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Olfactory sensory neurons within the nasal epithelium detect volatile odorants 
and relay odor information to the central nervous system. Unlike other sensory 
inputs, olfactory sensory neurons interface with the external environment and 
project their axons directly into the central nervous system. The use of adeno-
associated viruses to target these neurons has garnered interest for applications 
in gene therapy, probing olfactory sensory neuron biology, and modeling disease. 
To date, there is no consensus on the optimal AAV serotype for efficient and 
selective transduction of olfactory sensory neurons in vivo. Here we utilized serial 
confocal imaging and single-nucleus RNA sequencing to evaluate the efficacy of 
11 different AAV serotypes in transducing murine olfactory sensory neurons via 
non-invasive nasal inoculation. Our results reveal that AAV1, while highly effective, 
exhibited broad tropism, whereas AAV-DJ/8 showed the greatest specificity for 
olfactory sensory neurons.
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Introduction

The mammalian olfactory epithelium (OE) is a specialized epithelial tissue within the nose 
that plays a critical role in the sense of smell. Olfactory sensory neurons (OSNs) are specialized 
chemosensory neurons that reside in the OE and detect airborne chemicals through G-protein 
coupled odorant receptors. OSNs project their axons directly into the olfactory bulb (OB), 
creating a single-neuron chain between the external environment and the central nervous 
system (CNS). This conduit into the CNS provides unique opportunities for probing OSN 
biology, administering targeted gene therapies, and modeling disease. The use of AAVs has 
been explored for these purposes (Gadenstaetter et al., 2022), yet information is lacking on the 
optimal serotype for transducing OSNs. In the present study, we leveraged confocal imaging 
and single-nucleus RNA sequencing (snRNAseq) to identify optimal AAV serotypes for in vivo 
transduction of murine OSNs.
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Results

To test the efficacy of AAV transduction across commonly used 
serotypes, we packaged an identical construct (rAAV-EF1a-TdTomato-
WPRE-PolyA) into 11 different AAV capsid serotypes with reported OE 
and neuronal transduction (Gadenstaetter et al., 2022). The naturally 
occurring serotypes used in this study were AAV1, AAV2, AAV5, AAV7, 
AAV8, and AAV9, while the engineered capsids include AAV-DJ/8 
(Grimm et al., 2008; Hammond et al., 2017), AAV-PhP.eB (Chan et al., 
2017), AAV-PhP.S (Chan et al., 2017), AAV-rh10 (Cearley and Wolfe, 
2006; Gao et al., 2002), and AAV-SCH9 (Ojala et al., 2018). Each AAV 
serotype was introduced via non-invasive nasal inoculation (NINI) 
(Santry et al., 2017) into three male mice per serotype, for a total of 33 
experimental animals. After a four-week expression period, the olfactory 
bulb (OB) was processed to assess the co-localization of olfactory marker 
protein (OMP) immunofluorescence and AAV construct-driven 
TdTomato expression within OSN axon terminals in the glomerular 
layer. This approach measures the area of co-localized signal rather than 
directly counting neurons and serves as a proxy for the number of 
transduced OSNs (Figure 1A). By focusing on the reporter expression 
in the glomerular layer of the OB rather than cell body expression in the 
OE, we avoided potentially confounding TdTomato signals from other 
transduced accessory cell types within the OE.

For quantification, we performed confocal image analysis across 
OSN terminal fields within the glomerular layer (Figure  1B). 
Importantly, we  found no difference in total OMP area between 
samples from each serotype (Figure 1C), suggesting that transduction 
itself did not compromise overall OSN viability or OE integrity. 
We next quantified the amount of TdTomato surface area (normalized 
to OMP surface area) per section, and found that AAV1, AAV7, 
AAV-DJ/8, and AAV-rh10 displayed the greatest levels of expression 
(Figure 1D) in OSN terminals that project to the olfactory bulb. Off 
target transduction within the main olfactory bulb was quantified but 
found to be insignificant within all serotypes, with the highest count 
being only 10 cells in a given cross section (Supplementary Figure S1).

Following this primary reporter expression screen, we  next 
performed snRNAseq to more accurately quantify OSN transduction 
efficiency of the top four candidates in the different OE cell types. 
Towards this, we designed four new AAV expression constructs, all 
identical aside from a short barcode sequence (“ID”) that identifies the 
corresponding AAV serotype upon transduction and snRNA 
sequencing. The four AAVs were mixed at equal titer and introduced 
into wildtype mice via NINI. After 4 weeks of in vivo expression, OE 
was harvested for snRNAseq (Figure  2A). Data was processed 
following standard scRNAseq guidelines (Wolf et al., 2018). Using 
20,081 high-quality nuclei, we generated an annotated UMAP from 
known cell type-specific markers (Table 1) to quantify the distribution 
of cell types (Figures 2B–D) and identify those that were differentially 
transduced by the four candidate AAV serotypes. We confirmed cell 
type lineages by comparing terminal fate probabilities from Palantir 
pseudotime analysis, with horizontal basal cells (HBCs) designated as 
the starting point and mature OSN (mOSN), mature sustentacular 
(mSus), microvillar (MVC), and Bowman’s gland (BowG) cells as 
terminal fates (Setty et al., 2019) (Figures 2E,F). A two-sided t-test 
(α = 0.05) and chi-squared goodness of fit indicated that the terminal 
fate probabilities between GBCs and iSus cells were different for mOSN 
and mSus lineages (Figure 2G). Finally, we quantified the number and 
type of cells that were effectively transduced for each AAV serotype 

(Figure  2H). In total, we  identified 382 cells that harbored AAV 
barcodes. While mOSN transduction efficiency was highest for AAV1 
(Figure  2I), AAV-DJ/8 showed the greatest specificity for mOSNs 
(Figure 2J). Further examination of AAV1 expression showed broad 
tropism, with immature sustentacular (iSus) and airway ciliated cells 
(ACCs) contributing to the highest normalized cell counts (Figure 2K).

Discussion

In the present study, we leveraged confocal imaging and snRNAseq 
to identify optimal AAV serotypes for in vivo OSN transduction via 
NINI. Despite variability in our imaging dataset, attributable to 
unpredictable flow of fluid through the nasal turbinates during NINI, 
AAV1, AAV7, AAV-DJ/8, and AAV-rh10 displayed the greatest efficacy 
in their ability to transduce OSNs compared to other AAV serotypes 
we tested (Figure 1D). To determine which serotype was most efficient 
at transducing OSNs in a more quantitative, higher-resolution, and cell 
type-specific manner, we employed snRNA sequencing from isolated 
OE. We chose snRNAseq over traditional scRNAseq to maximize the 
sequencing depth per cell, as snRNAseq focuses on nuclear transcripts 
and reduces the total transcript pool, thereby increasing the likelihood 
of detecting rare transcripts, such as those derived from AAV genomes. 
While this approach may limit the total number of transcripts detected 
compared to scRNAseq, it was intentionally selected to optimize the 
sensitivity for identifying AAV-derived transcripts within the constraints 
of our sequencing depth. Ultimately, our study identified relatively few 
transduced cells suggesting either low overall transduction efficiency or 
missing counts from dropout due to low sequencing depth, which 
we are unable to disentangle. Additionally, identifying an ideal promoter 
optimized for robust and specific transgene expression in OSNs is an 
important consideration, as promoter efficiency may significantly 
influence both transduction outcomes and detection sensitivity. Though 
this is the first study to employ snRNAseq of the OE, we found that 
clustering and cell type distribution were similar to other single-cell 
sequencing studies previously performed on the OE (Brann et al., 2020; 
Fletcher et al., 2017; Li et al., 2024) (Figures 2B–D). We found that cell 
subsets comprised known lineages of interest, namely HBCs, globose 
basal cells (GBCs), immature OSNs (iOSNs), mOSNs, iSus, mSus, 
MVCs, and BowGs, and determined the corresponding pseudotemporal 
lineage patterns (Figure 2E). Through this, we substantiated cell type 
identities by comparing their terminal fate probabilities. Of interest, the 
terminal fate probability distribution of HBCs properly reflected 
multiple cell types, indicating their pluripotent ability to divide into all 
lineages of interest, but favoring mOSNs, mSus, and MVCs (Figure 2F). 
By comparing the terminal fates of iSus and GBC, we further validated 
the identified OSN and sustentacular cell lineages. Having confirmed 
the cellular composition of the transduced tissue, we next quantified the 
number of AAV+ cells within each cell type cluster (Figure 2H). Of the 
serotypes tested, AAV1 showed the highest transduction efficiency of 
OSNs (Figure 2I), but AAV-DJ/8, AAV7, and AAV-rh10 all showed 
greater OSN specificity, with AAV-DJ/8 showing the greatest specificity 
compared to AAV1 (Figure 2J). From these data, we also found that 
AAV1 showed the broadest tropism in the OE; transducing cell types 
such as HBCs, GBCs, ACCs, and particularly iSus, all with greater 
efficiency than OSNs (Figure 2K). Alongside a census of the cell types 
that comprise the mouse olfactory epithelium, together these findings 
also present useful implications for future research, including 
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FIGURE 1

Confocal imaging identifies AAV1, AAV7, AAV-DJ/8, and AAV-rh10 as efficient AAV serotypes for OSN transduction. (A) Overview of experimental 
paradigm. Identical plasmid constructs were packaged in 11 unique AAV serotypes, and each serotype was individually introduced via NINI. 
(B) Representative confocal image of OB cross-section from an AAV1 inoculated mouse. Upper right: close-up of OSNs forming the structures of the 
glomerular (outlined with dashed white lines) and olfactory nerve layers of the OB, with OMP (green) channel isolated. Middle right: close-up of the 
same region, with TdTomato (red) channel isolated. Bottom right: overlay of OMP and TdTomato channels. Blue = Hoechst. (C) Total area of OMP 
signal per OB section for each serotype. (D) Quantification of the percentage of TdTomato/OMP in the glomerular layer per OB section. Error bars 
represent the mean with standard deviation. Serotypes with a mean above 15% (horizontal dotted line) are represented by individual coloration, while 
those below all remain black. Statistical differences were assessed using one-way ANOVA followed by Tukey’s post hoc test, and the results are 
denoted by letters above each bar. Bars sharing a letter are not significantly different from one another (p > 0.05).
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FIGURE 2

Single nucleus transcriptomics shows AAV1 has the greatest transduction rate while AAV-DJ/8 has the greatest specificity for mOSNs. (A) Experimental 
workflow. (B) UMAP of snRNAseq dataset. (C) Dot plot showing the cell-type specific markers used for annotations. The x-axis is the marker, and the 
y-axis is the cell type. (D) Cell type distribution with total cell counts. The x-axis is the cell type with each bar’s color reflecting the corresponding color 
on the UMAP, and the y-axis is the absolute count of the respective cell types. (E) Minimum distortion embedding (MDE) with our specific lineages of 
interest including mOSN, mSus, MVC, and BowG lineages. The total OE cell type-specific pseudotime is shown above and individual lineage 
pseudotimes shown below, with red indicating late pseudotime and dark blue indicating early pseudotime. (F) Violin-box plot of terminal fate 
probability of HBCs calculated from the Palantir pseudotime. (G) Terminal fate probabilities of GBCs and iSus were compared using a two-sided t-test 
(α = 0.05) and chi-squared goodness of fit for each possible terminal fate. The stars represent the level of significance. If p < 1 × 10−4 there are 4 stars, 
<1 × 10−4 are 3 stars, 2 stars for <0.01, 1 star for <0.05, and ns for not significant. Chi-squared GOF was used to evaluate overall differences between 
terminal fate probabilities of each cluster. (H) Total AAV+ cell counts per cell type. (I) Total AAV+ mOSN cell counts. (J) Percent of total serotype 
positive cells which are mOSNs. *p < 0.05, Kruskal–Wallis test. (K) Percent AAV1+ cell counts of each cell type cluster total cell count.
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OSN-targeted gene therapy, probing OSN biology, modeling diseases 
where the OE and OB are loci of interest (e.g., Parkinson’s disease and 
Alzheimer’s disease), and informing the development of future AAV 
capsids for targeting OSNs.

Materials and methods

Animals

All mice used in this study were male C57BL/6J (Jax: 000664) and 
were used in compliance with Baylor College of Medicine IACUC. For 
single serotype inoculations, mice were 8 to 9 weeks old, and for 
combined serotype inoculations, mice were 10 weeks old.

Plasmid constructs and nasal inoculation

For all nasal inoculations, mice were briefly anesthetized with 
isoflurane. While under anesthesia, the mice were nasally inoculated 
in 5 μL doses for a total of 40 μL (alternating between nostrils, with 
20 μL of virus per nostril).

For inoculations of individual serotypes, rAAV-Ef1α-TdTomato-
WPRE-polyA was packaged in serotypes AAV1, AAV2, AAV5, AAV7, 
AAV8, AAV9, and the engineered capsids AAV-DJ/8, AAV-PHP.eB, 
AAV-PHP.S, AAVrh10, or AAV-SCH9. The plasmid was used as a 
template during the packaging process, with only the transgene and 

necessary regulatory elements being encapsulated within the AAV 
capsid, while the plasmid backbone remains excluded. Each serotype 
preparation was normalized to a final concentration of 4.85 × 1011 vg/
mL (aa total of 1.94 × 1010 vg per serotype). Three mice were 
inoculated with each individual serotype, for a total of 33 mice.

For mixed inoculations, unique variants of an rAAV-Ef1α-EGFP-
WPRE-ID-PolyA construct were packaged in AAV1, AAV7, 
AAV-DJ/8, and AAVrh10, with unique barcodes (ID) corresponding 
to each serotype. The AAVs were combined in equal concentrations 
(final concentration of 1.22 × 1011 vg/mL, a total of 6.10 × 109 vg per 
serotype). The IDs are listed below:

AAV1 ID: CGACGCCTTGTGGATTTTCGTTTTA
AAV7 ID: CGACGATTTTCGTTTTACCTTGTGG
AAV-DJ/8 ID: CGACGCGTTTTACCTTGTGGATTTT
AAVrh10 ID: CGACGGATTTTCGTTTTACCTTGTG

For materials and methods regarding AAV production, please 
refer to the Supplementary material. For a complete list of key reagents 
and resources, refer to Table 2.

Tissue processing for immunofluorescence

Four weeks after nasal inoculation with individual AAV serotypes, the 
33 mice were deeply anesthetized with isoflurane and transcardially 
perfused with 10 mL of ice-cold PBS followed by 10 mL of 4% 
paraformaldehyde (16% PFA diluted in PBS; Electron Microscopy 
Sciences 15710). The olfactory bulbs (OBs) were then harvested, fixed in 
4% PFA at 4°C overnight, and moved to 30% sucrose (36 h) for 
cryoprotection. OBs were frozen in OCT (Fisher HealthCare cat# 23-730-
571) and sectioned at 40 μm on a cryostat (Leica CM1860), with every 
third section collected for analysis. Tissue sections were blocked in 5% 
Donkey Serum (1X PBS, 0.1% Triton) for 1 h at room temperature, washed 
three times in PBST (0.1% Triton) and incubated with anti-OMP (1:20,000, 
FUJIFILM Wako Chemicals U.S.A. Corporation cat# 544-10001-WAKO) 
antibody at 4°C overnight. Sections were then washed three times with 
PBST (0.1% Triton), incubated with secondary antibody (anti-goat, Alexa 
Fluor 488 Invitrogen cat# A-11055) for 1 h at room temperature, washed 
three times with PBST, incubated with Hoechst (1:1,000, Thermo Fisher 
cat# 62249) for 15 min at room temperature, and finally washed one more 
time with PBST before being covered with Fluoromount-G (Southern 
Biotech cat# 0100-01) and sealed for microscopy.

Microscopy and image analysis

OB images were taken using a Leica TCS SP8 confocal microscope 
equipped with a 20×/0.75 objective and Leica LAS X software 
(RRID:SCR_013673, https://www.leica-microsystems.com/products/
microscope-software/details/product/leica-las-x-ls). To obtain the entire 
volume of each OB section, Z-stacks of ~30–40 μm per sample were 
collected at 1024 × 1024 resolution with 4× line averaging and 2× frame 
averaging. All images were stitched within the LAS X software. OB 
images were analyzed using Imaris software (v10.0, RRID:SCR_007370, 
http://www.bitplane.com/imaris/imaris). For each image, a region of 
interest was drawn over the glomerular layer (excluding the olfactory 
nerve layer) and was used to generate a mask. Volumetric surfaces were 
then generated following absolute intensity thresholding to account for 

TABLE 1 Cell types and cell type markers.

Cell type Markers

Airway ciliated cell (ACC) Foxj1, Cdhr3, Cdhr4

Bowman’s gland (BowG) Muc5b, Bpifa1, Aqp5, Sox9, Bpifb9b, 

Bpifb9a

Globose basal cell (GBC) Sox11, Kit, Neurod1, Neurog1, Hes6, 

Ascl1

Goblet cell (Gob) Agr2, Ltf, Spdef

Horizontal basal cell (HBC) Krt5, Krt14, Krt17, Trp63

Immune cells (Immune) Cd19, Cd74

Lymphatic epithelium (LE) Ccl21a

Microvillar cell (MVC) Ascl3, Cftr, Hepacam2, Lcn11

Mesenchymal cell (Mes) Alx1, Tfap2b, Carmn, Col1a1, Col1a2, 

Pdgfra, Vim, Runx2, Pdgfrb

Mature olfactory ensheathing cell 

(mOEC)

Alx3, Ptprz1, Ptn, Plp1, Mmd2

Immature olfactory sensory neuron 

(iOSN)

Gap43, Neurod1, Sox11, Dcx, Lhx2, 

Gng8, Tubb3, Stmn1, Stmn2

Mature olfactory sensory neuron 

(mOSN)

Ano2, Olfm1, Chga, Kcnk10, Cnga2, 

S100a5, Gnai

Respiratory epithelium (RE) Bpifb4

Solitary chemosensory neuron (SCC) Trpm5

Immature sustentacular cell (iSus) Bpifa1, Mybl1, Lgr5

Mature sustentacular cell (mSus) Muc2, Cyp2g1, SLc2a3, Ackr3

Undefined secretory cell (UnSec) Tmsb4x, Scgb1c1, S100a5,

Vascular endothelial cell (VE) Vwf, Flt1
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TABLE 2 Key resources.

Reagent type 
(species) or 
resource

Designation Source or 
reference

Identifiers Additional information

Strain, strain 

background (Mus 

musculus, male)

C57BL/6J The Jackson Laboratory RRID:IMSR_JAX:00066
8–9 weeks old for single serotype inoculations, 

10 weeks old for combined serotype inoculations

Chemical compound, 

drug
OptiPrep Millipore Sigma D1556-250ML Also known as iodixanol

Chemical compound, 

drug
OptiSeal 16 × 67 mm tubes Beckman Coulter Cat# 362181 Loaded with the iodixanol gradient

Other NVT 65 Near-Vertical Rotor Beckman Coulter Cat# 362755 Centrifuged at 60,000 rpm for 90 min

Other
Amicon Ultra-15 

Centrifugal Filter
Millipore Sigma UFC910024 For OptiPrep removal and AAV concentration

Commercial assay, kit qPCR AAV Titer Kit
Applied Biological 

Materials
Cat# G931 For viral titer

Other AAV production This paper

dx.doi.org/10.17504/

protocols.io.81wgbzwj3gpk/

v1

For production of the 11 serotypes described

Recombinant DNA 

reagent

rAAV-Ef1α-TdTomato-

WPRE-polyA
This paper Packaged into the 11 AAV serotypes described

Recombinant DNA 

reagent

rAAV-Ef1α-EGFP-WPRE-

ID-PolyA
This paper

AAV1 ID: 

CGACGCCTTGTGGATTTTCGTTTTA

AAV7 ID: 

CGACGATTTTCGTTTTACCTTGTGG

AAV-DJ/8 ID: 

CGACGCGTTTTACCTTGTGGATTTTA

AVrh10 ID: 

CGACGGATTTTCGTTTTACCTTGTG

Chemical compound 16% PFA diluted in PBS
Electron Microscopy 

Sciences
Cat# 15710 Diluted to 4% in 30 mL PBS

Chemical compound
Tissue-Plus O.C.T. 

Compound
Fisher Scientific Cat# 23-730-571

Other
CM1860 Cryostat 

Microtome
Leica Biosystems 40 μm sections

Antibody
Anti-OMP (Goat, 

polyclonal)
FUJIFILM Wako Cat# 544-10001-WAKO Immunofluorescence (1:20,000)

Antibody
Anti-Goat Alexa Fluor 488 

(Donkey, polyclonal)
Invitrogen Cat# A-11055 Immunofluorescence (1:1,000)

Chemical compound, 

drug
Hoechst Thermo Fisher Scientific Cat# 62249 Immunofluorescence (1:1,000)

Chemical compound, 

drug
Fluoromount-G SouthernBiotech Cat# 0100-01 Tissue mounting media

Other
TCS SP8 confocal 

Microscope
Leica Biosystems Equipped with 20×/0.75 objective

Software, algorithm LAS X Leica Biosystems RRID:SCR_013673 Imaging software for the confocal microscope

Software, algorithm Imaris v10.0 Bitplane RRID:SCR_007370 Analysis of OB sections

Other Image analysis This paper
dx.doi.org/10.17504/

protocols.io.n2bvjn1rxgk5/v1

For quantifying TdTomato expression in OB axon 

terminals

Chemical compound, 

drug
Nuclei Extraction Buffer Miltenyi Biotec Cat# 130-128-024 Lysis buffer

(Continued)

https://doi.org/10.3389/fnins.2025.1531122
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://scicrunch.org/resolver/RRID:IMSR_JAX:00066
http://dx.doi.org/10.17504/protocols.io.81wgbzwj3gpk/v1
http://dx.doi.org/10.17504/protocols.io.81wgbzwj3gpk/v1
http://dx.doi.org/10.17504/protocols.io.81wgbzwj3gpk/v1
https://scicrunch.org/resolver/RRID:SCR_013673
https://scicrunch.org/resolver/RRID:SCR_007370
http://dx.doi.org/10.17504/protocols.io.n2bvjn1rxgk5/v1
http://dx.doi.org/10.17504/protocols.io.n2bvjn1rxgk5/v1


Belfort et al. 10.3389/fnins.2025.1531122

Frontiers in Neuroscience 07 frontiersin.org

per-sample background fluorescence signal. To quantify transduction 
efficiency of each serotype, the total area (μm2) of TdTomato signal and 
OMP signal within the mask were quantified. The ratio of TdTomato 
signal to OMP signal was then calculated. An average of 23.3 OB sections 
were imaged for each of the 33 mice, for a total of 760 confocal images.

To blind the researchers to which serotype was being analyzed, 
image files were automatically renamed and randomly sorted into 
separate folders using a program generated in house. The files were 
converted back into their identifiable names after all Imaris-based 
quantification was completed.

For a more comprehensive guide on how to analyze images in this 
manner, please refer to the following protocols.io DOI: dx.doi.
org/10.17504/protocols.io.n2bvjn1rxgk5/v1.

To access the complete imaging dataset, please refer to 
“Comparative Analysis of AAV Serotypes for Transduction of 
Olfactory Sensory Neurons,” accession number S-BIAD1370 (DOI: 
10.6019/S-BIAD1370), on BioImage Archive.

Tissue harvest and nuclei isolation

Four weeks after nasal inoculation with AAV1, AAV7, AAV-DJ/8, 
and AAVrh10 (mixed together in equal proportions, final concentration 
of 1.22 × 1011 vg/mL for each serotype), four male C57BL/6J mice were 
deeply anesthetized and transcardially perfused with ice-cold PBS. The 
OE was then rapidly collected. Immediately following dissection, samples 
were cut into small pieces and processed using GentleMACS nuclei 
isolation protocol [Nuclei Extraction Buffer (Miltenyi Biotec, cat# 
130-128-024), Protector RNAse Inhibitor (Millipore Sigma, cat# 
3335402001), GentleMACS C tubes (Miltenyi Biotec, cat# 130-093-237), 
GentleMACS Octo Dissociator (Miltenyi Biotec, cat# 130-096-427), 
MACS SmartStrainers 70 μm (Miltenyi Biotec, cat# 130-098-462), MACS 
SmartStrainers 30 μm (Miltenyi Biotec, cat# 130-098-458)]. In brief, 
samples were placed in 2 mL of Miltenyi Nuclei Isolation Buffer and 
Protector RNAse Inhibitor in GentleMACS C tubes. Samples then 
underwent the preprogrammed “nuclei isolation” program in a 

TABLE 2 (Continued)

Reagent type 
(species) or 
resource

Designation Source or 
reference

Identifiers Additional information

Chemical compound, 

drug
Protector RNAse Inhibitor Millipore Sigma Cat# 3335402001

Other GentleMACS C tubes Miltenyi Biotec Cat# 130-093-237

Other
GentleMACS Octo 

Dissociator
Miltenyi Biotec Cat# 130-096-427

Other
MACS SmartStrainers 

70 μm
Miltenyi Biotec Cat# 130-098-462

Other
MACS SmartStrainers 

30 μm
Miltenyi Biotec Cat# 130-098-458

Commercial assay, kit
Chromium Single Cell 3′ 

Reagent Kits User Guide 

(v3.1 Chemistry)

10X Genomics PN-1000121 Single-cell library preparation

Software, algorithm STAR v2.7.11b Thomas Gingeras Lab RRID:SCR_004463 Align paired-end snRNAseq FASTQ files

Software, algorithm STARSolo Alexander Dobin Lab RRID:SCR_021542 Align paired-end snRNAseq FASTQ files

Ssoftware, algorithm GRCm39 vM34 GENCODE RRID:SCR_014966 Custom FASTA and GTF file creation

Software, algorithm CellBender v0.3.0 Broad Institute
https://doi.org/10.1038/

s41592-023-01943-7
Empty droplet filtering

Software, algorithm Python v3.10.14
The Python Software 

Foundation
RRID:SCR_008394

Software, algorithm Scanpy v1.10.1 Fabian Theis Lab
RRID:SCR_018139, https://

github.com/scverse/scanpy
Processing and QC of single-cell data

Software, algorithm Solo (scvi-tools v1.0.4) Nir Yosef Lab
https://github.com/scverse/

scvi-tools
Doublet removal

Software, algorithm Rapids single-cell v0.10.5 Nir Yosef Lab
https://rapids-singlecell.

readthedocs.io
GPU-acceleration of Scanpy processing steps

Software, algorithm pyMDE v0.1.18
Minimum-distortion 

embedding, 2021
https://pymde.org MDE generation

Software, algorithm Palantir v1.3.3 Dana Pe’er Lab
https://github.com/dpeerlab/

Palantir
Pseduotime determinations

Software, algorithm RNA analysis code This paper
https://doi.org/10.5281/

zenodo.13620762
Generated in house
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GentleMACS Octo Dissociator. Immediately after dissociation, samples 
were strained through a 70 μm MACS SmartStrainer and collected in a 
15 mL tube and centrifuged at 500 × g for 5 min at 4°C. The supernatant 
was extracted and discarded, and the resulting pellet resuspended in 1 mL 
of ice-cold PBS. Resuspended samples were then run through a 30 μm 
MACS SmartStrainer. Upon visual inspection of nuclei following 
isolation, it was determined that debris levels were low enough for samples 
to proceed immediately to library preparation.

For additional information regarding snRNAseq library 
preparation and sample submission parameters, please refer to the 
Supplementary material.

snRNAseq bioinformatic analysis

Alignment and quantification of transcripts
Four sets of paired-end snRNAseq FASTQ files, each 

corresponding with a technical replicate, were aligned and quantified 
using STAR v2.7.11b (RRID:SCR_004463, http://code.google.com/p/
rna-star/) and STARSolo (RRID:SCR_021542, https://github.com/
alexdobin/STAR/blob/master/docs/STARsolo.md) (Kaminow et al., 
2021). For STARSolo to generate the spliced/unspliced count matrix, 
we used the velocyto flag available in the pipeline. All downstream 
steps were performed using the spliced count matrix unless specified 
otherwise. To include the AAV serotypes in the alignment, 
we  generated a custom reference FASTA and GTF file using the 
GENCODE (RRID:SCR_014966, https://www.gencodegenes.org) 
GRCm39 vM34 release (Frankish et al., 2023).

Ambient RNA correction
After alignment and quantification, raw spliced, unspliced, and 

ambiguous count matrices were generated for each sample. To reduce 
the effects of ambient RNA contamination and filter out empty 
droplets, we  applied CellBender v0.3.0 to each replicate’s 
corresponding spliced/mature RNA count matrix (Fleming et  al., 
2023). The resulting corrected matrix was transformed into a Scanpy 
object for further analysis in Python v3.10.14 (RRID:SCR_008394, 
https://www.python.org).

Processing, quality control, and integration of 
snRNAseq data

Each replicate was processed and filtered according to the standard 
processing guidelines from Scanpy v1.10.1 (RRID:SCR_018139, https://
github.com/theislab/scanpy) (Wolf et al., 2018). Initial thresholds of 
minimum 10 cells and 200 genes were set to remove any empty droplets 
missed by CellBender. Gene/feature initial cutoffs were left more lenient 
to avoid any possibility of filtering out the AAV genes in case low 
transduction and expression in the dataset. We set feature/gene and UMI 
barcode cutoffs to remove dead, low-quality cells, and doublets/
multiplets. The cutoffs were set as: 1,500 for number of features, 2,000 for 
total counts, and 1% for percent mitochondrial counts. Any cells with 
gene, count, and mitochondrial count percentages above these thresholds 
were removed from the dataset. After filtering, samples 1, 2, 3, and 4 had 
5,810, 6,065, 5,480, and 5,820 cells, respectively.

Doublet removal was performed using the raw count data using Solo 
from scvi-tools v1.0.4 (Bernstein et  al., 2020; Gayoso et  al., 2022). 
Filtering, including doublet removal, was performed on each individual 
sample and after integration of the count matrices. For data integration 
and batch effect removal, we used the single-cell variational inference 

(scVI) model from scvi-tools. Briefly, the model learns a nonlinear 
mapping between the latent space and the parameters of a zero-inflated 
negative binomial distribution used to generate gene expression counts. 
Batch correction is performed by including batch annotations as an input 
to the decoder network, allowing the model to learn batch-specific effects 
that can be removed when sampling from the latent space. Finally, the 
standard Scanpy processing pipeline including library log-normalization, 
selection of highly variable genes (N = 3,500), dimensional reduction with 
PCA and UMAP, and clustering was applied to the integrated data. 
We did not use scVI to regress out covariates due to the likelihood of over-
correction in the batch-effect removal step. The resulting cell × gene 
matrix was 20,081 × 3,500 (24,415 raw). When possible, computational 
speeds were accelerated using an NVIDIA A30 GPU and the rapids 
single-cell library v0.10.5, a library for GPU-acceleration of Scanpy 
processing steps (Avantika et al., 2023).

Classification of AAV+ cells
For identification of AAV+ cells, we set a threshold based off the 

log-normalized expression. Any cell i is considered positive for AAV 
gene j if

 { } { }log 510 where 0,1,2, , and 0,1,2,3ijX i N j−> ∈ … ∈

where N is the total number of cells minus one and j corresponds 
to each of the four AAV serotypes. By stratifying according to the cell 
types (Celltype Annotation), we were able to find the cell-specific 
frequency distribution of all AAV serotypes in the snRNAseq dataset.

Cell type annotation
Using the latent representation generated by scVI after integration, 

a uniform manifold approximation projection (UMAP) was generated. 
Clusters were generated using the Leiden algorithm at multiple 
resolutions to capture different size populations and cell type specific 
markers were used to confirm the identities. Using canonical markers 
derived from the literature, we identified and annotated each cluster 
according to the cell type that it belonged to (see Table 1). For clusters 
that were seemingly distinct but expressed the same cell type clusters, 
we included a separate metadata column to annotate the clusters with 
an additional identifier (i.e., mSus and mSus2).

Pseudotime and terminal fate probability
We selected only relevant lineages of interest for downstream 

analysis and confirmation, specifically OSN, Sus, MVC, and BowG 
lineages. The relevant cell types include HBC, GBC, iOSN, mOSN, iSus, 
mSus, MVC, and BowG. After subsetting, the nearest neighbor graph 
was re-calculated again to find the relationships between the remaining 
clusters. To improve the visualization of our dataset, we  used the 
minimum distortion embedding (MDE) technique available in pyMDE 
v0.1.184 to generate a new embedding space (Agrawal et al., 2021).

To confirm the identities of our cell type annotations, 
we determined the pseudotime relationships between clusters using 
Palantir (Setty et al., 2019) v1.3.3. We specified HBC as the root cell 
while defining mOSN, mSus, MVC, and BowG as the terminal points 
for Palantir. We then examined the Palantir-generated terminal fate 
probabilities of HBC, GBC, and iSus to confirm the annotated cluster 
identities. The terminal fate probabilities were evaluated with a 
two-sided t-test for each individual lineage and a chi-squared 
goodness of fit (GOF) to evaluate the total terminal fates with α = 0.05.
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Statistical analyses
Statistical analyses were conducted to assess differences across 

experimental groups. For Figure 1, data were analyzed using one-way 
analysis of variance (ANOVA) followed by Tukey’s post hoc test to 
determine significant differences between groups. Results are 
represented in the figures using compact letter displays, where bars 
sharing the same letter are not significantly different (p > 0.05).

For Figure 2, multiple statistical methods were employed based on 
the type of data analyzed. For comparisons of terminal fate 
probabilities of HBCs, a two-sided t-test (α = 0.05) was used. For 
evaluating terminal fate probabilities of GBCs and iSus across clusters, 
a chi-squared goodness-of-fit test was applied. The levels of statistical 
significance are denoted as follows: ****p < 1 × 10−4, ***p < 1 × 10−3, 
**p < 0.01, *p < 0.05, and ns for not significant. For comparisons of 
AAV-positive cell percentages across groups, the Kruskal–Wallis test 
was used to determine significance.

All statistical analyses were performed using GraphPad Prism and 
Python, and p-values less than 0.05 were considered significant unless 
otherwise stated.

Data availability statement

All code used in bioinformatic analysis is publicly available on 
Github at https://github.com/LiuzLab/Mouse-AAV-OSN. Raw count 
matrices and the final processed AnnData object are available with the 
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Raw FASTQ files are available on the CRN Cloud. All images collected 
for this manuscript are publicly available through BioImage Archive 
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