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epilepsy with hippocampal 
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Background: Ferroptosis is a form of regulated cell death that damages neurons 
in the central nervous system. In this study, we aimed to construct ferroptosis-
related gene signatures in temporal lobe epilepsy with hippocampal sclerosis 
(TLE-HS) and explore their diagnostic role in TLE-HS.

Methods: The GSE205661 dataset was acquired for training purposes, while 
the GSE71058 was obtained to serve as the validation dataset. Subsequently, 
ferroptosis-related differentially expressed genes (FR-DEGs) in TLE-HS were 
further analyzed. We  used weighed gene co-expression network analysis 
(WGCNA) algorithm, single-factor logistic regression analysis, and LASSO 
algorithm to screen characteristic FR-DEGs. Then, the receiver operating 
characteristic (ROC) was used to evaluate the value of these characteristic 
genes in disease diagnosis. Finally, a long non-coding RNA (lncRNA)–microRNA 
(miRNA)–messenger RNA (mRNA) network was constructed.

Results: We identified 141 FR-DEGs in TLE-HS, and these genes were enriched 
in T-cell activation involved in immune response and signaling pathways 
related to lipids and atherosclerosis. Further WGCNA was performed to select 
47 overlapping FR-DEGs, which were significantly enriched in 13 biological 
processes and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 
including the negative regulation of apoptotic process and ferroptosis. Four 
genes, namely PDK4, SMPD1, GPT2, and METTL14, were identified as signature 
genes in TLE-HS. Moreover, the ROC derived from the four genes in GSE205661 
and GSE71058 for predicting TLE-HS had an area under the curve (AUC) of 0.988 
and 0.929, respectively. Furthermore, the lncRNA–miRNA–mRNA network 
constructed from the 4 FR-DEGs consisted of 5 lncRNAs and 14 miRNAs. The 
signatures based on four FR-DEGs were found to be a strong predictor of TLE-
HS, and they may represent valuable therapeutic targets for TLE-HS.
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1 Introduction

Temporal lobe epilepsy (TLE) is one of the primary types of focal 
epilepsy, characterized by aberrant neuronal discharges or 
impairments in the temporal lobe cortex. The temporal lobe’s high 
susceptibility to epileptic seizures makes TLE one of the most 
prominent epilepsy syndromes (Engel, 2016). Currently, surgical 
resection is the primary treatment strategy (Jones and Cascino, 2016), 
and hippocampal sclerosis (HS) represents the most common 
pathology found in adult epilepsy surgery, accounting for over 
50–80% of TLE cases (Allone et  al., 2017). Although various 
techniques have emerged as auxiliary tools for diagnosing and treating 
TLE (Jiao et al., 2025), the condition is mainly diagnosed based on a 
history of characteristic partial seizure symptoms in the clinic (He 
et  al., 2022). In the early stage of TLE, limited signatures could 
be detected. To reduce the brain damage caused by the subsequent 
seizure of epilepsy, there is an urgent need to investigate more valuable 
diagnostic tools for TLE.

In recent years, bioinformatics analysis has investigated some 
valuable biomarkers for TLE and offered new insights into the process 
of TLE development. For example, He et al. demonstrated that TIMP1 
is the most significant inflammation-related gene associated with TLE, 
and its expression is downregulated in both epilepsy patients and 
experimental mice (He et al., 2023). Chen et al. identified six feature 
genes associated with epilepsy and confirmed their valuable diagnostic 
role in TLE (Chen S. et  al., 2023). Notably, ferroptosis, a newly 
identified type of regulatory cell death caused by the accumulation of 
excessive iron ions, could lead to the lipid damage mediated by the 
generation of reactive oxygen species (ROS) (Zheng et al., 2024). In 
the epileptic focus, oxidative stress and iron overload are proposed as 
common pathological characteristics. During high-intensity brain 
activity, lipid peroxidation levels can be elevated, which is triggered by 
the oxidative stress products and excessive free fatty acids. A recent 
study by Chen et al. demonstrated abnormal lipid accumulation in 
TLE (Chen Z. P. et  al., 2023). Meanwhile, additional evidence 
confirmed the association between central nervous system neurons 
damage and the accumulation and imbalance of free irons (Levi et al., 
2024). Thus, ferroptosis could provide effective diagnostic targets for 
TLE-HS. Although some researchers tried to explore ferroptosis-
related activity in TLE-HS, the exploration of diagnostic biomarkers 
related to ferroptosis in TLE-HS remains limited.

Consequently, GSE205661 and GSE71058 were downloaded as 
the training and validation datasets, respectively. Then, we screened 
ferroptosis related differentially expressed genes (FR-DEGs) in 
TLE-HS. Furthermore, the diagnostic model based on characteristic 
FR-DEGs was constructed to explore valuable ferroptosis-related 
targets and further analyze the molecular mechanisms underlying the 
progression of TLE-HS.

2 Materials and methods

2.1 Microarray data of TLE-HS

The transcriptional profiles of TLE-HS were downloaded from the 
National Center for Biotechnology Information Gene Expression 
Omnibus (NCBI GEO) (Barrett et al., 2013). The dataset was selected 
based on the keyword “temporal lobe epilepsy with hippocampal 

sclerosis (TLE-HS).” GSE205661 (Wang et al., 2022) was obtained as 
training dataset because it aligns with the TLE-HS disease type and 
provides comprehensive expression data for long non-coding RNAs 
(lncRNAs), microRNAs (miRNAs), and mRNAs. This dataset includes 
15 samples, comprising six TLE-HS patients and nine controls.

Meanwhile, the dataset GSE71058 (Griffin et  al., 2016) was 
downloaded as a validation dataset. This dataset contains 22 
hippocampal tissue samples, including eight TLE-HS cases and 14 
controls, and aligns GSE205661 in terms of disease type (TLE-HS). 
Furthermore, both datasets are derived from hippocampal tissue, 
ensuring consistency in tissue source and enhancing the comparability 
between the training and validation datasets.

2.2 Screening of deferentially expressed 
RNA (DERs)

Based on the sample information, Limma version 3.34.0 (Ritchie 
et al., 2015)1 (Bioconductor project) in R4.3.1 language was used to 
screen DERs in the TLE-HS vs. control, including lncRNA, miRNA, 
and mRNA. False discovery rate (FDR) < 0.05 and |log2 fold change 
(FC)| > 0.5 were set as the thresholds for DERs.

Ferroptosis related genes (FRGs) were downloaded from FerrDb 
database2 (Zhou et  al., 2023), including driver, suppressor, marker, 
inhibitor, inducer, and unclassified. Then, DERs were compared to FRGs, 
and the overlapping genes were retained, which were defined as 
FR-DEGs. Gene Ontology (GO) biology process and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) signal pathway enrichment analysis for 
FR-DEGs were performed by DAVID version 6.8 (Huang da et  al., 
2009a,b) (National Institutes of Health).3 The p-value less than 0.05 was 
selected as the threshold of enrichment significance.

2.3 Selecting of TLE-HS related genes 
based on weighed gene co-expression 
network analysis algorithm

WGCNA is a bioinformatics algorithm designed to construct 
co-expression networks and further identifies disease-associated 
modules or potential therapeutic targets. Based on all the genes 
detected in the GSE205661 dataset, WGCNA version 1.61 package 
(Bioconductor Project) in R4.3.1 language (Langfelder and Horvath, 
2008)4 was used to filter modules associated with disease states. The 
threshold for module partitioning was set as follows: The module set 
contains at least 200 genes with cutHeight set at 0.995. The modules 
with an absolute correlation to disease status greater than 0.3, along 
with the genes involved in those modules, were retained as disease-
related candidate genes. Finally, the genes in the retained disease-
related modules were compared with FR-DEGs, and the overlapping 
parts were retained as disease-related FR-DEGs candidate genes.

1 https://bioconductor.org/packages/release/bioc/html/limma.html

2 http://www.datjar.com:40013/bt2104/

3 https://david.ncifcrf.gov/

4 https://cran.r-project.org/web/packages/WGCNA/index.html
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2.4 Construction of network based on 
disease-related FR-DEGs

Based on the lncRNA–miRNA pairs obtained from DIANA-
LncBase5 (Paraskevopoulou et al., 2016), the regulatory relationship 
between differentially expressed lncRNA and miRNA was selected, and 
the pairs with the miRNA target gene score (miTG-score) higher than 
0.6 were retained. Then, the miRWalk 3.0 database (Li et al., 2020)6 was 
used to search for the target genes of miRNAs associated with lncRNA, 
and these target genes were compared with the disease-related 
FR-DEGs candidate genes. The overlapping parts were retained as 
regulated FR-DEGs. Finally, the regulatory network of FR-DEGs 
candidate genes was visualized using Cytoscape version 3.9.0 (Shannon 
et  al., 2003)7 (Cytoscape Consortium) through comprehensively 
analyzing lncRNA–miRNA and miRNA-target genes relationships.

2.5 Construction of a diagnostic model 
based on disease-related FR-DEGs

2.5.1 Single-factor logistic regression analysis
The single-factor logistic regression analysis was performed using the 

RMS R4.3.1 version 6.3–08 (Pan et al., 2021) based on the expression level 
of FR-DEGs. FR-DEGs with p < 0.05 would be retained.

2.5.2 Selection of optimal FR-DEGs combinations
The optimal FR-DEGs combinations were further selected using 

the least absolute shrinkage and selection operator (LASSO) algorithm 
based on the lars packages version 1.2 (Wang and Liu, 2015)9 
(Comprehensive R Archive Network) in R4.3.1 language.

2.5.3 Construction of diagnostic model
The disease diagnosis classifier based on FR-DEGs was constructed 

using support vector machine (SVM) method in R4.3.1 e1071 version 
1.6–810 (Comprehensive R Archive Network) based on data from the 
training set. Then, the effectiveness evaluation of the classifier based on 
GSE205661 training dataset was analyzed by the receiver operating 
characteristic (ROC) curve method in R3.6.1 pROC version 1.12.1 (Robin 
et al., 2011) (Comprehensive R Archive Network).11 The expression levels 
of important FR-DEGs and the efficacy of the diagnostic model were 
verified by data from the validation dataset.

Then, multiple decision curve analysis was performed to analyze the 
net return of each gene on the outcome of the sample using R4.3.1 
language rmda package version 1.6 (Harrell et al., 1996) (Comprehensive 
R Archive Network),12 and further, the influence of different genes on the 
sample species was also compared. Finally, the regulatory network of 
characteristic FR-DEGs was constructed, from which, important 
lncRNAs and miRNAs associated with FR-DEGs were analyzed.

5 http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php

6 http://129.206.7.150/

7 http://www.cytoscape.org/

8 https://cran.r-project.org/web/packages/rms/index.html

9 https://cran.r-project.org/web/packages/lars/index.html

10 https://cran.r-project.org/web/packages/e1071

11 https://cran.r-project.org/web/packages/pROC/index.html

12 https://cran.r-project.org/web/packages/rmda/index.html

2.6 Animals

Male Sprague Dawley rats (220–250 g, 6–8 weeks old) were 
obtained from Shanghai SLAC Animal Co., Shanghai, China. The rats 
were randomly divided into a model group and a control group, each 
comprising 15 rats. They were housed in a specific pathogen-free 
facility at a constant temperature of 24 ± 1°C with a 12-h light/dark 
cycle, and had unlimited access to food and water. All experimental 
procedures were conducted in accordance with relevant guidelines 
and regulations. The animal experiments adhered to the ARRIVE 
guidelines and were approved by the Biomedical Ethics Committee of 
Yanbian University (approval no: 2023228).

As previously described, a Lithium-Pilocarpine-Induced Status 
Epilepticus (SE) model was established (Eslami et  al., 2022). In 
summary, the rats in the model group received an intraperitoneal 
injection of 125 mg/kg lithium chloride. Approximately 18 h later, the 
rats were subcutaneously administered 1-mg/kg methylscopolamine 
(MilliporeSigma, Burlington, MA, United  States) to mitigate the 
undesired peripheral effects of pilocarpine. SE was induced 
approximately 30 min later by an intraperitoneal injection of 20-mg/
kg pilocarpine (Abcam). The control group was given lithium chloride 
and saline instead of pilocarpine. Seizures typically commenced 
10–30 min following pilocarpine administration. The severity of 
seizures was assessed using a modified Racine scale (Racine, 1972). 
According to the Racine scale, seizure intensity was classified as 
follows: Grade I: immobility, eyes closed, and facial clonus; grade II: 
head nodding and more severe facial clonus; grade III: clonus of one 
forelimb; grade IV: rearing with bilateral forelimb clonus; and grade 
V: generalized tonic–clonic seizures. The rats demonstrating grade IV 
or V on the Racine scale were considered to have successfully modeled 
SE. If SE persisted for over 1 h, 10% chloral hydrate was administered 
intraperitoneally to terminate SE. The rats were deeply anesthetized 
using 4% chloral hydrate, euthanized through cervical dislocation, and 
then their brain tissues were extracted.

2.7 Reverse transcription-quantitative 
polymerase chain reaction

The total RNA was isolated from cells using TRIzol reagent 
(Thermo Fisher Scientific, Waltham, MA, USA) and subsequently 
reverse transcribed with the PrimeScript RT reagent Kit (TaKaRa, 
Kyoto, Japan). For RT-qPCR analysis, the SYBR Green Quantitative 
RT-PCR Master Mix kit (Toyobo Co., Ltd., Osaka, Japan) was 
employed. Relative mRNA expression levels were determined 
using the 2-ΔΔCT method, with GAPDH serving as the internal 
reference. The primer sequences are listed in Table 1.

2.8 Statistical analysis

The statistical analyses were conducted using GraphPad Prism 
software version 9 (GraphPad Software, Boston, MA, United States). 
The data are presented as mean ± standard deviation (SD). The two 
groups were compared using Student’s t-test, with a significance 
threshold set at p < 0.05.
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FIGURE 1

A total of 141 ferroptosis related differentially expressed genes (FR-DEGs) in temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) were selected, 
and they were mainly enriched in T cell activation involved in immune response and signaling pathways related with lipid and atherosclerosis. 
(A) Volcano map of microRNA (miRNA); (B) volcano map of long non-coding RNAs (lncRNA) and mRNA; the red and blue dots represent significantly 
upregulated and downregulated DEGs, the horizontal dashed line represents False discovery rate (FDR) < 0.05, and the vertical dashed line 
represents|log2 fold change (FC)| > 0.5. (C) The Venn diagram of FR-DEGs; (D) Gene Ontology (GO) biological process enriched by FR-DEGs; and 
(E) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched by FR-DEGs. The p-value below 0.05 was selected as the threshold of 
enrichment significance. The horizontal axis represents the number of genes, the vertical axis represents the item name, and the color represents 
significance.

3 Results

3.1 141 FR-DEGs in TLE-HS were selected

A total of 5,505 mRNAs (3,426 downregulated and 2,079 
upregulated), 9 lncRNAs (all downregulated), and 145 miRNAs (76 
downregulated and 69 upregulated) in TLE-HS vs. control were 
screened. Volcano maps of differentially expressed miRNAs and 
differentially expressed lncRNA and mRNA are shown in 
Figures 1A,B, respectively. Meanwhile, 485 FRGs were obtained based 
on the FerrDb database. Then, we compared 485 FRGs and 5,505 
mRNAs. Finally, 141 FR-DEGs were screened (Figure 1C).

Further functional enrichment analysis showed 40 biological 
processes out of GO items (Figure  1D), and 17 KEGG pathways 
(Figure 1E) were significantly enriched by 141 FR-DEGs (p < 0.05). 
Notably, these genes were mainly enriched in T-cell activation, which 
is involved in immune response and signaling pathways related to 
lipids and atherosclerosis.

3.2 47 disease-related FR-DEGs were 
screened

To satisfy the premise of scale-free network distribution, 
we explored the value of the adjacency matrix weight parameter power 
based on all genes detected in the GSE205661 dataset. As shown in 
Figure 2A, the value of power was selected when the square value of 
correlation coefficient reaches 0.9 for the first time, that is, power = 16. 
Currently, the average node connectivity of the constructed 
co-expression network is 1, which fully aligns with the characteristics 
of the small-world network. Then, the coefficient of divergence 
between gene points was calculated, and a systematic clustering tree 
was obtained. Nine modules were obtained when we set the minimum 
number of genes in each module as 200 and the cutHeight as 0.995 
(Figure 2B). As shown in Figure 2C, six modules (black, brown, green, 
red, turquoise, and yellow) with absolute correlation with disease 
status higher than 0.3 were screened, which included 3,264 genes and 
recommended as disease-related candidate genes.

https://doi.org/10.3389/fnins.2025.1530182
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Then, these 3,264 genes were compared with 141 FR-DEGs, and 
47 overlapping genes were obtained (Figure 2D). Furthermore, these 
47 overlapping genes were significantly enriched in 13 biological 
processes (Figure 2E) and 14 KEGG pathways (Figure 2F), including 
negative regulation of apoptotic process and ferroptosis (p < 0.05).

3.3 Construction and verification of a 
diagnostic model based on disease-related 
FR-DEGs

The initial screening through univariate logistic regression 
analysis identified 12 FR-DEGs significantly associated with TLE-HS 
(p < 0.05, Figure  3A). The subsequent analysis using the LASSO 
algorithm refined this to four genes: PDK4, SMPD1, GPT2, and 

TABLE 1 The primer sequences used in this study.

Gene Primer (5′-3′)

PDK4-rF CAAGATTTCTGACCGAGGAG

PDK4-rR CTGATAATGTTTGAAGGCTGAC

SMPD1-rF CCAATGTGGCACGAGTAGGC

SMPD1-rR TTCGGCACTGATGGCAAAGA

GPT2-rF TCTTTGTGCCTTGATGTTCG

GPT2-rR AAGCAGGTTGACTACTTTGGTG

METTL14-rF GCAGAAACCTACGCGTCCTA

METTL14-rR CACCACGGTCAGACTTGGAT

GAPDH-rF AGACAGCCGCATCTTCTTGT

GAPDH-rR CTTGCCGTGGGTAGAGTCAT

FIGURE 2

A total of 47 disease-related ferroptosis related differentially expressed genes (FR-DEGs) were screened, and they were enriched in 13 Gene Ontology 
(GO) biological processes and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. (A) Above: selection diagram of the adjacency matrix 
weight parameter power. The horizontal axis represents the weight parameter power, and the vertical axis represents the square of the correlation 
coefficients between log(k) and log(p(k)) in the corresponding network. The red line represents the standard line where the square value of the 
correlation coefficient reaches 0.9. Below: A schematic diagram of the average connectivity of genes under different power parameters. The red line 
represents the value of the average connectivity of network nodes (1) under the weight parameter power of the adjacency matrix in the left figure; 
(B) module partitioning tree diagram with each color representing different module; (C) module-trait correlation heatmap; (D) The Venn diagram of 
WGCNA selected genes and FR-DEGs. (E) GO biological process enriched by FR-DEGs; and (F) Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways enriched by FR-DEGs. The p-value below 0.05 was selected as the threshold of enrichment significance. The horizontal axis represents the 
number of genes, the vertical axis represents the item name, and the color represents significance.
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FIGURE 3

The screening of characteristic ferroptosis related differentially expressed genes (FR-DEGs) in temporal lobe epilepsy with hippocampal sclerosis (TLE-
HS) and diagnostic model based on disease-related FR-DEGs genes. (A) Single-factor logistic regression of FR-DEGs, FR-DEGs with p < 0.05 would 
be retained; (B) the least absolute shrinkage and selection operator (LASSO) filtering parameter display diagram; (C) the expression levels of four FR-
DEGs in TLE-HS and controls and receiver operating characteristic (ROC) based on the four FR-DEGs in GSE205661; (D) the expression levels of four 
FR-DEGs in TLE-HS and controls and ROC based on the four FR-DEGs in GSE71058; (E) decision line diagram of GSE205661; and (F) decision line 
diagram of GSE71058.

METTL14, which were identified as optimal characteristic genes 
(Figure 3B).

The expression profiles of PDK4, SMPD1, GPT2, and METTL14 
were analyzed in GSE205661 and GSE71058 datasets using the limma, 
as depicted in Figures 3C,D. In both datasets, the expression levels of 
these four genes were significantly elevated in TLE-HS patients 
compared to controls (p < 0.05). Subsequently, the expression of these 
genes was validated in an animal model. The results indicated that the 
expression of PDK4, SMPD1, and METTL14 was significantly 
increased in the model group compared to the control group (p < 0.05, 

Supplementary Figure S1). At the same time, GPT2 showed no 
significant difference between the two groups (p > 0.05, 
Supplementary Figure S1). The ROC analysis demonstrated that these 
four genes provided strong predictive power for TLE-HS, with an area 
under the curve (AUC) of 0.988 in GSE205661 and 0.929 in GSE71058, 
highlighting their potential as biomarkers for this condition.

Subsequently, the decision curve analysis was performed to 
evaluate the clinical utility of models based on individual and 
combined gene expressions in both training and validation datasets. 
Figures 3E,F illustrate that the model combining all four genes offers 
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the highest net benefit in both GSE205661 and GSE71058, indicating 
a superior diagnostic advantage.

3.4 LncRNA–miRNA–mRNA network

We constructed a lncRNA–miRNA–mRNA network to elucidate 
the regulatory interactions within the biological system. Initially, 
lncRNA–miRNA pairs with a miTG-score exceeding 0.6 were 
identified, producing 71 pairs comprising seven lncRNAs and 57 
miRNAs. Then, the genes targeted by 57 miRNAs were screened, 
and the target genes were compared with disease-related FR-DEGs 
genes. The overlapping genes were retained as regulated FR-DEGs, 
and 394 miRNA-mRNA link pairs were obtained. Based on these 
interactions, we constructed a comprehensive lncRNA–miRNA–
mRNA network (Figure 4), which includes 7 lncRNAs, 57 miRNAs, 
and 42 mRNAs.

Furthermore, we developed a specific regulatory network focusing 
on four FR-DEGs used for model construction, as shown in Figure 5. 
From this network, we  identified five lncRNAs (MIR205HG, 
HOTAIR, BLACE, FAM157B, and FAM157A) and 14 miRNAs (hsa-
miR-1321, hsa-miR-30c-2-3p, hsa-miR-4514, hsa-miR-1253, hsa-miR-
1304-3p, hsa-miR-132-3p, hsa-miR-3127-5p, hsa-miR-3173-3p, 
hsa-miR-4454, hsa-miR-448, hsa-miR-5195-3p, hsa-miR-6509-5p, 
hsa-miR-212-3p, and hsa-miR-30a-3p) that are significantly associated 
with the regulation of FR-DEGs. These molecules are closely 

associated with the regulation of sour FR-DEGs and may play critical 
roles in the underlying biological processes.

4 Discussion

In this study, we aimed to investigate novel ferroptosis-related 
biomarkers for TLE-HS diagnosis. Our data identified four 
characteristic FR-DEGs for TLE-HS, including PDK4, SMPD1, GPT2, 
and METTL14. Furthermore, the diagnostic model based on the four 
signature genes showed valuable activity, which was verified by ROC 
and decision curve analysis. Moreover, lncRNA–miRNA–mRNA 
network included five lncRNAs and 14 miRNAs. Our study identified 
PDK4, SMPD1, GPT2, and METTL14 as novel diagnostic biomarkers 
in TLE-HS.

In adult humans, TLE was accepted as the most common epilepsy 
type, and massive neuronal loss in temporal lobe foci was the most 
frequently observed alteration (Zhang et  al., 2024). Cai and Yang 
suggested that inhibition of ferroptosis could achieve neuroprotection 
and improve neuronal damage in epilepsy (Cai and Yang, 2021). Our 
data showed 47 FR-DEGs involved in six clusters were mainly 
enriched in apoptotic process and ferroptosis. It is well known that 
prolonged epilepsy would result in neuronal damage and cell death. 
The role of ferroptosis in neurological disorders has been widely 
reported. Current evidence supported that ferroptosis inhibition 
might be an effective therapeutic approach for epilepsy (Cai and Yang, 
2021). Teocchi and D'Souza-Li showed that the progression of 

FIGURE 4

The long non-coding RNAs (lncRNAs)–microRNAs (miRNAs)–mRNAs network of disease-related FR-DEGs. Squares, triangles, and circles represent 
lncRNAs, miRNAs, and mRNAs, respectively, with colors indicating the degree of difference. The red connecting line represents lncRNAs–miRNAs, and 
the gray connecting line represents miRNAs–mRNAs.
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FIGURE 5

The long non-coding RNAs (lncRNAs)–microRNAs (miRNAs)–mRNAs connection relationships based on four characteristic ferroptosis related 
differentially expressed genes.

TLE-HS was significantly affected by three different death receptor 
apoptotic pathways, and they might be important targets for anti-
inflammatory therapy (Teocchi and D'Souza-Li, 2016). Furthermore, 
we identified four characteristic FR-DEGs in TLE-HS, which might 
play an important role in TLE-HS. ROC of diagnostic model based on 
the four genes had an AUC value of 0.988 in the training dataset and 
0.929 in the validation dataset, respectively, suggesting the valuable 
predicting role of the four genes for TLE-HS patients. Previously, 
Caldairou et al. (2021) showed that T2-weighted and fluid-attenuated 
inversion recovery/T1 features showed the highest accuracy with the 
AUC value of 0.95 in training cohorts and the AUC value of 0.94 in 
validation cohorts for revealing hippocampal pathology among 
TLE. Our findings might facilitate the improvement of MRI-based 
diagnosis for TLE-HS as an adjuvant diagnosis strategy.

It is well known that RNA m6A methylation is related to multiple 
kinds of neurological disorders, including epilepsy. Recent research 
showed a valuable role of m6A-related drugs on treating neurological 
disorders (Lv et  al., 2023). METTL3 and METTL14 were critical 
molecules leading to RNA m6A modification (Qi et al., 2024). During 
the development of the nervous system, METTL14 plays a key role in 

the modulation of gene expression, and its deletion could lead to 
disruption of cortical development by prematuring differentiation and 
decreasing proliferation (Li et al., 2025). Additional evidence showed 
knockdown METTL14 exhibited functional axon regeneration (Wang 
Y. et  al., 2018; Weng et  al., 2018). Previous data showed that 
miR-1304-3p, as the regulator of METTL14, was decreased in TLE 
hippocampus and upregulated in drug-resistant serum samples 
(Huang et al., 2017). Moreover, previous data have confirmed the 
critical role of lncRNA HOTAIR on cognition and inflammation 
(Ahmad et  al., 2024a; Ahmad et  al., 2024b). The brain function 
impairment would be  attenuated after silencing HOTAIR (Wang 
J. Y. et  al., 2018). Meanwhile, lipopolysaccharide-induced 
inflammatory response and cytokine expression in macrophages were 
closely related with HOTAIR levels (Obaid et  al., 2018). The 
significance of HOTAIR/miR-1304-3p/METTL14  in TLE-HS 
development should be further verified. SMPD1, a gene encoding 
acid-sphingomyelinase, generates ceramide by cleaving the 
phosphocholine head group of sphingomyelins. P.L302P mutated 
acid-sphingomyelinase triggered substrate accumulation and loss of 
cellular function in the central nervous system (Dodge et al., 2005). 
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Given their roles in the nervous system, METTL14 and SMPD1 may 
impact pathophysiological and physiological brain functions.

PDK4, one from the PDKs family, could be widely involved in 
various cancers, including migration, invasion, apoptosis, and 
transformation (Tao et al., 2024; Yang et al., 2024). These activities 
were all essential for the inhibition or promotion of numerous 
diseases, including TLE. Furthermore, miRNA dysregulation has been 
widely reported in neurodegenerative disorders. Notably, miR-212-3p, 
as the regulator of PDK4 in TLE-HS, has also been widely reported as 
a regulator mediating the apoptosis and invasion of cells (Wu et al., 
2020). Thus, PDK4 might be  a promising biomarker for treating 
TLE-HS via miR-212-39/PDK4 axis. GPT is an alanine transaminase 
leading to the generation of pyruvate and glutamate by catalyzing the 
reversible transamination between α-ketoglutarate and alanine. High 
levels of GPT2 mediate the proliferation of various tumor cells, which 
is important for tumor growth (Cao et al., 2017; Yao et al., 2025). 
Although there is relatively limited research regarding its connection 
with epilepsy, it is recommended to verify further the roles of GPT2 
and miR-212-39/PDK4 in TLE.

Our study has several limitations. First, despite utilizing multiple 
GEO datasets to identify potential ferroptosis-related gene signatures 
for TLE-HS, the sample size remained limited. Larger cohort studies 
are necessary to validate our findings. Second, we did not explicitly 
explore the mechanistic interactions between ferroptosis and other 
critical pathways involved in epilepsy pathogenesis—such as hypoxia 
signaling and neuroinflammatory cascades—due to our primary focus 
on constructing a diagnostic model. Finally, although the 
bioinformatic predictions suggested potential ceRNA regulatory 
networks, experimental validation using in vitro seizure models or 
patient-derived tissues is required to confirm these interactions.

Therefore, studying the role of PDK4, SMPD1, GPT2, and 
METTL14 in regulating the pathogenesis of central nervous system, 
brain injury, and cell activities may help improve diagnostic strategies 
for TLE-HS. It might have great potential application in the clinical 
practice of TLE-HS. However, our study should note some limitations, 
considering the individual heterogeneity and the limited number of 
enrolled subjects. Our findings should be further validated using more 
multicenter clinical data.
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