SVM) of linear kernel is used for the 
classification and 10-fold cross-validations was employed to evaluate 
the robustness of our classification model.

To extract multi-class discriminative spatial network pattern 
features and classifying three classes, we  used “Pair-Wise” based 
approach that involves constructing and training 3*(3–1)/2 = 3 spatial 
filters and binary classifiers for each pair of classes. During the testing 
phase, each test sample is projected through the spatial filters 
associated with each pair of classes, resulting in features that then 
input into the corresponding binary classifier. The final predicted class 

is determined by aggregating the results from all pairwise 
classifications using a majority voting scheme, where the class with the 
most votes is selected as the final prediction. In this study, we use the 
MATLAB (Mathworks Inc., MA, USA) function binoinv to compute 
the significant chance level ( )T 1 ,n,1 / c 100 / n= − α ×binoinv , where 
α = 0.05 is the significance level, n = 160 is the number of samples for 
subject, c = 3 is the number of classes. In this study, the significant 
chance level for classification was determined as 39.375%. Schematic 
representation of the proposed multimodal fusion method is shown 
in Figure 2.

3 Results

3.1 Impact of fatigue training on MNF and 
MDF of EMG

Frequency-domain features are widely used to evaluate muscle 
fatigue, with mean frequency (MNF) and median frequency (MDF) 
regarded as standard indicators for examining the impact of muscle 
fatigue on EMG signals (Moritani et  al., 1982; Al-Quraishi et  al., 
2021). Muscle fatigue is typically characterized by a downward shift 
in the EMG frequency spectrum. In this study, we used MNF and 
MDF to analyze fatigue effects in the thigh muscles, as defined in (11) 
and (12),

 1 1
/

M M
i i i

i i
MNF f P P

= =
= ∑ ∑

 
(11)

FIGURE 2

Schematic representation of the proposed multimodal fusion 
method.

https://doi.org/10.3389/fnins.2025.1532099
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2025.1532099

Frontiers in Neuroscience 06 frontiersin.org

 1 1

1
2
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i i i

i i MDF i
P P P

= = =
= =∑ ∑ ∑

 
(12)

where if  is a frequency value at a frequency bin i, iP represents the 
EMG power spectrum at a frequency bin i and M is the length of 
frequency bin.

Figure 3 shows the trends of MNF and MDF for a representative 
muscle (RF-right), both of which exhibited a progressive decline over 
time. These findings highlight the pronounced effect of fatigue 
training, consistent with established patterns observed in 
fatigued muscles.

3.2 Comparison of the decoding accuracy 
of different functional connectivity 
methods

Based on the previous study on decoding sitting and standing 
intentions using data from 1.5 s before movement onset up to 
movement onset (Bulea et al., 2014), we initially analyzed data epochs 
1.5 s before movement onset to examine the effects of different 
functional connectivity approaches and modalities on the intention 
detection. We  compared the performance of three functional 
connectivity metrics (COH, CC, and MI) across three modalities 
(EEG–EMG, EEG-only, and EMG-only). The classification accuracies 
of the three connectivity approaches under three modalities for all the 
subjects during the pre-fatigue stage are shown in Table 2. The results 
demonstrate that the classification of the EEG–EMG network 
weighted by MI achieved highest accuracy (94.33%).

A one-way repeated measures analysis of variance (ANOVA) was 
used to evaluate the significance of differences among the connectivity 
methods. As shown in Figure 4, the ANOVA analysis results showed 
that the decoding accuracy varied significantly across connectivity 
methods for all three modalities (EEG–EMG: p = 8.956e-05; EEG: 

p = 0.0001; EMG: p = 0.01). Specifically, for the EEG–EMG network, 
the accuracies were 72.71, 84.06 and 94.33% for COH, CC and MI, 
respectively. Post-hoc comparisons test revealed significant differences 
between COH and CC (p = 0.0244), COH and MI (p = 0.0011), and 
CC and MI (p = 0.0469). For the EEG network, the accuracies were 
46.72, 80.5 and 73.89% for COH, CC and MI, respectively. There were 
significant differences between COH and CC (p = 0.0012), and COH 
and MI (p = 4.7143e-4), while there was no statistical difference 
between CC and MI (p = 0.1371). For the EMG network, the 
accuracies were 73.11, 82.75, and 89.16% for COH, CC and MI, 
respectively. There was only a significant difference between COH and 
MI (p = 0.0365), while no significant difference was observed between 
COH and CC (p = 0.0549), and CC and MI (p = 0.2095). These 
findings suggest that the MI functional connectivity method provides 
robust performance across both unimodal (EEG, EMG) and 
multimodal (EEG–EMG) settings, particularly in the EEG–EMG 
network. This underscores MI as the most effective functional 
connectivity method for decoding intentions in our study.

The classification accuracies during the post-fatigue stage are 
shown in Table 3. Consistent with the pre-fatigue findings, the EEG–
EMG network weighted by MI achieved highest accuracy (92.87%). 
As presented in Figure  5, there were significant differences in 
classification accuracy among different connectivity methods across 
all modalities (EEG–EMG: p = 0.0001; EEG: p = 5.4034e-07; EMG: 
p = 0.0001). For the EEG–EMG network, the accuracies were 64.85, 
73.08, and 92.87% for COH, CC and MI, respectively. Post-hoc 
comparisons analysis showed significant differences between COH 
and MI (p = 0.0001), and CC and MI (p = 0.0035). For the EEG 
network, the accuracies were 48.52, 72.95, and 66.68% for COH, CC, 
and MI, respectively. Significant differences were found between COH 
and CC (p = 3.5790e-05), COH and MI (p = 6.3602e-06), and CC and 
MI (p = 0.0424). For the EMG network, the accuracies were 65.58, 
79.32, and 88.94% for COH, CC, and MI, respectively. Significant 
differences were observed between COH and CC (p = 0.0077), COH 
and MI (p = 0.0003), and CC and MI (p = 0.0002). The findings 

FIGURE 3

Grand average MNF and MDF trends of the right TA muscle during the fatigue training phase.
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indicate that MI consistently remains the most effective indicator, 
regardless of the fatigue condition, thereby reinforcing its reliability 
and robustness for intention detection in potentially fatigued stage.

3.3 Effects of window size and window 
range

To further explore the impact of window size on the classification 
accuracy, we applied this MI-based EEG–EMG fusion method to 
different window lengths prior to movement execution, specifically 
2-s, 1.5-s, 1-s, 0.75-s, and 0.5-s windows. A one-way repeated 
measures ANOVA was used to evaluate the significance of differences 
among the window sizes. As shown in Figure 6, the statistical analysis 
revealed a significant effect of window size on classification accuracy 
during the both pre- and post-fatigue stages (pre-fatigue: p = 0.0041; 

post-fatigue: p = 0.0015). During the pre-fatigue stage, post-hoc 
comparisons showed that the 2-s, 1.5-s, and 1-s windows achieved 
significantly higher accuracy than the 0.5-s window (p = 0.0362, 
p = 0.0188, p = 0.0185, respectively), with the 1.5-s window providing 
the highest average accuracy among all sizes. During the post-fatigue 
stage, post-hoc comparisons showed that the 2-s, 1.5-s, 1-s and 0.75-s 
windows achieved significantly higher accuracy than the 0.5-s window 
(p = 0.0150, p = 0.0119, p = 0.0072 and p = 0.0003, respectively), with 
the 1.5-s window also providing the highest average accuracy among 
all sizes. Therefore, subsequent analyses still focused on the 
1.5-s window.

We further investigated the effect of different time windows on 
classification accuracy by performing a repeated measures one-way 
ANOVA to compare the decoding performance of four windows: 
[−1.5, 0] s, [−1, 0.5] s, [−0.5, 1] s, and [0, 1.5] s. As shown in Figure 4, 
there were no significant differences in decoding accuracy across 

TABLE 2 The classification accuracies of healthy subjects for different functional connectivity methods across three modalities during the pre-fatigue 
stage.

Subjects Decoding accuracy % (pre-fatigue)

EEG–EMG EEG EMG

COH CC MI COH CC MI COH CC MI

S1 82.5 84.38 95 36.88 85 66.25 81.88 83.75 94.38

S2 74.38 89.38 97.5 52.5 89.38 80 79.38 78.13 91.25

S3 75.63 90 96.25 58.75 90 82.5 66.88 77.5 85.63

S4 76.88 71.25 95.63 53.75 53.75 60.63 65.63 85.63 96.25

S5 65 86.25 96.25 41.25 85.63 83.13 65 76.25 93.13

S6 81.88 96.25 86.88 45.63 88.75 85 97.5 96.25 82.5

S7 60.63 77.5 95.63 38.13 80 63.13 58.75 83.13 83.13

S8 64.79 77.45 91.53 46.88 71.48 70.52 69.88 81.36 87.06

Mean 72.71 84.06 94.33 46.72 80.5 73.90 73.11 82.75 89.16

Std 8.25 8.18 3.48 7.83 12.43 9.87 12.47 6.38 5.28

FIGURE 4

Comparison of classification accuracies across different connectivity methods during the pre-fatigue stage (*p < 0.05, **p < 0.01, ***p < 0.001).
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various time windows (pre-fatigue: p = 0.1351; post-fatigue: 
p = 0.2241). This finding suggests that the window [−1.5 0] s is 
comparable to trans-movement and ongoing-movement windows for 
detecting sitting and standing intentions.

3.4 Comparison of the performance 
between the multimodal and unimodal 
methods

In Figure  7, a one-way repeated measures ANOVA revealed 
significant differences in classification accuracy among EEG–EMG 
(pre-fatigue: 94.33 ± 3.48%, post-fatigue: 92.87 ± 2.47%), EEG 
(pre-fatigue: 73.89 ± 9.87%, post-fatigue: 66.68 ± 7.51%), and EMG 
(pre-fatigue: 89.16 ± 5.28%, post-fatigue: 88.94 ± 4.47%) modalities 

during both the pre-fatigue and post-fatigue stages (pre-fatigue: 
p = 0.002; post-fatigue: p = 0.0001). Further post-hoc comparisons 
analysis showed that, during the pre-fatigue stage, EEG–EMG 
achieved significantly higher accuracy compared to both EEG and 
EMG (p = 0.0032 and p = 0.0345, respectively), while EMG 
outperformed EEG (p = 0.0261). During the post-fatigue stage, EEG–
EMG maintained significantly higher accuracy than both EEG and 
EMG (p = 0.0001 and p = 0.011, respectively), and EMG performed 
better than EEG (p = 0.0011). These findings demonstrated that the 
EEG–EMG fusion approach significantly improved classification 
performance compared to unimodal methods, highlighting its 
robustness and reliability in all conditions.

The pre-fatigue confusion matrices for each modality are presented 
in Figure 8A. The EEG–EMG network demonstrated superior accuracy 
in distinguishing between dynamic movements intentions (sit-to-stand 

TABLE 3 The classification accuracies of healthy subjects for different functional connectivity methods across three modalities during the post-fatigue 
stage.

Subjects Decoding accuracy % (post-fatigue)

EEG–EMG EEG EMG

COH CC MI COH CC MI COH CC MI

S1 70.63 69.38 96.88 42.5 69.38 58.13 77.5 78.75 95

S2 62.5 83.13 90.63 55 83.75 77.5 59.38 72.5 81.88

S3 77.5 91.25 95 57.5 90.63 75 71.88 81.25 88.75

S4 72.5 58.13 90 43.75 57.5 56.88 74.38 76.88 84.38

S5 67.5 66.25 91.88 43.75 69.38 61.88 66.25 83.75 89.38

S6 46.25 76.88 90.63 46.88 76.25 70.63 53.13 78.75 86.88

S7 56.88 62.5 94.38 46.63 63.13 66.25 60 81.25 93.13

S8 65 77.14 93.57 52.14 73.57 67.14 62.14 81.43 92.14

Mean 64.85 73.08 92.87 48.52 72.95 66.68 65.58 79.32 88.94

Std 9.81 11.07 2.47 5.65 10.70 7.51 8.42 3.48 4.47

FIGURE 5

Comparison of classification accuracies across different connectivity methods during the post-fatigue stage (*p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001).
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and stand-to-sit), with classification accuracies of 92.16% for sit-to-stand 
and 88.09% for stand-to-sit, respectively. For the rest state, both the 
EEG–EMG and EMG networks achieved high classification accuracies 

(EEG–EMG: 98.59%, EMG: 98.75%). However, the accuracy of EMG 
for dynamic movements was lower (78.37% for sit-to-stand and 82.45% 
for stand-to-sit). The EEG network had the lowest classification accuracy 

FIGURE 6

Comparison of classification accuracies across different window sizes and ranges using the multimodal fusion method (*p < 0.05, **p < 0.01, 
***p < 0.001).

FIGURE 7

Comparison of classification accuracy of EEG–EMG, EEG and EMG modalities (*p < 0.05, **p < 0.01, ***p < 0.001).
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across all three classes (sit-to-stand: 61.44%, stand-to-sit: 69.91%, rest: 
81.51%). These findings underscore the enhanced performance of the 
MI-based EEG–EMG network, especially in accurately detecting sitting 
and standing intentions compared to unimodal networks.

The post-fatigue confusion matrices for each modality are shown 
in Figure  8B. The EEG–EMG network achieved the highest 
classification accuracy across all three movement states (sit-to-stand: 
86.98%, stand-to-sit: 85.08%, rest: 99.68%). Notably, EEG showed a 
reduction in its capacity to differentiate between movement types after 
fatigue; the classification accuracy for sit-to-stand decreased from 
61.44% during pre-fatigue to 53.65% during post-fatigue, for stand-
to-sit, it dropped from 69.91 to 53.33%, and for rest, it dropped from 
81.51 to 79.84%. In contrast, EMG maintained relatively stable 
performance between the pre-fatigue and post-fatigue stages, with 
sit-to-stand accuracy marginally increasing from 78.37 to 79.05%, 
stand-to-sit accuracy decreasing from 82.45 to 79.37%, and rest 
accuracy slightly decreasing from 98.75 to 98.57%. Nevertheless, the 
decoding performance based on EMG alone remained lower 
compared to the EEG–EMG based method.

We further compared the decoding performance between the 
pre-fatigue and post-fatigue stages. There was no significant difference 
in decoding accuracy between the pre-fatigue and post-fatigue 
conditions for the EEG–EMG network weighted by MI (p = 0.3226, 
paired t-test). Overall, EEG–EMG demonstrated superior robustness 
and maintained high accuracy in detecting movement intentions 
compared to unimodal EEG and EMG, even under fatigued conditions.

3.5 SCI patient results

Furthermore, we  performed preliminary testing on five SCI 
patients to assess the feasibility of the proposed method in real-world 
rehabilitation applications. Figure 9 displays the intention detection 

results for each patient. The average accuracy of EEG–EMG fusion 
approach was 87.54% ± 6.12%, demonstrating high accuracy in 
intention detection. In comparison, the accuracy of using EMG alone 
for intention detection was 84.13% ± 7.78%, and the accuracy of using 
EEG alone is 83.03% ± 9.7%, both showing a decline relative to the 
fused modality. The improvement achieved by the multimodal fusion 
approach over the unimodal EMG method was statistically significant 
(p = 0.0303, paired t-test). Although the multimodal approach did not 
show a statistically significant difference compared to the unimodal 
EEG method, it provided improvements for most patients. Notably, 
for P2, the EEG–EMG approach achieved an accuracy increase of 
15.84% compared to EEG alone (84.17% vs. 68.33%).

The averaged confusion matrix for the five SCI patients is shown 
in Figure 10. Similar to healthy subjects, EEG–EMG also showed 
higher performance in differentiating between sit-to-stand and stand-
to-sit (sit-to-stand: 83.03%, stand-to-sit: 75.7%), compared to EEG 
(sit-to-stand: 64.41%, stand-to-sit: 64.04%). Although EMG achieved 
an accuracy of 83.9% for sit-to-stand, it was only 58.77% for stand-
to-sit, with 35.96% of “Stand-to-sit” were misclassified as “Rest.” EEG–
EMG consistently achieved high accuracy in detecting “Rest” 
(95.33%). However, EMG showed a reduction in its capacity to detect 
“Rest” for SCI patients (90.79%), compared to healthy subjects 
(98.75%). In contrast, EEG successfully classified “Rest” at a much 
higher accuracy for the SCI patients (95.18%), compared to the 
healthy subjects (81.51%). These results indicated that the EEG–EMG 
fusion approach provided a more robust solution for SCI patients than 
EEG and EMG alone.

4 Discussion

HMI are widely used for the active control of rehabilitation 
devices. A crucial aspect of designing and implementing effective 

FIGURE 8

Confusion matrices obtained using the classifier with EEG–EMG, EEG, and EMG during the (A) pre-fatigue and (B) post-fatigue stages.
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rehabilitation systems is the ability to predict movement intentions. 
Early intention recognition allowing time to trigger external devices 
that provide relevant somatosensory feedback to induce Hebbian 
plasticity (Grosse-Wentrup et al., 2011). In this study, we proposed 
and validated a multimodal HMI technology that detects the intention 
of sitting and standing prior to movement onset based on EEG–EMG 
network weighted by MI. The experiment results in healthy subjects 
demonstrated that the proposed fusion method achieved significantly 
higher accuracy than EEG and EMG alone, and maintained superior 
performance even after fatigue, highlighting the advantages of 
integrating multimodal signals for detecting movement intentions. 
Furthermore, preliminary experiments in SCI patients demonstrated 
the feasibility of our method, with the proposed fusion method 
achieving optimal results for most patient. These findings underscore 
the effectiveness and adaptability of multimodal signals in 
rehabilitation applications.

This study investigated three functional connectivity methods for 
constructing networks within and between EEG and EMG for 

movement intention recognition. Our results indicate that the 
MI-based EEG–EMG networks achieved better classification accuracy 
compared to those constructed using COH and CC. Unlike COH and 
CC, which primarily measure linear tendencies, MI assesses both 
linear and nonlinear statistical dependencies between two time series 
(Kvalseth, 1987). Given that the human nervous system exhibits 
complex nonlinear behavior, ranging from the single-neuron level to 
the system level, emphasizing the necessity of nonlinear analysis in 
precisely investigating neuronal processing and signal transfer (He 
and Yang, 2021). These results suggest that MI is better suited for 
capturing intention-related features between complex 
neurophysiological signals. To further explore why the EEG–EMG 
networks weighted by MI outperformed the others, we conducted a 
Kruskal-Wallis statistical test to identify channel pairs with significant 
differences across the sit-to-stand, stand-to-sit and rest tasks. In 
Figure 11A, the results of S5 during pre-fatigue are shown, where each 
cell in the heatmaps represents the p-value of the functional 
connectivity strength between two channels across different tasks. The 

FIGURE 9

Classification accuracies of different modalities for individual SCI patients.

FIGURE 10

Confusion matrices obtained using the classifier with EEG–EMG, EEG, and EMG modalities for SCI patients.
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analysis revealed that the MI-based EEG–EMG network exhibited a 
broader distribution of significant channel pairs, especially between 
EEG and EMG channels, compared with networks weighted by COH 
and CC. During post-fatigue, as shown in Figure 11B, the interaction 
and coordination between the brain and muscles remain significant 
across different tasks. This may explain why EEG–EMG networks can 
considerably improve the recognition accuracy. It has been shown that 
the presence of motor intention during upper limb movement alters 
functional integration between the brain and muscles (Kim et al., 
2017). This also suggests that MI is more effective in capturing the 
nonlinear dependencies between EEG and EMG signals, which are 
essential for decoding intentions in lower-limb accurately.

We conducted a comparison with several existing EEG–EMG 
fusion methods for classification to evaluate the performance of our 
proposed approach. Table 4 presents the comparative experimental 
results, which consistently demonstrate that the proposed method 
achieves superior accuracy across the majority of participants.

Detecting movement intentions before the actual onset of 
movement is crucial for designing and implementing rehabilitation 
devices with potential real-life applications. The earlier the movement 
intention can be recognized, the earlier the rehabilitation system can 
adjust parameters and provide timely activation according to the 
subjects’ needs. The detection of pre-movement intention with the 
EEG signal alone is not surprisingly. However, few studies have 
explored the integration of EEG and EMG signals for intention 
detection before movement onset. Previous studies have suggested 
that interactions between EEG and EMG activities begin even before 
the physical execution of movement (Deng et al., 2023). A possible 
reason is that in preparation for the movement initiation, the cortical 
sensory control system begins to deploy attention, which leads to a 
synchronized oscillations of neuromuscular motor neurons (Zhu 
et al., 2022). In addition, our results showed that the classification 
performance using pre-movement windows was similar as using 

either trans-onset or post-onset windows. Therefore, the proposed 
method could be a promising tool in close-loop HMI control system.

There is a large body of research demonstrating that movement 
intention can be decoded from EEG signals on SCI patients (Rohm 
et al., 2013; King et al., 2015; López-Larraz et al., 2016). It has been 
demonstrated that substantial neural control information can 
be extracted from the upper limb muscles of SCI patients (Liu et al., 
2014). Our study provides additional evidence that the residual EMG 
signal from lower limb in SCI patients can also be successfully used to 
decode movement intention for sitting and standing. Additionally, 
EEG offers complementary discriminative information, enhancing the 
classification accuracy. Although the cortex-muscle interactions have 
been shown to effectively evaluate the residual integrity of the 
neuromuscular system in SCI patients (Cremoux et al., 2017), little 
investigation has explored the feasibility of using EEG–EMG 
functional connectivity for decoding movement intentions. Similar to 
the healthy subjects, our results show that the EEG–EMG network 
weighted by MI also achieved superior decoding performance in SCI 
patients, compared to individual EEG and EMG networks. It is worth 
noting that when using the EEG network weighted by MI, the average 
classification accuracy of the SCI patients was higher than that of the 
healthy subjects. This could be attributed to the fact that, SCI patients 
with lower limb functional impairments, had to exert more effort and 
concentration to perform sitting and standing, which are complex 
tasks. Furthermore, we found considerable number of stand-to-sit 
intentions were misclassified as rest. This can be attributed to the fact 
that the stand-to-sit movement involves eccentric muscle contractions 
to control the descent, which is more complex than concentric muscle 
contractions (Latella et  al., 2019). In SCI patients, the control of 
eccentric contractions can be impaired due to significant reductions 
in muscle strength, coordination and functionality (Balbinot et al., 
2021). Additionally, although studies have shown that SCI patients 
generates greater activation during eccentric contractions (Souza 

FIGURE 11

Detailed significant p-values for the functional connectivity strength between each pair of channels across three tasks for S5 during the (A) pre-fatigue 
and (B) post-fatigue stages.
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et al., 2005), the increased activation which may be inconsistent due 
to muscle weakness, could contribute to difficulties in distinguishing 
stand-to-sit intentions from rest using EMG data alone.

A limitation of the proposed method described in this work is the 
choice of functional connectivity measures. Several other methods 
have also been used to analyze functional connectivity in neuroscience, 
such as maximal information coefficient (Reshef et al., 2011), wavelet 
coherence (Xi et  al., 2021), cross-spectral coherence (Yang et  al., 
2016). It would be  worthwhile to explore different connectivity 
methods in future studies to further improve the performance of 
intention detection accuracy based on EEG–EMG networks. 
Additionally, our study is limited by the sample size and the inclusion 
of SCI patients who have residual EMG activity. The effect of spinal 
cord injury on motor ability is diverse, depending on the location of 
the injury and the severity of the injury. There has been no consistent 
conclusion on how the characteristics of EMG change following spinal 
cord injury. Meanwhile, SCI also alters brain activity related to 
movement (Castro et al., 2013). The heterogeneity of SCI may result 
in differences in the neural reorganization processes and muscle 
strength of patients (Freund et al., 2013). To verify the robustness and 
generality of the fusion method, future studies should involve more 
diverse patient populations, encompassing various subtypes of 
SCI. Furthermore, it remains to be explored whether the proposed 
method can be generalized to other functional lower limb movements, 
such as gait initiation, step up, back step, which are relevant to 
activities of daily living.

5 Conclusion

In this research, we introduced a multimodal HMI that integrates 
EEG and EMG signals to improve the accuracy and stability of 
movement intention detection of sitting and standing by learning 
discriminative spatial network topology patterns, which is crucial for 
controlling rehabilitation systems timely and inducing motor learning 
and Hebbian-associated plasticity. The feasibility of the proposed 
method was validated through experiments with eight healthy subjects 
and five SCI patients with residual EMG signals. The fusion method 
significantly improves classification accuracy compared with the 
results obtained from single modality data. Our results showed that 

functional connectivity measures play a crucial role in recognition 
performance, with the MI-based EEG–EMG network significantly 
outperforming COH and CC-based methods. The average 
classification accuracy was 94.33 and 92.87% for healthy subjects at 
the pre-fatigue stage and the post-fatigue stage, respectively. For SCI 
patients, the average classification accuracy is 87.54%, highlighting its 
potential reliability in real-world clinical rehabilitation settings. 
Furthermore, the classification performance using pre-movement 
window was comparable with the trans-onset or post-onset windows. 
The proposed approach offers a promising tool for developing a 
closed-loop HMI neurorehabilitation system.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by the Zhejiang 
Provincial People’s Hospital. The studies were conducted in accordance 
with the local legislation and institutional requirements. The 
participants provided their written informed consent to participate in 
this study.

Author contributions

CL: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Software, Validation, Visualization, 
Writing  – original draft, Writing  – review & editing. YX: Data 
curation, Formal analysis, Methodology, Validation, Writing – review 
& editing. TF: Data curation, Formal analysis, Writing – review & 
editing. MW: Data curation, Funding acquisition, Resources, 
Supervision, Writing – review & editing. XZ: Data curation, Writing – 
review & editing. LZ: Data curation, Writing – review & editing. RC: 
Data curation, Supervision, Writing  – review & editing. WHC: 
Writing  – review & editing. WDC: Conceptualization, Funding 

TABLE 4 Comparison of the classification accuracy (%) between the proposed method and the existing EEG–EMG fusion methods.

Paper S1 S2 S3 S4 S5 S6 S7 S8 Mean ± Std (%)

Chowdhury et al. 

(2019) 82.5 71.88 71.88 81.88 75.63 65 80.63 81.64 76.38 ± 6.37

Tryon and Trejos 

(2020)
93.13 90.63 90 93.75 90.63 90.63 91.25 90 91.25 ± 1.42

Al-Quraishi et al. 

(2021)

67.5 77.5 68.75 85.63 73.75 67.5 65 76.9 72.82 ± 6.95

Tryon and Trejos 

(2021)

97.53 93.83 95.06 95.06 93.83 95.06 87.65 89.74 93.47 ± 3.21

Jo et al. (2022) 78.13 80.63 80.63 79.38 67.5 74.38 76.88 73.08 76.32 ± 4.50

López-Larraz et al. 

(2024)

81.25 90.63 86.25 78.75 84.38 82.5 75 77.69 82.06 ± 5.03

Proposed 95 97.5 96.25 95.63 96.25 86.88 95.63 91.53 94.33 ± 3.48

The highest value for each subject is indicated in bold.

https://doi.org/10.3389/fnins.2025.1532099
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2025.1532099

Frontiers in Neuroscience 14 frontiersin.org

acquisition, Methodology, Supervision, Validation, Writing – review 
& editing. SZ: Writing – review & editing, Conceptualization, Funding 
acquisition, Methodology, Supervision, Validation.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This research 
was supported by STI 2030-Major Projects (2022ZD0208600), the Key 
R&D Program of Zhejiang (2021C03003, 2022C03029, 2021C03050, 
2022R52033), the National Natural Science Foundation of China 
(31371001), the Natural Science Foundation of Zhejiang Province 
(No. LQ20H170003), and Research Special Fund Project of Zhejiang 
Association of Rehabilitation Medicine (ZKKY2024008).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the reviewers. 
Any product that may be evaluated in this article, or claim that may 
be  made by its manufacturer, is not guaranteed or endorsed by 
the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnins.2025.1532099/
full#supplementary-material

References
Al-Quraishi, M. S., Elamvazuthi, I., Tang, T. B., Al-Qurishi, M., Parasuraman, S., and 

Borboni, A. (2021). Multimodal fusion approach based on EEG and EMG signals for 
lower limb movement recognition. IEEE Sensors J. 21, 27640–27650. doi: 10.1109/
JSEN.2021.3119074

Ang, K. K., and Guan, C. (2013). Brain-computer interface in stroke rehabilitation. J. 
Comput. Sci. Eng. 7, 139–146. doi: 10.5626/JCSE.2013.7.2.139

Bai, O., Rathi, V., Lin, P., Huang, D., Battapady, H., Fei, D.-Y., et al. (2011). Prediction 
of human voluntary movement before it occurs. Clin. Neurophysiol. 122, 364–372. doi: 
10.1016/j.clinph.2010.07.010

Balbinot, G., Li, G., Wiest, M. J., Pakosh, M., Furlan, J. C., Kalsi-Ryan, S., et al. 
(2021). Properties of the surface electromyogram following traumatic spinal cord 
injury: a scoping review. J. Neuroeng. Rehabil. 18:105. doi: 10.1186/
s12984-021-00888-2

Blank, A. A., French, J. A., Pehlivan, A. U., and O’Malley, M. K. (2014). Current 
trends in robot-assisted upper-limb stroke rehabilitation: promoting patient 
engagement in therapy. Curr. Phys. Med. Rehabil. Rep. 2, 184–195. doi: 10.1007/
s40141-014-0056-z

Bulea, T. C., Prasad, S., Kilicarslan, A., and Contreras-Vidal, J. L. (2014). Sitting and 
standing intention can be  decoded from scalp EEG recorded prior to movement 
execution. Front. Neurosci. 8:376. doi: 10.3389/fnins.2014.00376

Carpino, G., Pezzola, A., Urbano, M., and Guglielmelli, E. (2018). Assessing 
effectiveness and costs in robot-mediated lower limbs rehabilitation: a meta-analysis 
and state of the art. J. Healthc. Eng. 2018, 7492024–7492029. doi: 
10.1155/2018/7492024

Castro, A., Díaz, F., and Sumich, A. (2013). Long-term neuroplasticity in spinal cord 
injury patients: a study on movement-related brain potentials. Int. J. Psychophysiol. 87, 
205–214. doi: 10.1016/j.ijpsycho.2013.01.012

Chowdhury, A., Raza, H., Meena, Y. K., Dutta, A., and Prasad, G. (2019). An EEG-
EMG correlation-based brain-computer interface for hand orthosis supported neuro-
rehabilitation. J. Neurosci. Methods 312, 1–11. doi: 10.1016/j.jneumeth.2018.11.010

Cipriani, C., Antfolk, C., Controzzi, M., Lundborg, G., Rosen, B., Carrozza, M. C., 
et al. (2011). Online myoelectric control of a dexterous hand prosthesis by Transradial 
amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 260–270. doi: 10.1109/
TNSRE.2011.2108667

Cremoux, S., Tallet, J., Dal Maso, F., Berton, E., and Amarantini, D. (2017). Impaired 
corticomuscular coherence during isometric elbow flexion contractions in humans with 
cervical spinal cord injury. Eur. J. Neurosci. 46, 1991–2000. doi: 10.1111/ejn.13641

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of 
single-trial EEG dynamics including independent component analysis. J. Neurosci. 
Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Deng, L., Xu, B., Gao, Z., Miao, M., Hu, C., and Song, A. (2023). Decoding natural 
grasping behaviors: insights into MRCP source features and coupling dynamics. IEEE 
Trans. Neural Syst. Rehabil. Eng. 31, 4965–4976. doi: 10.1109/TNSRE.2023.3342426

Edgerton, V. R., and Roy, R. R. (2009). Robotic training and spinal cord plasticity. 
Brain Res. Bull. 78, 4–12. doi: 10.1016/j.brainresbull.2008.09.018

Enoka, R. M., and Duchateau, J. (2008). Muscle fatigue: what, why and how it 
influences muscle function. J. Physiol. 586, 11–23. doi: 10.1113/jphysiol.2007.139477

Esposito, D., Centracchio, J., Andreozzi, E., Gargiulo, G. D., Naik, G. R., and Bifulco, P. 
(2021). Biosignal-based human–machine interfaces for assistance and rehabilitation: a 
survey. Sensors 21:6863. doi: 10.3390/s21206863

Freund, P., Weiskopf, N., Ashburner, J., Wolf, K., Sutter, R., Altmann, D. R., et al. 
(2013). MRI investigation of the sensorimotor cortex and the corticospinal tract after 
acute spinal cord injury: a prospective longitudinal study. Lancet Neurol. 12, 873–881. 
doi: 10.1016/S1474-4422(13)70146-7

Grosse-Wentrup, M., Mattia, D., and Oweiss, K. (2011). Using brain–computer 
interfaces to induce neural plasticity and restore function. J. Neural Eng. 8:025004. doi: 
10.1088/1741-2560/8/2/025004

He, F., and Yang, Y. (2021). Nonlinear system identification of neural systems from 
neurophysiological signals. Neuroscience 458, 213–228. doi: 10.1016/j.
neuroscience.2020.12.001

Hogan, N., Krebs, H. I., Rohrer, B., Palazzolo, J. J., Dipietro, L., Fasoli, S. E., et al. 
(2006). Motions or muscles? Some behavioral factors underlying robotic assistance of 
motor recovery. J. Rehabil. Res. Dev. 43:605. doi: 10.1682/JRRD.2005.06.0103

Hu, X. L., Tong, K., Song, R., Zheng, X. J., and Leung, W. W. F. (2009). A comparison 
between electromyography-driven robot and passive motion device on wrist rehabilitation 
for chronic stroke. Neurorehabil. Neural Repair 23, 837–846. doi: 10.1177/1545968309338191

Jiang, G., Wang, K., He, Q., and Xie, P. (2024). E2FNet: an EEG- and EMG-based 
fusion network for hand motion intention recognition. IEEE Sensors J. 24, 38417–38428. 
doi: 10.1109/JSEN.2024.3471894

Jo, S., Jung, J. H., Yang, M. J., Lee, Y., Jang, S. J., Feng, J., et al. (2022). EEG-EMG hybrid 
real-time classification of hand grasp and release movements intention in chronic stroke 
patients. in 2022 International Conference on Rehabilitation Robotics (ICORR), 1–6. 
doi: 10.1109/ICORR55369.2022.9896592

Kim, B., Kim, L., Kim, Y.-H., and Yoo, S. K. (2017). Cross-association analysis of EEG 
and EMG signals according to movement intention state. Cogn. Syst. Res. 44, 1–9. doi: 
10.1016/j.cogsys.2017.02.001

King, C. E., Wang, P. T., McCrimmon, C. M., Chou, C. C., Do, A. H., and Nenadic, Z. 
(2015). The feasibility of a brain-computer interface functional electrical stimulation 
system for the restoration of overground walking after paraplegia. J. Neuroeng. Rehabil. 
12:80. doi: 10.1186/s12984-015-0068-7

Kirchner, E. A., Tabie, M., and Seeland, A. (2014). Multimodal movement prediction - 
towards an individual assistance of patients. PLoS One 9:e85060. doi: 10.1371/journal.
pone.0085060

Krebs, H. I., Volpe, B., and Hogan, N. (2009). A working model of stroke recovery from 
rehabilitation robotics practitioners. J. Neuroeng. Rehabil. 6:6. doi: 10.1186/1743-0003-6-6

https://doi.org/10.3389/fnins.2025.1532099
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnins.2025.1532099/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2025.1532099/full#supplementary-material
https://doi.org/10.1109/JSEN.2021.3119074
https://doi.org/10.1109/JSEN.2021.3119074
https://doi.org/10.5626/JCSE.2013.7.2.139
https://doi.org/10.1016/j.clinph.2010.07.010
https://doi.org/10.1186/s12984-021-00888-2
https://doi.org/10.1186/s12984-021-00888-2
https://doi.org/10.1007/s40141-014-0056-z
https://doi.org/10.1007/s40141-014-0056-z
https://doi.org/10.3389/fnins.2014.00376
https://doi.org/10.1155/2018/7492024
https://doi.org/10.1016/j.ijpsycho.2013.01.012
https://doi.org/10.1016/j.jneumeth.2018.11.010
https://doi.org/10.1109/TNSRE.2011.2108667
https://doi.org/10.1109/TNSRE.2011.2108667
https://doi.org/10.1111/ejn.13641
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1109/TNSRE.2023.3342426
https://doi.org/10.1016/j.brainresbull.2008.09.018
https://doi.org/10.1113/jphysiol.2007.139477
https://doi.org/10.3390/s21206863
https://doi.org/10.1016/S1474-4422(13)70146-7
https://doi.org/10.1088/1741-2560/8/2/025004
https://doi.org/10.1016/j.neuroscience.2020.12.001
https://doi.org/10.1016/j.neuroscience.2020.12.001
https://doi.org/10.1682/JRRD.2005.06.0103
https://doi.org/10.1177/1545968309338191
https://doi.org/10.1109/JSEN.2024.3471894
https://doi.org/10.1109/ICORR55369.2022.9896592
https://doi.org/10.1016/j.cogsys.2017.02.001
https://doi.org/10.1186/s12984-015-0068-7
https://doi.org/10.1371/journal.pone.0085060
https://doi.org/10.1371/journal.pone.0085060
https://doi.org/10.1186/1743-0003-6-6


Li et al. 10.3389/fnins.2025.1532099

Frontiers in Neuroscience 15 frontiersin.org

Kvalseth, T. O. (1987). Entropy and correlation: some comments. IEEE Trans. Syst. 
Man Cybern. 17, 517–519. doi: 10.1109/TSMC.1987.4309069

Langhorne, P., Coupar, F., and Pollock, A. (2009). Motor recovery after stroke: a 
systematic review. Lancet Neurol. 8, 741–754. doi: 10.1016/S1474-4422(09)70150-4

Latella, C., Goodwill, A. M., Muthalib, M., Hendy, A. M., Major, B., Nosaka, K., et al. 
(2019). Effects of eccentric versus concentric contractions of the biceps brachii on 
intracortical inhibition and facilitation. Scand. J. Med. Sci. Sports 29, 369–379. doi: 
10.1111/sms.13334

Leeb, R., Sagha, H., Chavarriaga, R., and Millán, J. D. R. (2011). A hybrid brain–
computer interface based on the fusion of electroencephalographic and 
electromyographic activities. J. Neural Eng. 8:025011. doi: 10.1088/1741-2560/8/2/025011

Leerskov, K., Rehman, M., Niazi, I., Cremoux, S., and Jochumsen, M. (2020). Investigating 
the feasibility of combining EEG and EMG for controlling a hybrid human computer 
interface in patients with spinal cord injury. in 2020 IEEE 20th International Conference on 
Bioinformatics and Bioengineering (BIBE), 403–410. doi: 10.1109/BIBE50027.2020.00072

Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M., Mazzotti, C., 
et al. (2015). An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. 
IEEE Trans. Haptics 8, 140–151. doi: 10.1109/TOH.2015.2417570

Li, H., Ji, H., Yu, J., Li, J., Jin, L., Liu, L., et al. (2023). A sequential learning model with 
GNN for EEG-EMG-based stroke rehabilitation BCI. Front. Neurosci. 17:1125230. doi: 
10.3389/fnins.2023.1125230

Li, C., Li, P., Zhang, Y., Li, N., Si, Y., Li, F., et al. (2024). Effective emotion recognition 
by learning discriminative graph topologies in EEG brain networks. IEEE Trans. Neural 
Netw. Learn. Syst. 35, 10258–10272. doi: 10.1109/TNNLS.2023.3238519

Li, C., Peng, Y., Qin, L., Huang, D., Chen, W., and Zhang, S. (2023). Enhanced pre-
movement detection of sitting and standing intention based on movement-related cortical 
potential., in 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1–5. doi: 
10.1109/BioCAS58349.2023.10388944

Li, X., Samuel, O. W., Zhang, X., Wang, H., Fang, P., and Li, G. (2017). A motion-
classification strategy based on EMG-EEG signal combination for upper-limb amputees. 
J. Neuroeng. Rehabil. 14:2. doi: 10.1186/s12984-016-0212-z

Lin, M., Huang, J., Fu, J., Sun, Y., and Fang, Q. (2023). A VR-based motor imagery 
training system with EMG-based real-time feedback for post-stroke rehabilitation. IEEE 
Trans. Neural Syst. Rehabil. Eng. 31, 1–10. doi: 10.1109/TNSRE.2022.3210258

Liu, J., Li, X., Li, G., and Zhou, P. (2014). EMG feature assessment for myoelectric 
pattern recognition and channel selection: a study with incomplete spinal cord injury. 
Med. Eng. Phys. 36, 975–980. doi: 10.1016/j.medengphy.2014.04.003

López-Larraz, E., Sarasola-Sanz, A., Birbaumer, N., and Ramos-Murguialday, A. 
(2024). Unveiling movement intention after stroke: integrating EEG and EMG for motor 
rehabilitation. bioRxiv. doi: 10.1101/2024.02.22.581596

López-Larraz, E., Trincado-Alonso, F., Rajasekaran, V., Pérez-Nombela, S., 
Del-Ama, A. J., Aranda, J., et al. (2016). Control of an ambulatory exoskeleton with a 
brain–machine Interface for spinal cord injury gait rehabilitation. Front. Neurosci. 
10:359. doi: 10.3389/fnins.2016.00359

Lu, C., Qi, Q., Liu, Y., Li, D., Xian, W., Wang, Y., et al. (2024). Exoskeleton recognition 
of human movement intent based on surface electromyographic signals: review. IEEE 
Access 12, 53986–54004. doi: 10.1109/ACCESS.2024.3388044

Mekki, M., Delgado, A. D., Fry, A., Putrino, D., and Huang, V. (2018). Robotic 
rehabilitation and spinal cord injury: a narrative review. Neurotherapeutics 15, 604–617. 
doi: 10.1007/s13311-018-0642-3

Moritani, T., Nagata, A., and Muro, M. (1982). Electromyographic manifestations of 
muscular fatigue. Med. Sci. Sports Exerc. 14, 198–202. doi: 
10.1249/00005768-198203000-00008

Nam, K. Y., Kim, H. J., Kwon, B. S., Park, J.-W., Lee, H. J., and Yoo, A. (2017). Robot-
assisted gait training (Lokomat) improves walking function and activity in people with spinal 
cord injury: a systematic review. J. Neuroeng. Rehabil. 14:24. doi: 10.1186/s12984-017-0232-3

Norman, R. W., and Komi, P. V. (1979). Electromechanical delay in skeletal muscle 
under normal movement conditions. Acta Physiol. Scand. 106, 241–248. doi: 10.1111/
j.1748-1716.1979.tb06394.x

Pion-Tonachini, L., Kreutz-Delgado, K., and Makeig, S. (2019). ICLabel: an automated 
electroencephalographic independent component classifier, dataset, and website. 
NeuroImage 198, 181–197. doi: 10.1016/j.neuroimage.2019.05.026

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., 
Turnbaugh, P. J., et al. (2011). Detecting novel associations in large data sets. Science 334, 
1518–1524. doi: 10.1126/science.1205438

Rohm, M., Schneiders, M., Müller, C., Kreilinger, A., Kaiser, V., Müller-Putz, G. R., 
et al. (2013). Hybrid brain–computer interfaces and hybrid neuroprostheses for 
restoration of upper limb functions in individuals with high-level spinal cord injury. 
Artif. Intell. Med. 59, 133–142. doi: 10.1016/j.artmed.2013.07.004

Savic, G., Frankel, H. L., Jamous, M. A., Soni, B. M., and Charlifue, S. (2018). 
Participation restriction and assistance needs in people with spinal cord injuries of 
more than 40 year duration. Spinal Cord Ser. Cases 4, 28–27. doi: 10.1038/
s41394-018-0056-9

Sburlea, A. I., Montesano, L., and Minguez, J. (2015). Continuous detection of 
the self-initiated walking pre-movement state from EEG correlates without session-
to-session recalibration. J. Neural Eng. 12:036007. doi: 
10.1088/1741-2560/12/3/036007

Shafiul Hasan, S. M., Siddiquee, M. R., Atri, R., Ramon, R., Marquez, J. S., and Bai, O. 
(2020). Prediction of gait intention from pre-movement EEG signals: a feasibility study. 
J. Neuroeng. Rehabil. 17:50. doi: 10.1186/s12984-020-00675-5

Solnik, S., DeVita, P., Rider, P., Long, B., and Hortobágyi, T. (2008). Teager–Kaiser 
operator improves the accuracy of EMG onset detection independent of signal-to-noise 
ratio. Acta Bioeng. Biomech. Wroclaw Univ. Technol. 10, 65–68.

Souza, A. L., Boninger, M. L., Fitzgerald, S., Shimada, S. D., Cooper, R. A., and 
Ambrosio, F. (2005). Upper limb strength in individuals with spinal cord injury who 
use manual wheelchairs. J. Spinal Cord Med. 28, 26–32. doi: 
10.1080/10790268.2005.11753795

Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: review of an 
emerging field. Clin. Neurophysiol. 116, 2266–2301. doi: 10.1016/j.clinph.2005.06.011

Trigili, E., Grazi, L., Crea, S., Accogli, A., Carpaneto, J., Micera, S., et al. (2019). 
Detection of movement onset using EMG signals for upper-limb exoskeletons in 
reaching tasks. J. Neuroeng. Rehabil. 16:45. doi: 10.1186/s12984-019-0512-1

Tryon, J., and Trejos, A. L. (2020). Classification of task weight during dynamic 
motion using EEG–EMG fusion. IEEE Sensors J. 21, 5012–5021. doi: 10.1109/
JSEN.2020.3033256

Tryon, J., and Trejos, A. L. (2021). Evaluating convolutional neural networks as a 
method of EEG–EMG fusion. Front. Neurorobot. 15:692183. doi: 10.3389/
fnbot.2021.692183

Wang, K., Xu, M., Wang, Y., Zhang, S., Chen, L., and Ming, D. (2020). Enhance 
decoding of pre-movement EEG patterns for brain–computer interfaces. J. Neural Eng. 
17:016033. doi: 10.1088/1741-2552/ab598f

Xi, X., Sun, Z., Hua, X., Yuan, C., Zhao, Y.-B., Miran, S. M., et al. (2021). Construction 
and analysis of cortical–muscular functional network based on EEG-EMG coherence 
using wavelet coherence. Neurocomputing 438, 248–258. doi: 10.1016/j.
neucom.2021.01.102

Yang, S., Li, M., and Wang, J. (2022). Fusing EMG and EEG to increase the robustness 
of hand motion recognition using functional connectivity and GCN. IEEE Sensors J. 22, 
24309–24319. doi: 10.1109/JSEN.2022.3221417

Yang, Y., Solis-Escalante, T., Van Der Helm, F. C. T., and Schouten, A. C. (2016). A 
generalized coherence framework for detecting and characterizing nonlinear 
interactions in the nervous system. I.E.E.E. Trans. Biomed. Eng. 63, 2629–2637. doi: 
10.1109/TBME.2016.2585097

Zhang, X., Lu, B., Weng, Z., Wang, Y., Hou, J., Qiu, J., et al. (2023). Within and between 
electrophysiology networks for EEG and EMG under different thumb forces. Biomed. 
Signal Process. Control 86:105249. doi: 10.1016/j.bspc.2023.105249

Zhu, F., Li, Y., Shi, Z., and Shi, W. (2022). TV-NARX and Coiflets WPT based time-
frequency granger causality with application to corticomuscular coupling in hand-
grasping. Front. Neurosci. 16:1014495. doi: 10.3389/fnins.2022.1014495

https://doi.org/10.3389/fnins.2025.1532099
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1109/TSMC.1987.4309069
https://doi.org/10.1016/S1474-4422(09)70150-4
https://doi.org/10.1111/sms.13334
https://doi.org/10.1088/1741-2560/8/2/025011
https://doi.org/10.1109/BIBE50027.2020.00072
https://doi.org/10.1109/TOH.2015.2417570
https://doi.org/10.3389/fnins.2023.1125230
https://doi.org/10.1109/TNNLS.2023.3238519
https://doi.org/10.1109/BioCAS58349.2023.10388944
https://doi.org/10.1186/s12984-016-0212-z
https://doi.org/10.1109/TNSRE.2022.3210258
https://doi.org/10.1016/j.medengphy.2014.04.003
https://doi.org/10.1101/2024.02.22.581596
https://doi.org/10.3389/fnins.2016.00359
https://doi.org/10.1109/ACCESS.2024.3388044
https://doi.org/10.1007/s13311-018-0642-3
https://doi.org/10.1249/00005768-198203000-00008
https://doi.org/10.1186/s12984-017-0232-3
https://doi.org/10.1111/j.1748-1716.1979.tb06394.x
https://doi.org/10.1111/j.1748-1716.1979.tb06394.x
https://doi.org/10.1016/j.neuroimage.2019.05.026
https://doi.org/10.1126/science.1205438
https://doi.org/10.1016/j.artmed.2013.07.004
https://doi.org/10.1038/s41394-018-0056-9
https://doi.org/10.1038/s41394-018-0056-9
https://doi.org/10.1088/1741-2560/12/3/036007
https://doi.org/10.1186/s12984-020-00675-5
https://doi.org/10.1080/10790268.2005.11753795
https://doi.org/10.1016/j.clinph.2005.06.011
https://doi.org/10.1186/s12984-019-0512-1
https://doi.org/10.1109/JSEN.2020.3033256
https://doi.org/10.1109/JSEN.2020.3033256
https://doi.org/10.3389/fnbot.2021.692183
https://doi.org/10.3389/fnbot.2021.692183
https://doi.org/10.1088/1741-2552/ab598f
https://doi.org/10.1016/j.neucom.2021.01.102
https://doi.org/10.1016/j.neucom.2021.01.102
https://doi.org/10.1109/JSEN.2022.3221417
https://doi.org/10.1109/TBME.2016.2585097
https://doi.org/10.1016/j.bspc.2023.105249
https://doi.org/10.3389/fnins.2022.1014495

	Fusion of EEG and EMG signals for detecting pre-movement intention of sitting and standing in healthy individuals and patients with spinal cord injury
	1 Introduction
	2 Materials and methods
	2.1 Subjects and experimental paradigm
	2.2 Data acquisition and pre-processing
	2.3 Functional connectivity analysis
	2.4 Features extraction and classification

	3 Results
	3.1 Impact of fatigue training on MNF and MDF of EMG
	3.2 Comparison of the decoding accuracy of different functional connectivity methods
	3.3 Effects of window size and window range
	3.4 Comparison of the performance between the multimodal and unimodal methods
	3.5 SCI patient results

	4 Discussion
	5 Conclusion

	References

