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brain nuclei
Ying Zhou 1,2†, Lingyun Liu 2†, Shan Xu 2, Yongquan Ye 3, 
Ruiting Zhang 2, Minming Zhang 2, Jianzhong Sun 2* and 
Peiyu Huang 2*
1 Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China, 2 The Second Affiliated 
Hospital, Zhejiang University School of Medicine, Hangzhou, China, 3 United Imaging, Houston, TX, 
United States

Purpose: To test the feasibility and consistency of a deep-learning (DL) 
accelerated QSM method for deep brain nuclei evaluation.

Methods: Participants were scanned with both parallel imaging (PI)-QSM and 
DL-QSM methods. The PI- and DL-QSM scans had identical imaging parameters 
other than acceleration factors (AF). The DL-QSM employed Poisson disk style 
under-sampling scheme and a previously developed cascaded CNN based 
reconstruction model, with acquisition time of 4:35, 3:15, and 2:11 for AF of 3, 4, 
and 5, respectively. For PI-QSM acquisition, the AF was 2 and the acquisition time 
was 6:46. The overall image similarity was assessed between PI- and DL-QSM 
images using the structural similarity index (SSIM) and peak signal-to-noise ratio 
(PSNR). QSM values from 7 deep brain nuclei were extracted and agreements 
between images with different Afs were assessed. Finally, the correlations 
between age and QSM values in the selected deep brain nuclei were evaluated.

Results: 59 participants were recruited. Compared to PI-QSM images, the mean 
SSIM of DL images were 0.87, 0.86, and 0.85 for AF of 3, 4, and 5. The mean 
PSNR were 44.56, 44.53, and 44.23. Susceptibility values from DL-QSM were 
highly consistent with routine PI-QSM images, with differences of less than 5% 
at the group level. Furthermore, the associations between age and QSM values 
could be consistently revealed.

Conclusion: DL-QSM could be used for measuring susceptibility values of deep 
brain nucleus. An AF up to 5 did not significantly impact the correlation between 
age and susceptibility in deep brain nuclei.
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1 Introduction

Various substances in the human body, such as iron calcium, and lipids, can alter magnetic 
susceptibility (Deistung et al., 2017). Abnormal changes in their content are often associated 
with the progression of specific diseases. In recent years, Quantitative susceptibility mapping 
(QSM) has been widely applied in clinical disease research, including neurodegenerative 
diseases (Shahmaei et al., 2019; Guan et al., 2017), vascular diseases (Probst et al., 2021; Hong 
et al., 2023), neuroinflammation (Chen et al., 2014), and traumatic brain injury (Chary et al., 
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2021). For example, in Parkinson’s disease, QSM values in the 
substantia nigra can be used to differentiate between patients and 
controls (Shahmaei et al., 2019; Guan et al., 2017), and QSM images 
can assist in the preoperative localization of deep brain nuclei (Cong 
et al., 2020). In Alzheimer’s disease, QSM can reflect pathological iron 
deposition associated with amyloid protein (Gong et al., 2019).

In conventional and clinical research applications, 
susceptibility-weighted imaging mainly uses three-dimensional 
GRE sequences. To achieve a strong susceptibility effect, a 
relatively long echo time is required to establish phase contrast 
(usually >30 ms for a 3 T MRI scanner) in QSM imaging, and 
multiple echoes are typically acquired to compute susceptibility 
(Shahmaei et  al., 2019; Guan et  al., 2017; QSM Consensus 
Organization Committee et  al., 2024). For visualizing fine 
anatomical structures (such as small venules and cortical 
structures) and small lesions (such as microbleeds) (Rotta et al., 
2021), a high spatial resolution is also required (Shen et al., 2020). 
A recent consensus paper suggests using isotropic acquisition 
protocols to avoid partial volume effect (QSM Consensus 
Organization Committee et al., 2024). The combination of these 
various demands can significantly extend acquisition times, 
thereby reducing patient compliance.

In recent years, deep learning (DL) methods have gained 
widespread attention and application in the field of magnetic resonance 
imaging (MRI), being utilized in various directions such as accelerating 
image acquisition, reducing gadolinium dose (Gong et al., 2018), and 
improving image resolution (Avanzo et al., 2020; Johnson et al., 2023; 
Almansour et al., 2023). In terms of accelerating MRI acquisition, DL 
methods are primarily used to recover k-space information from 
undersampled k-space data or to directly reconstruct images (Han et al., 
2020; Wang et al., 2021). They can also enhance image quality based on 
low-quality images reconstructed from undersampled data (Bash et al., 
2021). Previously, Gao (Gao et al., 2021) et al. trained a Deep Complex 
Residual Network (DCRNet) using 7 T MRI data. They tested the model 
on several retrospectively under-sampled datasets and one prospectively 
under-sampled dataset, demonstrating substantially reduced artifacts 
and blurring compared to two iterative methods and one deep learning 
method. Similarly, Zhang (Zhang et  al., 2023) et  al. developed a 
framework, Learned Acquisition and Reconstruction Optimization 
(LARO), designed to accelerate multi-echo GRE pulse sequences for 
QSM. The authors optimized the k-space sampling pattern and 
employed a recurrent temporal feature fusion model to capture signal 
redundancies along echo times. Their methods were tested on 
prospectively under-sampled k-space datasets from 10 healthy subjects, 
achieving an acceleration factor of 8 while maintaining QSM quality. 
While these studies demonstrated the feasibility of applying DL 
methods to QSM acquisition, they primarily focused on methodology 
development. The generalizability and stability of DL-based QSM 
remain untested in larger sample sizes.

In this study, we  aimed to test whether a DL-based 
reconstruction method could be  used for accelerating QSM 
acquisition without significant impact on the measurement of 
susceptibility in deep brain nuclei. Specifically, we investigated the 
overall image similarity between PI and DL-QSM images using the 
structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) 
indices. We tested the correlation and differences between different 
sets of QSM images. At last, we investigated whether the acceleration 
would affect the correlation analyses between age and nuclei 
QSM values.

2 Methods

2.1 Participants

The research protocol has been approved by the ethics committee 
of the Second Affiliated Hospital, Zhejiang University School of 
Medicine. We  recruited healthy participants from nearby 
communities through online advertising. The inclusion criteria were 
(1) between age 18 ~ 70; (2) without history of neuropsychiatric 
diseases or severe systematic diseases that could affect the brain; and 
(3) passing the routine MR safety screening. The exclusion criteria 
were (1) unable to hold still in the scanner; (2) accidental findings of 
brain occupying lesions. All participants signed informed consent 
before enrollment. A total of 60 participants were enrolled, but one 
participant was excluded due to head motion and data corruption. 
For all participants, demographic and clinical information 
were recorded.

2.2 DL-based acceleration method

The DL-QSM method uses a cascaded CNN model, namely 
ReconNet3D (Ye et al., 2023), to perform k-space to image reconstruction 
with single-channel input and single-channel output capacity, i.e., data 
from each channel were independently reconstructed (Ye et al., 2023). The 
model has five 3D convolutional blocks and data consistency layers, and 
each convolutional block contains five convolutional layers. It was trained 
on 42 multi-flip-angle and multi-echo GRE brain scans (a total of 662 
volumes of 3D data), acquired with fully sampled scans. The ground truth 
data were then retrospectively under-sampled using 3X and 5X Poisson-
disk schemes (Akasaka et al., 2016) in both the phase-encoding and slice 
directions. These under-sampled data were used as inputs for model 
training. Additionally, another 5 multi-echo GRE brain scans (75 volumes 
of 3D echo data) were used for testing. For 3X and 5X under-sampled 
data, the testing results showed good agreement with the ground truth. 
The trained model was then tested with scans from both phantoms and 
human volunteers and demonstrated good reconstruction accuracy (Ye 
et al., 2023).

2.3 Imaging acquisition

MRI examinations were performed on a 3 T scanner (uMR790, 
United Imaging Healthcare, Shanghai, China) with a 32-channel head 
coil. QSM images were acquired using a traditional 3D multi-gradient-
echo sequence equipped with both parallel imaging (PI) and DL 
method supporting 4 ~ 6 fold acceleration. The parameters were: 
TR = 30.2 ms, first TE = 3.3 ms, last TE = 25.0 ms, number of 
echoes = 8, echo spacing = 3.1 ms, flip angle = 15°, voxel size = 0.8 mm 
* 0.8 mm * 2 mm, covering the whole brain. All parameters were 
identical for both QSM scans except for acceleration factors. For the 
DL-QSM acquisition, the k-space was prospectively under-sampled 
using the Poisson disk scheme (Akasaka et al., 2016). The scan time of 
PI image was 6:46 with AF of 2, while the scan time of the DL-QSM 
scan was 4:35, 3:15, and 2:11 with AF of 3, 4, and 5, respectively. A 3D 
T1-weighted image was also acquired from each participant for 
registration and segmentation purposes. The parameters were: 
TR = 6.9 ms, TE = 2.9 ms, flip angle = 9°, TI = 1,000 ms, field of view 
(FOV) = 256 × 240 mm2, voxel size = 1 × 1 × 1 mm3, 208 sagittal slices.
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2.4 Image processing

QSM reconstruction was performed by the built-in QSM 
reconstruction pipeline on the scanner (QSM Consensus 
Organization Committee et al., 2024; Ye et al., 2019). Specifically, 
the preliminary extraction of the field map employed the recently 
proposed Multi-Dimensional Integration (MDI) algorithm (Ye 
et al., 2022), which utilizes the signal channel dimensions of array 
coils to remove various unknown unrelated phases (such as the 
inherent phase of coil sensitivity) while obtaining the original 
field map containing magnetic susceptibility phase and 
background field phase. After obtaining the original field map, it 
underwent an exact phase unwrapping using the SPUN algorithm 
(Ye et al., 2019) based on region-growing with prioritized seed 
point screening, and then low-frequency background field 
components were removed using the vSHARP method (Wu et al., 
2012), thereby obtaining a relative dipole field (RDF). Finally, an 
iterative L1-Norm based optimization calculation procedure was 
performed on the RDF field map to generate the QSM map. 
Dynamic Bayesian terms were incorporated during the 
optimization process to reduce artifacts and improve calculation 
accuracy and efficiency (Ye et al., 2019; Bilgic et al., 2014). To 
avoid motion-induced displacement of the head, all DL images 
were first co-registered to the PI images, using the FLIRT tool in 
the FMRIB Software Library (FSL, 6.0.11).

2.5 Image similarity assessment

To quantitatively assess the similarity between the PI and DL 
images, we calculated structural similarity index (SSIM) and peak 
signal-to-noise ratio (PSNR) using Matlab (R2019a). Both indices 

1 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

have been widely used to assess image reconstruction qualities in 
medical imaging (Knoll et  al., 2020). SSIM measures nonlocal 
structural similarity, which considers luminance, contrast, and 
structure. SSIM ranges from 0 to 1, with a large value representing 
better consistency. The PSNR measures voxel-wise differences between 
the images. Typically, a PSNR higher than 40 dB suggests excellent 
image quality.

2.6 Extraction of susceptibility values

We used SEPIA,2 a versatile tool for QSM image processing (Chan 
and Marques, 2021), to extract susceptibility values from deep brain 
nuclei. Specifically, a brain structural atlas (Pauli et al., 2018) was 
registered to each participant’s magnitude image using ANTs 
registration.3 Both linear and non-linear registrations were used to 
achieve accurate alignment. Registration accuracy was visually 
checked. Then the registered atlas was used to extract QSM values 
from seven large and important deep brain structures (Figure  1, 
Putamen, Pu; Caudate, Ca; external globus pallidus, GPe; internal 
globus pallidus, GPi; Red nucleus, RN; substantia nigra pars compacta, 
SNc; nigra pars reticulata, SNr).

2.7 Statistical analyses

We first examined the correlation between QSM values 
derived from different sets of images using Pearson’s correlation. 
Then we  compared the difference between PI- and DL-QSM 
images using paired t-tests. The Bland–Altman plot was used to 
show difference between each pair of PI-DL values. Finally, 

2 https://github.com/kschan0214/sepia

3 https://stnava.github.io/ANTs/

FIGURE 1

Location of the deep brain structures. Putamen, Pu; Caudate, Ca; external globus pallidus, GPe; internal globus pallidus, GPi; Red nucleus, RN; 
substantia nigra pars compacta, SNc; nigra pars reticulata, SNr.
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we tested the association between age and susceptibility values in 
each deep brain nucleus to investigate whether acquisition 
acceleration might affect the results.

3 Results

A total of 59 participants were enrolled in this study (Table 1, 
mean age: 44.0 y/o; range: 18–75 y/o; male/female: 22/37). Using 
PI-QSM images as reference, the mean SSIM of DL-QSM images 
were 0.87 (min-max: 0.82–0.89), 0.86 (0.77–0.89), and 0.85 

(0.81–0.89) for acceleration factors of 3, 4, and 5, and respective 
mean PSNR were 44.56 (37.31–52.12), 44.53 (37.42–53.10), and 
44.23 (37.35–52.91).

As shown in Figure  2, under different acceleration factors, 
DL-QSM exhibits a similar overall appearance compared to PI images. 
Figure 3 shows imaging details in the basal ganglia and brainstem 
regions. In general, the shape and local patterns of deep brain nuclei 
were mostly preserved, with a tendency toward smoother images 
under higher acceleration conditions.

As shown in Table 2, the susceptibility values of the seven deep 
brain structures in each DL-QSM group have a very high correlation 
with the PI-QSM group (r > 0.95, p < 0.001). In the PI-QSM and 
DL-QSM-AF3 groups, the GPe showed the highest correlation 
(r = 0.994, p < 0.001), while the RN showed the lowest correlation 
(r = 0.963, p < 0.001). In the PI-QSM and DL-QSM-AF4 groups, the 
GPe also showed the highest correlation (r = 0.993, p < 0.001), while 
the SNr showed the lowest correlation (r = 0.950, p < 0.001). In the 
PI-QSM and DL-QSM-AF5 groups, the GPe again showed the highest 
correlation (r = 0.993, p < 0.001), while the Ca showed the lowest 
correlation (r = 0.950, p < 0.001). Overall, among the PI-QSM group 
and all DL-QSM groups, the GPe showed the highest susceptibility 
value correlation.

On the group level (Table  3), the region with the greatest 
susceptibility difference between the PI-QSM and DL-QSM-AF3 
images is the SNr, with a mean difference of 4.19%; followed by the 
Ca, with a mean difference of 3.31%. The greatest difference between 
PI-QSM and DL-QSM-AF4 is in the Ca, at 2.98%; while the greatest 

FIGURE 2

Demonstration of PI and DL images. AF, Acceleration factor; Mag, magnitude image; Pha, phase image; QSM, quantitative susceptibility mapping.

TABLE 1 Demographic information.

N = 59

Age, year, mean ± SD 44.0 ± 15.4

Female, N (percent) 37 (62.7%)

Education 11.7 ± 3.0

Body mass index 22.8 ± 3.4

Hypertension, N (percent) 5 (8.5%)

Diabetes, N (percent) 0 (0%)

Hyperlipidemia, N (percent) 2 (3.4%)

Smoking, N (percent) 10 (16.9%)

Raw data were presented as mean (± standard deviation [SD]) or number (percentage, %) in 
tables unless otherwise noted.
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difference between PI-QSM and DL-QSM-AF5 is in the Pu, at 3.15%. 
There was no systematic bias between the values from different 
image groups.

As shown on the Bland–Altman plot (Figure 4), the differences 
between PI and DL-QSM images distributed evenly across different 
susceptibility levels. For putamen and caudate, differences between the 

FIGURE 3

Demonstration of the imaging details in PI and DL images. AF, Acceleration factor; Mag, magnitude image; Pha, phase image; QSM, quantitative 
susceptibility mapping.
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PI and DL images were mostly less than 5 ppb. For other nuclei, the 
difference was higher, reaching over 10 ppb. When looking into the 
source of these discrepancies, we noticed the influence of smoothness 
on local patterns in the QSM images (Figure 5). In some cases, mild 
head motion and imaging artifacts might also contribute to the 
differences (Table 4).

In the PI-QSM images, the susceptibility values of the Pu, Ca, SNc, 
and RN are positively correlated with age and have statistical significance, 
with the Pu showing the strongest correlation with age (r = 0.631, 
p < 0.001). In the other three DL-QSM image groups, the susceptibility 
values of the Pu, SNc, and RN also show significant positive correlations 
with age, with the Pu showing the strongest correlation with age (AF-3: 
r = 0.644, p < 0.001; AF-4: r = 0.653, p < 0.001; AF-5: r = 0.658, p < 0.001). 
The Ca shows a significant correlation with age in the DL-QSM-AF3 
images (r  = 0.284, p  = 0.029) and a marginally significant positive 
correlation with age in the DL-QSM-AF4 (r = 0.224, p = 0.088) and 
DL-QSM-AF5 images (r = 0.247, p = 0.060).

4 Discussion

This study showed that DL-QSM images with acceleration factors 
of 3, 4, and 5 had good similarity to PI-QSM images, with high 

correlation in the measured susceptibility values of nuclei (r > 0.95). 
When the acceleration factor was 5, the required scanning time was 
only one-third of the PI-QSM acquisition time, greatly improving 
scanning efficiency. Although there were differences in some nuclei 
between different QSM images, these differences were usually less 
than 5% on the group level. Such small variations do not significantly 
affect the correlation analyses between age and QSM values.

Under the condition of 5-fold acceleration, we did not observe 
significant differences in the overall image appearance and nuclei 
structures. It should be noted that as the k-space signal sampling 
decreased, the images appeared slightly smoother, which might lead 
to slight confusion of signals in adjacent nuclei or white matter areas. 
The smoothing might have affected the voxel values at the nuclei 
boundaries and causing fluctuations in the susceptibility values of 
some nuclei regions. However, the differences in susceptibility values 
of these nuclei are general small on the group level.

On the individual level, larger differences might occur in some 
participants. Such variations could be due to more complex reasons 
besides the abovementioned smoothing effect. Head motion between 
scans could change the angle between the acquisition plane and the 
main magnetic field direction, which might alter the susceptibility 
effect of the dipoles. Small head motion during each QSM acquisition 
could cause artifacts and affect QSM estimation. There might be other 
factors such as magnetic field shimming, temperature changes, and 
various imaging artifacts. One study scanned phantoms containing 
five different concentrations of gadolinium solutions using 12 clinical 
and 3 preclinical scanners (Deh et al., 2019). At the level of 0.26 ppm, 
the standard deviation of the measurements was 32 ppb. In a 
replication study that scanned 14 participant four times using an 
identical scanner and the same protocol, the standard deviation of 
QSM values in deep brain nuclei across different imaging sessions can 
reach 19 ppb (Santin et al., 2017). In our study, differences between PI 
and DL images were at a comparable level (mostly less than 20 ppb), 
suggesting the influence of undersampling and DL reconstruction 
could be tolerated.

The basal ganglia and brainstem nuclei are key regions of the brain 
responsible for processing motor control, emotions, cognition, and 
various other functions (Groenewegen, 2003; Seger, 2006). Due to 
metabolic changes, vascular damages, and other factors, significant iron 
deposition can occur in these nuclei during brain aging (Ashraf et al., 
2018). Some researchers have used QSM to study normal populations, 
showing that the susceptibility values of multiple nuclei in normal 

TABLE 2 Associations between susceptibility values derived from PI and 
DL images.

QSM_PI - DL_
AF3

QSM_PI - DL_
AF4

QSM_PI - DL_
AF5

r p r p r p

Pu 0.991 <0.001 0.990 <0.001 0.987 <0.001

Ca 0.968 <0.001 0.965 <0.001 0.961 <0.001

GPe 0.994 <0.001 0.993 <0.001 0.993 <0.001

GPi 0.980 <0.001 0.988 <0.001 0.978 <0.001

SNc 0.973 <0.001 0.956 <0.001 0.973 <0.001

SNr 0.972 <0.001 0.950 <0.001 0.975 <0.001

RN 0.963 <0.001 0.954 <0.001 0.963 <0.001

QSM, Quantitative susceptibility mapping; PI, parallel imaging; DL, deep-learning; AF, 
acceleration factor; Pu, Putamen; Ca, Caudate; GPe, external globus pallidus; GPi, internal 
globus pallidus; SNc, substantia nigra pars compacta; SNr, nigra pars reticulata; RN, Red 
nucleus.

TABLE 3 Pair-wise comparison between PI and DL images.

QSM_PI QSM_DL_AF3 QSM_DL_AF4 QSM_DL_AF5

Mean Mean Diff Mean Diff Mean Diff

Pu 30.8 ± 12.9 30.7 ± 13.1 −0.56% 31.2 ± 13.4 1.24% 31.8 ± 13.5 3.15%

Ca 29.6 ± 6.3 28.6 ± 6.3 −3.31% 28.7 ± 6.5 −2.98% 29.4 ± 6.7 −0.82%

GPe 120.2 ± 34.3 118.3 ± 35.4 −1.58% 119.6 ± 35.8 −0.45% 120.3 ± 35.1 0.11%

GPi 92.3 ± 26.0 90.4 ± 24.8 −2.06% 92.0 ± 24.8 −0.32% 94.4 ± 28.0 2.33%

SNc 84.6 ± 27.2 83.6 ± 25.8 −1.18% 85.3 ± 26.7 0.77% 86.7 ± 27.7 2.49%

SNr 99.9 ± 25.4 95.7 ± 24.8 −4.19% 100.3 ± 27.2 0.40% 102.6 ± 28.3 2.71%

RN 65.1 ± 23.1 64.3 ± 23.7 −1.15% 66.1 ± 23.7 1.57% 65.1 ± 25.0 0.07%

QSM, Quantitative susceptibility mapping; PI, parallel imaging; DL, deep-learning; AF, acceleration factor; Pu, Putamen; Ca, Caudate; GPe, external globus pallidus; GPi, internal globus 
pallidus; SNc, substantia nigra pars compacta; SNr, nigra pars reticulata; RN, Red nucleus. Bold represent significant correlation.
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FIGURE 4

Bland–Altman plots showing consistency between QSM values extract from PI and DL images. The consistency was higher for larger nuclei (e.g., 
putamen, caudate) compared to smaller nuclei (e.g., GPi, SNc). GPe, external globus pallidus; GPi, internal globus pallidus; RN, Red nucleus; SNc, 
substantia nigra pars compacta; SNr, substantia nigra pars reticulata.
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people tend to gradually increase with age (Acosta-Cabronero et al., 
2016; Li et  al., 2023). Consistent with previous results (Acosta-
Cabronero et al., 2016), our study also confirmed that the Pu region 
shows the most significant increase in susceptibility, followed by the RN, 
SNc, and Ca regions. Furthermore, the correlations between age and 
DL-QSM values were similar to those with PI-QSM values, suggesting 
that the acceleration did not induce unexpected impacts to the analyses.

Although the current study preliminarily demonstrates the 
potential of DL-QSM sequences in magnetic resonance imaging, the 
robustness and general applicability of the conclusions need to 
be validated in larger-scale cohort studies due to the limited sample size. 
Particularly, expanding the sample size for different groups of patients 
with neurological disorders will help comprehensively evaluate the 
stability and diagnostic accuracy of DL-QSM sequences under various 
pathological conditions. Secondly, under the current experimental 
conditions, using an MR scanner equipped with an NVIDIA GeForce 

RTX 2080 Ti graphics card, image reconstruction takes several minutes 
to generate QSM images. Upgrading to newer, more powerful graphics 
cards could significantly improve image processing speed. Thirdly, 
while using fully sampled data as a reference is ideal, the long acquisition 
time may result in a high failure rate in clinical settings. Therefore, 
we  used parallel imaging data as the reference. Since the model 
performance has already been assessed, and our primary goal was to 
evaluate the practicality of this method, comparing the image quality of 
DL-QSM with clinically established methods is considered acceptable. 
Furthermore, three-dimensional high-resolution QSM images have 
important value in preoperative nuclei localization, our future research 
will further investigate these related topics.

In summary, DL-QSM could be used for measuring susceptibility 
values of deep brain nuclei. An AF up to 5 did not significantly impact 
the accuracy of QSM results, nor the correlation between age and 
susceptibility in deep brain nuclei.

FIGURE 5

One participant showing relatively large differences in GPi and GPe between PI and DL images. Please notice the subtle differences within these 
regions (Pink: GPe; Cyan: GPi). ROIs, Regions of interest.
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