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In view of the growing volume of data, there is a notable research focus on hardware 
that offers high computational performance with low power consumption. Notably, 
neuromorphic computing, particularly when utilizing CMOS-based hardware, has 
demonstrated promising research outcomes. Furthermore, there is an increasing 
emphasis on the utilization of emerging synapse devices, such as non-volatile 
memory (NVM), with the objective of achieving enhanced energy and area efficiency. 
In this context, we designed a hardware system that employs memristors, a type 
of emerging synapse, for a 1T1R synapse. The operational characteristics of a 
memristor are dependent upon its configuration with the transistor, specifically 
whether it is located at the source (MOS) or the drain (MOD) of the transistor. 
Despite its importance, the determination of the 1T1R configuration based on 
the operating voltage of the memristor remains insufficiently explored in existing 
studies. To enable seamless array expansion, it is crucial to ensure that the unit 
cells are properly designed to operate reliably from the initial stages. Therefore, 
this relationship was investigated in detail, and corresponding design rules were 
proposed. SPICE model based on fabricated memristors and transistors was 
utilized. Using this model, the optimal transistor selection was determined and 
subsequently validated through simulation. To demonstrate the learning capabilities 
of neuromorphic computing, an SNN inference accelerator was implemented. 
This implementation utilized a 1T1R array constructed based on the validated 
1T1R model developed during the process. The accuracy was evaluated using a 
reduced MNIST dataset. The results verified that the neural network operations 
inspired by brain functionality were successfully implemented in hardware with 
high precision and no errors. Additionally, traditional ADC and DAC, commonly 
used in DNN research, were replaced with DPI and LIF neurons, resulting in a 
more compact design. The design was further stabilized by leveraging the low-
pass filter effect of the DPI circuit, which effectively mitigated noise.
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1 Introduction

The exponential growth of data requires the development of 
efficient hardware systems that consume minimal power while 
operating at high processing speeds. The von Neumann bottleneck, 
which is characterized by the separation of processing units and 
memory, results in a considerable increase in power consumption due 
to the constant transfer of data between these two components. To 
address this limitation, a plethora of research has been conducted into 
and developments have been made in technologies such as ASICs and 
processing-in-memory (PIM) with the aim of enhancing operations 
within the von Neumann architecture. Nevertheless, in order to 
resolve these issues in a fundamental manner, there is an increasing 
necessity for research into neuromorphic computing, which represents 
a paradigm shift from the traditional von Neumann architecture 
(Kemp, 2024).

The deployment of these novel computational architectures 
presents a number of challenges in relation to throughput, latency and 
power budget when applied to existing hardware. It is therefore 
necessary to design specific hardware. The majority of research in this 
field is based on CMOS technology and can be broadly categorized 
into two main areas: studies focusing on artificial neural network 
(ANN) and studies focusing on spiking neural network (SNN). In 
research based on ANN, the technique of gradient descent is typically 
employed to adjust the loss, with backpropagation being the primary 
method for training. Hardware accelerators, specifically neural 
processing units (NPUs), are developed based on artificial neural 
networks (ANNs). Functioning between the CPU and memory, NPUs 
perform parallel processing and large-scale data handling, enabling 
the rapid processing of bottleneck data and significantly enhancing 
overall system performance. The development of these accelerator 
units has reached a point where they are not only utilized in 
commercial smartphones but also incorporated into laptops (Tan and 
Cao, 2023; Feng et al., 2024).

In contrast, research based on spiking neural networks (SNN) is 
primarily concerned with the development of processors that emulate 
the functionality of the human brain through processing of 
spatiotemporal spike patterns. Notable advancements have been 
documented, including the introduction of Intel’s Loihi chip and 
IBM’s TrueNorth chip. Both chips are designed to include over 
1,000,000 neurons and more than 120,000,000 synapses per chip, 
representing an attempt to replace traditional computing architectures 
on a fundamental level (Vogginger et al., 2024).

Consequently, there have been continuous efforts to advance and 
implement neuromorphic computing leveraging CMOS technology. 
This technology involves the utilization of CMOS-based neuron 
circuits and synapses, typically implemented using SRAM or DRAM 
as the foundational synapse elements. However, in terms of area 
efficiency (GOPS/mm2) and energy efficiency (GOPS/W), CMOS 
based neuromorphic technology generally offers a performance 
improvement of about one order of magnitude (approximately 10 
times) compared to systems driven by GPUs based on conventional 
von Neumann architectures. The mean values reported in the 
literature indicate an area efficiency of approximately 300 GOPS/mm2 
and an energy efficiency of around 400 GOPS/W for the CMOS based 
neuromorphic systems (Zhang et al., 2020).

Reports indicate that the human brain contains over 1013 synapses 
in the neocortex (Tang et al., 2001). The synapse activity is estimated 

to occur between 1013 and 1016 times per second (Merkle, 2007). When 
this activity is divided by the brain’s power consumption of 
approximately 25 W, the result is an energy efficiency of around 
400,000 GOPS/W (based on 1015 operations per second). Further 
research is required to enhance the area efficiency and achieve power 
efficiency at the level of the human brain, as well as to reduce volume 
through stacking.

The current CMOS synapse-based approach to neuromorphic 
computing is characterized by high power consumption compared to 
emerging synapse-based neuromorphic computing. Additionally, it 
requires significant additional circuitry (e.g., ADCs, DACs), and most 
synapse devices are implemented using SRAM-based designs, which 
require at least six transistors, leading to limitations in terms of area 
(Vogginger et  al., 2024; Zhang et  al., 2020). To overcome these 
limitations, studies exploring the use of emerging devices for both 
neurons and synapses have also been reported. A widely adopted 
approach involves replacing synapses, which account for a significant 
portion of area and power consumption, with emerging synapse 
devices, while neurons are commonly implemented using simplified 
CMOS, several studies on neuromorphic systems based on emerging 
synaptic devices have demonstrated area efficiencies exceeding 4,000 
GOPS/mm2 and power efficiencies surpassing 3,000 GOPS/W (Zhang 
et al., 2020; Mochida et al., 2018; Xue et al., 2019).

Memristors can be classified into several categories, including 
phase change memory (PCM) (Fong et al., 2017; Burr et al., 2010), 
magnetic random-access memory (MRAM) (Burr et  al., 2010; 
Tehrani, 2006), ferroelectric random-access memory (FeRAM) (Chen 
et al., 2020), and resistive random-access memory (RRAM) (of which 
there are several subcategories, including interface-type RRAM, VCM, 
and ECM) (Chen, 2020; Ryu et al., 2020). RRAM is distinguished by 
its stable operation, on/off ratio, speed, and high compatibility with 
complementary metal-oxide semiconductor (CMOS) technology 
(Raghavan, 2014; Kim et  al., 2021). RRAM offers a number of 
advantages over traditional DRAM or SRAM, including low power 
consumption, high operational speed, the ability to store multiple bits 
of data, and the elimination of the need for refresh, which allows for 
the construction of large-scale matrices (Dogan, 2013; Perez and De 
Rose, 2015). Memristors are typically organized in crossbar arrays, 
wherein each memristor represents a weight value in the matrix. 
However, crossbar arrays are susceptible to sneak path currents due to 
Kirchhoff ’s law, which has the potential to compromise the accuracy 
of the network. In order to mitigate the impact of sneak path currents, 
it is common practice to employ 1T1R structures incorporating 
transistors (Youssef et al., 2021; Pan et al., 2024).

Memristor-based artificial neural networks (ANN) have been 
widely documented as hardware accelerators for the recognition and 
inference of MNIST patterns (Mochida et al., 2018; Xue et al., 2019; 
Adam et  al., 2016; Prezioso et  al., 2015). Extensive validation by 
numerous researchers has also reported the fabrication and validation 
of memristor chips that are capable of being applied to real-world 
tasks, including speech recognition, image classification, and motion 
control (Zhang et  al., 2023; Ambrogio et  al., 2023). In contrast, 
memristor-based spiking neural networks (SNN) concentrate on the 
implementation of innovative neuron structures with the objective of 
further reducing system power consumption, with the ultimate goal 
of developing highly efficient and applicable hardware. The application 
of research on memristor-based SNN chips has been constrained, with 
the majority of efforts only achieving MNIST inference (Valentian 
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et al., 2019). This highlights the necessity for further investigation into 
the circuitry architecture and algorithms associated with the relevant 
hardware (Bouvier et al., 2019).

A significant number of studies employ transistors for the purpose 
of suppressing sneak paths and acting as selectors. It is therefore 
essential to exercise caution when selecting transistors for use with 
memristors, considering the memristor’s operating voltage, resistance 
characteristics, and the transistor’s current characteristics and 
on-resistance. The operational characteristics of the memristor are 
dependent upon whether it is attached to the transistor on the source 
side (memristor-on-source, MOS) or the drain side (memristor-on-
drain, MOD). This must be considered when designing the circuit.

The 2T2R structure consists of two supply voltage lines (each 
connected to an electrode of the memristor), two gate lines, and a 
shared source terminal. In this configuration, weights can 
be implemented with greater flexibility, allowing for the representation 
of both positive and negative weights. Specifically, one memristor in 
the 2T2R structure is designated to represent positive weights, while 
the other represents negative weights. As a result, during weight 
evaluation, the combined weight is obtained by summing the values 
of both memristors. In typical implementations, the currents 
corresponding to positive and negative weights are processed through 
differential amplifiers or similar circuits, leading to power 
consumption from both currents. However, the 2T2R structure 
leverages the opposing directions of the net current flow resulting 
from the combined weights, allowing the net current to flow directly. 
This characteristic provides a power-saving advantage over the 1T1R 
structure, particularly in large-scale neural network implementations 
(Zhang et  al., 2023). Nevertheless, modifying and operating the 
weights of individual devices in the 2T2R structure requires more 
complex algorithms. As a result, state-of-the-art research often adopts 
a hybrid approach, utilizing 2T2R structures for large-scale networks 
or computationally simple operations and 1T1R structures for regions 
requiring precise operations. Such hybrid implementations have been 
reported in recent studies (Zhang et al., 2023).

Implementing neural network arrays with memristors involves 
numerous considerations, and research focused on the design of 
transistor-memristor interactions is essential to address these 
challenges effectively. The operation of a well-designed transistor-
memristor array is influenced by several factors, including the 
accuracy of memristor conductance mapping, which significantly 
affects the final results as tuning error. In addition to programming 
errors, intrinsic noise is a major factor that reduces accuracy in neural 
networks (Zeng et al., 2023; Huang et al., 2023; Park et al., 2021). It is 
therefore imperative that circuit design techniques which serve to 
minimize the influence of these factors are employed. As the initial 
step in optimizing the design of a complete transistor-memristor 
synapse, it is essential to consider the operating voltage levels of 
individual memristors and transistors. Consequently, the objective 
was set to design CMOS devices, known for their higher technological 
maturity, to align with the operational requirements of memristors. 
To achieve this, a methodology was proposed to optimize the 1T-1R 
configuration by designing transistors with variable W/L ratios, 
thereby enabling the adaptation of transistor characteristics to meet 
the specific needs of the memristor-based system. An additional 
consideration involves determining the optimal orientation for 
attaching the memristor to the transistor. This methodology was 
utilized to examine the differences and impacts between MOS and 

MOD configurations, providing insights into the most effective design 
approach. To further investigate these effects, a compact model was 
developed with characteristics identical to those of the fabricated 
memristor. This was used in conjunction with a design of SNN 
hardware, including a 1T1R array, a differential-pair-integrator (DPI) 
synapse circuit, and a leaky-integrate-fire (LIF) neuron, to implement 
an inference accelerator in a circuit level. SNN simulations by SPICE 
were conducted on the designed memristive neural networks of a 
small scale (8 × 8), considering both tuning errors and intrinsic noise. 
The findings of this study thus lead to the proposal of an optimal 
design for noise-tolerant memristive-SNN hardware, and to the 
demonstration of the advantages of using SNN for high-efficiency 
computing in comparison to ANN.

2 Methods

2.1 Fabrication of memristive devices

The memristor single element was fabricated with a cross bar 
array structure and composed of Cu:Te/TaOx/IGZO/Pt. The substrate 
of the element was a thermally oxidized c-Si wafer (300 μm), and was 
ultrasonically cleaned in acetone, ethanol, and deionized water for 
10 min each before fabrication. Each layer was patterned using 
lithography, and an image reversible photoresist was used. After 
deposition, the residual photoresist was etched using the lift-off 
method. The bottom electrode had a line width of 32 μm and was 
deposited using an electron beam evaporator. The first deposition 
involved inserting 5 nm of Ti for adhesion between the substrate 
(SiO2) and the bottom electrode (Pt). Afterwards, 25 nm of Pt was 
deposited without vacuum break. Then, a sputter was used to deposit 
a buffer layer. The composition of the IGZO target is In2O3:Ga2O3:ZnO 
=1:1:1, and it was deposited under an oxygen partial pressure of 0.1% 
by controlling the mixed gas of Ar and O2 (40 sccm). The process 
pressure is 4 mTorr and the power is 50 W. The pattern used was a 
square model of 100 μm x 100 μm, and the thickness was 100 nm. The 
switching layer was deposited using a TaOx ceramic target and a 
sputter was used. It was deposited at a working pressure of 3 mTorr in 
an Ar (40 sccm) atmosphere without oxygen gas. The pattern used was 
a square model of 300 μm x 300 μm, and the thickness was 5 nm. 
Finally, the top electrode, Cu:Te composite layer, was deposited using 
an e-beam evaporator and a line width of 32 μm pattern was used. A 
total of 30 nm of the top electrode was deposited through alternative 
deposition of Cu 3 nm and Te 2 nm, and 10 nm of Au was deposited 
to prevent oxidation. All layers using the E-beam evaporator were 
maintained at a base pressure of 2 × 10−7 torr and an acceleration 
voltage of 7.2 kV. In addition, layers using the sputter were maintained 
at a base pressure of less than 5 × 10−7 torr.

The current–voltage characteristics of the devices were assessed 
using a Keithley 4200A-SCS parameter analyzer with source 
measurement unit (SMU). For the single memristor devices, voltage 
was applied to the Au/Cu:Te top electrode and the bottom electrode 
Pt was grounded. The initial electro-forming process of the device was 
2 V, sweep sequence was proceeded a fully LRS from 0 V to 2 V, multi-
level state was achieved by varying the reset stop voltage. Compliance 
current is not set due to the device’s self-limiting behavior. The reset 
stop voltage gradually increased and swept from −0.5 V to −2 V at 
−10 mV intervals. At this time, after completing the reset stop voltage 
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sweep operation, a read operation (@0.05 V) was performed for 5 s to 
check the conductance difference from the previous level. If is less 
than 0.2 μS, the reset stop voltage has been increased further. All reset 
sweep operations were carried out without set operation (2 V). Finally, 
to check the retention behavior of each level, it was read with a reading 
voltage of 0.05 V for 100 s. The reading interval is 0.01/s.

2.2 Fabrication and operation of 1T1R 
synapse

In a typical 1T1R structure, NMOS transistors are typically 
preferred due to their use of electron carriers, which provide a 
mobility that is 2–3 times higher than that of PMOS transistors 
(Streetman and Banerjee, 2000). Furthermore, the use of a p-type 
substrate for NMOS transistors eliminates the necessity for an 
additional n-well process step (Raj and Latha, 2008), which is 
advantageous from a fabrication standpoint. As a result, NMOS 
transistors were selected, and the technology from the ETRI 500 nm 
commercial Si foundry in South Korea was utilized. A total of eight 
photomask layers were fabricated, and transistors with varying W/L 
ratios, comprising six different types, were produced (Streetman and 
Banerjee, 2000).

Each transistor was designed with four pads, which were used for 
the connection of the transistor to the external circuitry. The source, 
gate, drain, and body are the four main components. Furthermore, a 
VDD pad for the memristor’s electrode was incorporated to facilitate 
integration with memristors utilizing BEOL processing at the KIST 

fab. Consequently, each unit transistor was equipped with a total of 
five pads. The cross-section schematic and circuit layout of the 1T1R 
structures are shown in Figures 1A,B, respectively. As depicted in 
Figure 1A, a VDD pad utilizing only metal 2 layer was designed to 
monolithically place a memristor between the drain pad and the VDD 
pad. The finalized TEM and OM images are presented in 
Supplementary Figure S1.

Subsequent electrical measurements of the completed transistors 
and 1T1R structures were conducted using a Keithley 4,200 SMU. In 
conducting the transistor measurements, positive voltages were 
applied to the gate and drain pads, while the source and body pads 
were grounded. Transfer and output curves were obtained by varying 
the voltage. The transfer curve was obtained by fixing the drain voltage 
at 0.1 V and varying the gate voltage from 0 to 4 V. The output curve 
was obtained by fixing the gate voltage at 3 V and varying the drain 
voltage from 0 to 4 V. The resulting IV curves are presented in 
Figures 1C,D. To provide a comprehensive overview of the impact of 
varying W/L ratios and gate voltages, the on-resistance graph for each 
transistor condition is presented in Figure 1E.

Following verification, the transistors were employed in the 
fabrication of 1T1R structures via BEOL processing. In the fabrication 
of 1T1R structures, the application of positive voltage was contingent 
upon the attachment direction of the memristor. This voltage was 
applied to either the top electrode (TE), the bottom electrode (BE), or 
the gate pad, while the source and body pads were grounded.

In order to conduct closed-loop conductance tuning of the 1T1R 
structures, feedback control using LabVIEW was necessary, and 
measurements were taken using NI instrumentation. Two NI 4139 

FIGURE 1

Panel (A) presents the cross-section of the transistor designed through the ETRI process. Panel (B) illustrates the layout of the transistor, showing the 
five pads corresponding to Gate, Body, Source, Drain, and VDD. The detailed layers, including Metal 2, Metal 1, P+ doping, N+ doping, and Poly-Si, are 
depicted, with VIA and passivation layers omitted. The length of the scale bar in the bottom right is 110 μm. Panel (C) displays the transfer curves 
measured by applying a VDS of 0.1 V and varying the gate voltage for six transistors with different W/L ratios. Panel (D) shows the output curves for the 
six transistors under a gate voltage of 3 V, plotting the drain current against varying VDS. Panel (E) presents the on-resistance of the transistor as a 
function of W/L and gate voltage, measured at a VDS of 0.1 V.
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(20 W) SMU models were utilized: one for the application of DC 
voltage to the gate of the 1T1R, and the other for the application of 
voltage to the TE, with the opposite electrode connected to ground. 
Utilizing the measured current, incremental step pulse programming 
(ISPP) was employed to augment the voltage by delta V increments, 
applying both positive and negative voltages until the current reached 
the target value within a specified error margin (Figures 2D,5C).

2.3 Memristor compact model and 
circuit-level SPICE simulation

The final hardware-based circuit was simulated using the LTSpice 
(x64) version 17.1.8 software. In light of the necessity of employing 
external PWL files as input signals and reflecting the weights derived 
from Pytorch simulations into SPICE, it became evident that 
substantial modifications to the LTSpice netlist files were required. 
Consequently, the simulations were conducted exclusively within the 
Python 3.11.5 environment, utilizing the PyLTSpice package. The 
PyLTSpice package, developed by electronic engineer Nuno Brum, 
employs the spicelib library within the Python programming language 
to facilitate the editing of LTSpice netlists, the identification of specific 
command lines, the modification of simulation conditions, and the 
examination of simulation results. The latest version of the package, 
3.0, has been released and its command functionalities are 
documented on GitHub and the developer’s personal website 
(Brum, n.d.).

The equations, structure, and I-V curve of the memristor compact 
model are detailed in Supplementary Figure S2. Furthermore, 
fluctuations in the values of I0 and Rs were incorporated into the model 
using the Gaussian function in LTSpice. The IV curves for 10 cycles, 
with variations of 1, 3, 5, 10, 30, and 50%, are presented in 
Supplementary Figure S3.

2.4 Pytorch SNN simulation

A network simulation was conducted using the Python 
programming language with the PyTorch framework (Paszke et al., 
2019). The pattern recognition task employed the reduced MNIST 
dataset (Alpaydin, 1998), comprising handwritten digit data from 43 
individuals, spanning the range of digits from 0 to 9. The dataset was 
then converted into grayscale images with a resolution of 32 × 32 
pixels and subsequently downsampled to a resolution of 8 × 8 pixels. 
The latest version of the package, 3.0, has been released 8 pixels by 
aggregating 4 × 4 pixel blocks into single pixels. The pixel intensity was 
represented in 16 levels, ranging from 0 to 15. The total number of 
images was 5,620, with 80% (4,496 images) allocated for the training 
dataset and 20% (1,124 images) designated for the test dataset.

The neural network for the reduced MNIST dataset had 64 inputs, 
corresponding to the 8 × 8 pixel images, and 10 outputs, which were 
used to classify the handwritten digits from 0 to 9. In the ANN 
simulation, the pixel intensity values were input into a single-layer 
perceptron structure comprising 64 input neurons and 10 output 
neurons. Subsequently, the output signals were subjected to a softmax 
function (Paszke et al., 2019), thereby determining the probability 
distribution for each class. Based on the PyTorch code described, 
simulations were conducted. The loss was calculated by comparing the 

predicted labels with the actual labels, and the weights were updated 
using the Adam optimizer through backpropagation over 30 epochs. 
For the same dataset, the DNN achieved an accuracy of 95%, while the 
surrogate SNN attained an accuracy of 90%.

There are numerous models for simulations of spiking neural 
networks (SNN). These can be broadly categorized into three types. 
The first involves transferring weights from an ANN after training and 
converting input and output signals to spike signals for inference (Han 
and Roy, 2020). The second method entails the utilization of teaching 
signals or backpropagation for the purpose of training the SNN (Wu 
et al., 2019; Shen et al., 2022; Neftci et al., 2019). The final approach 
makes use of biologically plausible methods, such as spike-timing-
dependent plasticity (STDP), for the purpose of training (Diehl and 
Cook, 2015; Dong et al., 2023). These methods are investigated with 
an increasing focus on their biological plausibility. Among the SNN 
methods that employ backpropagation, surrogate gradient learning 
represents a notable approach. As spike signals are discrete and 
non-differentiable, the computation of errors and backpropagation are 
not feasible, which in turn prevents weight updates and hinders 
learning. To address this challenge, Emre O. Neftci’s paper proposed 
(Neftci et al., 2019) a method utilizing LIF neurons in hardware. In 
this approach, synapse currents facilitate the conversion of signals 
over time, while membrane potentials undergo stepwise changes. 
While the forward spike signals are transmitted in the usual manner, 
the backpropagated spikes are converted to surrogate gradient signals 
in order to compute the loss and update the weights. Therefore, in our 
study, surrogate learning was employed to implement learning based 
on the SNN.

The neuron, a key component, was modeled using a simplified RC 
circuit, where the membrane potential is represented by a capacitor 
and the leaky current by a resistor. To simplify the computation in 
PyTorch, we encapsulated the effects of membrane resistance and 
capacitance into a single parameter, avoiding the need to explicitly 
model each component. This approach allowed for efficient simulation 
of neuronal dynamics. Additionally, to accurately capture the 
biological characteristics of synaptic responses—specifically, the rising 
and falling dynamics of synaptic current as observed in biological 
synapses—we employed a double exponential synapse model on the 
LIF framework. The input signals were generated using the PyTorch 
spikegen function (Paszke et  al., 2019), with the firing times 
determined by pixel intensity. The network was trained for 30 epochs 
with a batch size of 5, resulting in an accuracy of 90%. All simulations 
were conducted with positive weights only, with values normalized 
between 0 and 1.

3 Results and discussion

3.1 Multi-level memristor device

Figure 2A shows a cross-sectional view of a single unit memristor 
device illustration intended for use in the memristive neural network 
and its resistive switching. When a positive bias is applied to the top 
electrode, Cu migrates toward the bottom electrode to form a filament. 
Conversely, when a negative bias is applied to the top electrode, the 
Cu filament dissolution occurs and migrates back toward the top 
electrode. The existence of the Te interfacial layer restricts the Cu 
migration path, enabling stable switching behavior (Goux et al., 2011). 
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In addition, the alloy of Cu and Te efficiently suppresses excessive Cu 
migration, improving endurance (Tseng et al., 2018). The gradual 
resistance change characteristic is essential for implementing multi-
conductance levels. In a multi-level state, each resistance state must 
be  precisely defined. Gradual switching characteristics allow fine 
modulation of resistance through gradual resistance changes, rather 
than abrupt resistive switching characteristics, making it easy to set a 
specific desired resistance state and implementing various 
intermediate resistance states. Therefore, IGZO based Cu:Te device 
exhibits gradual resistance change behavior because it exhibits multi-
weak filament characteristics rather than strong single filament. The 
number of pulses required to transition from the initial conductivity 
state to the minimum and maximum conductivity. During the electro-
forming process of the device, the presence of IGZO, a buffer layer, 
creates a heat confinement effect so multi filaments are induced within 
the switching layer (Gao et al., 2017). At this time, multiple filaments 
are formed sequentially, resulting in gradual switching behavior. If 
only a partial reset is achieved by reducing the reset voltage rather 
than fully resetting (−2 V), the conductance level can be modulated 
by controlling the number of multi filaments.

In order to show analog multi-level characteristics in IGZO-
based Cu:Te devices, applying negative voltage (Vreset) sweep up to 
specified conductance values and presented in Figures  2A,B, 
respectively. Due to the gradual reset behavior of the device, 
conductance can be  modulated at various negative voltages. The 
multi-level formation process is as follows. First, a −0.5 V reset was 
performed to form the initial level (G0), and then a reset operation 
was performed by adding δV to the current reset voltage when 

forming the next level (G1). At this time, the initial δV value was 
−1 mV, and to clearly distinguish between levels considering the C2C 
and D2D variations when forming the next level, a 3-s read operation 
was performed. If the conductance difference between the current 
level (Gn) and the next level (Gn + 1) was less than 0.2 μS (ΔG = Gn, 

min  – Gn + 1, max < 0.2 μS) during the 3-s read operation, the reset 
process was performed again by increasing −1 mV from the current 
δV. This level formation process was performed until the fully reset 
voltage of 2 V was reached without a set process. Figure 2C show the 
multi-level behavior obtained in Figure 2A through a read operation 
(0.05 V) for 100 s. As shown in Figure 2C, 23 multi-level states were 
formed in 5.7–200 μS due to various reset stop sweep operations 
(−0.5 V to −2 V). Each conductance level obtained through various 
reset stop sweep operations (−0.5 V to −2 V) was maintained 
constant without degradation, and the interval between levels was 
modulated to be at least 0.2 μS. Figure 2D shows the relative standard 
deviation (RSD) of the multi-levels obtained through the read 
operation. As the reset stop voltage increases and the conductance 
level decreases, the RSD tends to increase. This means that random 
telegraph noise (RTN) intervention is different for each conductance 
level and the number of multi-level states is modulated by IGZO-
based Cu:Te devices (Veksler et  al., 2013). Therefore, if the 
conductance level is low, the number of conductive filaments in the 
switching layer and the number of Cu atoms in the constriction area 
of each filament will decrease. Therefore, the probability of electrons 
being trapped/de-trapped by the charged instable filament around 
the conductive filament will increase (Belmonte et al., 2014; Rao 
et al., 2023).

FIGURE 2

(A) Schematic illustration of single memristor device, and I–V characteristic result for each reset voltage sweep range. The dash lines are fully set 2 V or 
fully reset −2 V sweep curves, respectively. The blue to red lines are sweep curves formed by increasing the reset stop range after set. (B) Conductance 
level distribution at read voltage 0.05 V for each reset voltage sweep range. (C) Retention and noise behavior at 0.05 V read voltage in 100 s for each 
conductance level. The colors of each conductance level correspond to the Vreset stop colors in (A). (D) Relative standard deviation of the (C) result.
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3.2 Design of 1T1R synapse and its 
operation for multilevel conductance 
tuning

The attachment of a memristor to a transistor through BEOL 
processing results in the formation of the structures shown in 
Figure 3A, wherein the resistor is situated either at the transistor’s 
drain or source (Ghenzi et al., 2018; Maheshwari et al., 2021). These 
configurations are designated as “memristor on drain” (MOD) and 
“memristor on source” (MOS), respectively, as illustrated in 
Figures 3B,C.

The transistor, acting as a selector, ideally must transmit the full 
supply voltage (VDD) to the memristor. Additionally, it must possess 
an off-resistance greater than that of the memristor to effectively 
suppress sneak path currents. While a transistor is, in theory, capable 
of functioning as a switch without resistance, a number of practical 
considerations must be  taken into account. These include the 
operating regions of the transistor, which may be either a triode or in 
saturation. One such factor is the attachment orientation of the 
memristor. In the case of a MOD configuration with a positive supply 
voltage, where the bottom electrode of the memristor is attached to 
the NMOS’s drain terminal, the supply voltage VDD is divided into 
both of the transistor and the memristor depending on their 
resistances. From the memristor’s point of view, this results in a loss 
of the supply voltage due to the voltage drop across the transistor. 
Accordingly, a transistor with an appropriate on-resistance should 
be selected based on the current required for memristor operation. 
The memristor, a variable resistor whose resistance changes with 
voltage, is represented as a resistive element in the 1T1R structure 
illustrated in Figure 3A.

The memristor, while often simplified as a fixed resistor, is in fact 
a bipolar device with two terminals: an anode and a cathode. The 
1T1R operation conditions depend on both the memristor 
attachment configuration and the bias polarity, rather than being a 
simple transistor-resistor relationship. Specifically, the set behavior 
of the memristor in the MOD configuration and the reset behavior 
in the MOS configuration exhibit structural and operational 
symmetry as illustrated in Figure 3B. Similarly, the reset behavior in 
the MOD configuration and the set behavior in the MOS 

configuration also demonstrate identical voltage application 
methods and structural characteristics, as depicted in 
Figure  3C. Effective memristor operation requires facilitation of 
both set and reset operations. In the fabrication of 1T1R devices, 
achieving a monolithic structure is crucial to eliminate unnecessary 
auxiliary circuits and simplify the design. Since the orientation of 
the memristor (MOD or MOS) is predetermined during 
manufacturing, careful selection of the attachment orientation is 
essential to avoid operational interference (Liu et al., 2024; Bengel 
et al., 2023).

Before explaining the differences caused by the attachment 
direction, it is important to note that in a typical 1T1R configuration, 
the voltage drop across the memristor typically exceeds the voltage drop 
over the transistor (VDS) when the transistor operates in the triode 
region. The following discussion is based on this condition. In the MOD 
configuration, the applied VDD voltage is applied to the memristor with 
a negligible transfer loss if the gate-to-source (VGS) is over the transistor 
threshold voltage (Vth). Conversely, in the MOS configuration where the 
memristor is attached to the source of the transistor, applying a high 
voltage to the VDD pad and grounding the BE (bottom electrode) of the 
memristor (MOS set case) results in the transistor’s source voltage (VS) 
equating to the memristor’s top electrode voltage (VTE). Consequently, 
VGS becomes VG − Vmemristor, requiring a higher gate voltage to turn on 
the transistor. When the gate voltage is VDD (VG = VDD), the maximum 
voltage drops across the memristor are VDD – Vth.

These relationships differ depending on whether a memristor is 
in the set or reset state, as summarized in Table 1. If the memristor 
requires a higher set voltage than a reset voltage, the MOD 
configuration, which minimizes a voltage transfer loss across the 
transistor during the set operation, is advantageous. Conversely, if a 
higher reset voltage than a set voltage is required, the MOS 
configuration, which minimizes a voltage loss during the reset 
operation, is preferred. Therefore, research groups designing and 
fabricating 1T1R arrays must determine whether to use the MOS or 
MOD configuration in advance. For our Cu:Te-based memristor 
devices, which exhibit a gradual set characteristic, a set voltage of up 
to 2 V is required. As demonstrated in Figures 2A,C, analog states 
were achieved under full set conditions by adjusting the reset stop 
voltage. Hence, fully setting the memristor is an essential requirement. 

FIGURE 3

Panel (A) presents the schematic of a memristor fabricated through the BEOL process after transistor design. Panel (B) shows the 1T1R schematic in 
the MOD set and MOS reset conditions. Panel (C) illustrates the 1T1R schematic in the MOD reset and MOS set conditions.
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To meet this condition, we adopted the MOD configuration, which 
minimizes the voltage transfer loss over the transistor during the set 
operation. After determining the 1T1R configuration, the operation 
conditions analysis for the memristor switching was performed based 
on the W/L ratio and the resistance of the memristor. The detailed 
analysis results are provided in Supplementary Figure S4.

Considering these findings, the MOD configuration was selected 
as the optimal operating mode, and for ease of set and reset operations, 
the device was designed with a W/L ratio of at least 65. To confirm the 
correct operation of the 1T1R device, we constructed it by depositing 
the BE on the drain pad, followed by the switching layer, and finally 
the TE pad. The optical microscope (OM) images of the fabricated 
device are presented in Figures 4A,B. Figure 4A depicts the overall 
view, while Figure 4B shows a magnified view of the switching layer. 
The fabricated device was tested by sweeping VTE while the gate 
voltage was set to 3 V for both set and reset operations. As illustrated 
in Figure 4C, when the W/L ratio is at least 65, the set behavior is 
comparable to that of the memristor alone, and the reset operation is 
also performed smoothly, achieving an on/off ratio of approximately 
87.5% in comparison to the unit device. The 10% loss can be attributed 
to the on-resistance (Ron) value of 120 Ω for a width-to-length (W/L) 
ratio of 65, which results in a 12% voltage drop across the transistor 
relative to the memristor’s low-resistance state (LRS) of 1 kΩ. It is 
therefore proposed that a transistor with an on-resistance within 10% 
of the memristor’s resistance will facilitate optimal operation. In light 
of the considerable increase in size for a larger transistor model (W/L 
ratio of 330) and the flexibility of operating the transistor in triode and 
saturation modes with a W/L ratio of 65, the decision was made to 
select a transistor with a W/L ratio of 65. The IV results for the 
memristor on source configuration and the on/off ratio variations 
with W/L changes are presented in the Supplementary Figure S5 and 
Supplementary Table S2. Supplementary Figure S6 illustrates the 
analogous IV curve obtained through the utilization of the compact 
model for 1T1R measurements, encompassing both MOS and 
MOD configurations.

The structure of the NMOS and memristor used for conductance 
tuning is shown in Figure 5A. The gate voltage was fixed at 3 V, the 
source voltage was grounded, and the top electrode voltage was varied 
during the process. A closed-loop conductance tuning procedure was 
conducted using the 1T1R cell in the MOD configuration with a W/L 
ratio of 65. The fundamental algorithmic process is depicted in 
Figure  5B. By applying an initial voltage of 2 V to fully set the 
memristor and then adjusting the initial reset voltage based on the 
unit memristor’s conductance, the target conductance was successfully 
identified. With a ΔV of 0.01 V and an error range of 3%, nine 
conductance tunings were achieved within 55 pulses, as illustrated in 
Figure 5C. However, when the error range was decreased to 1%, the 
system was unable to identify the target conductance, exhibiting a 
repetitive switching between set and reset states, as illustrated in 

Figure 5D. This outcome suggests that the intrinsic noise of the unit 
memristor, estimated to be approximately 2%, may have hindered the 
successful identification of the target value within the specified 1% 
error range. Furthermore, even if the target value were to 
be successfully identified, the intrinsic noise would likely introduce 
instability, necessitating repeated loop executions.

3.3 Circuit-level design of a 
neuron-synapse-neuron unit for spiking 
neural networks

In accordance with the previously established 1T1R configuration, 
a verification process was undertaken at the unit level of neuron-
synapse-neuron (N-S-N) prior to the execution of the comprehensive 
network simulation. As illustrated in Figure  6, the single N-S-N 
network circuit was implemented using a 1T1R synapse, a TIA 
circuit, a DPI circuit and a LIF neuron circuit. The DPI circuit was 
introduced to emulate a dynamic synapse current behavior. Biological 
neurons transmit information through electrical or chemical 
synapses (Petersen, 2016). Electrical synapses directly connect and 
allow current flow between two neurons through gap junctions. 
However, the most common synaptic mechanism is chemical 
synapses (Pereda, 2014). In chemical synapses, the generated spike 
signal antidromically propagates to the axon terminal, triggering 
synaptic vesicle exocytosis and subsequently release 
neurotransmitters. When the released neurotransmitters cross the 
synaptic cleft and bind to postsynaptic receptors, postsynaptic ion 
channels such as AMPA or GABA receptors open. This alters the 
ionic permeability such as Na+, Ca2+ or Cl−, and subsequently 
depolarizing or hyperpolarizing the membrane potential of the 
dendrites forming synapse. Since these steps are highly dynamic due 
to chemical diffusion and reaction of neurotransmitters, a synaptic 
response model that evokes postsynaptic current using a unit 
function input without considering any synaptic current cannot 
accurately describe the synaptic response in the postsynaptic neuron. 
Moreover, even when employing a synaptic current model of a single 
exponential model that only considers the decay phase of postsynaptic 
current fails to fully capture the rising dynamics synaptic current 
(Rothman and Silver, 2014). Therefore, in most studies, postsynaptic 
responses are commonly described using a double exponential, 
where one exponential for the rising phase and another for the decay 
phase of the synaptic response (Beniaguev et al., 2021; Jang et al., 
2020; Tikidji-Hamburyan et  al., 2023). The double exponential 
synapse dynamic behavior can be emulated in numerical simulation 
using the following equations of discrete forms:
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TABLE 1 The table provides a summary of the maximum voltage that can 
be applied to the memristor (Vmemristor), determined by the 1T1R 
configuration.

Voltage on 
memristor (Vmemristor)

SET RESET

Memristor on drain (MOD) VDD VDD – Vth

Memristor on source (MOS) VDD – Vth VDD

https://doi.org/10.3389/fnins.2025.1516971
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lim et al. 10.3389/fnins.2025.1516971

Frontiers in Neuroscience 09 frontiersin.org

FIGURE 4

Panel (A) shows an optical microscope (OM) image of the monolithic 1T1R device fabricated between the Drain pad and VDD pad through the BEOL 
process, with a scale bar representing 100 μm. Panel (B) presents a magnified OM image of the region where the top electrode (TE) and bottom 
electrode (BE) of the memristor intersect. The switching layer and buffer layer are marked in orange and green, corresponding to TaOx and IGZO, 
respectively. The scale bar represents 50 μm. Panel (C) displays the VDD voltage vs. Drain current IV curve for the monolithic 1T1R device, as previously 
shown in the OM images, across varying W/L ratios. The gate voltage is fixed at 3 V during the set and reset measurements.

FIGURE 5

Panel (A) shows the 1T1R schematic of the MOD structure for conductance tuning, where the gate voltage is fixed at 3 V, and the VDD voltage is 
adjusted. Panel (B) illustrates the voltage profile applied to VDD for conductance tuning. A voltage of 0.05 V is used to read the current conductance 
state, which is then compared with the target value. Based on this comparison, either a potentiation pulse or a depression pulse is applied, and the 
process is repeated. The amplitude of the potentiation and depression pulses is continuously varied by ΔV (0.01 V) until the target conductance is 
reached. The initial potentiation pulse voltage is 2 V, while the depression pulse voltage is set according to the conditions in Figure 2A based on the 
target conductance. Panel (C) demonstrates that the closed-loop conductance tuning algorithm successfully achieved 9 target conductance values 
within a 3% error margin using 60 pulses or fewer. Panel (D) shows that when the error margin is tightened to 1%, the algorithm fails to achieve the 
target conductance, even after more than 150 pulse iterations.
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The application of the double exponential model requires the 
definition of the normalize_factor in accordance with the specifications 
set forth in Equation 1. The calculation of the rise and decay synaptic 
currents is performed by considering τsyn(rise) and τsyn(decay) through 
Equations 2, 3, respectively. Equations 2, 3 are composed of different 
terms, including 𝜏syn, S(t), and Wn and normalize_factor. S(t) represents 
the spike generated when the membrane potential exceeds the 
threshold, indicating the occurrence of a spike under that condition. 
The Wn value corresponds to the weight, and it can be observed that a 
higher weight leads to a larger current flow, even for the same spike, 
depending on the equation. The total synaptic current, 𝐼syn_total, is then 
obtained using Equation 4, which accounts for the time constants of 
both the rise and decay phases. As outlined in Equation 5, the membrane 
potential rises in response to the synaptic current and decays in 
accordance with the membrane time constant, 𝜏mem.

To achieve emulation of the double exponential synapse behavior 
in the neuron-synapse-neuron (N-S-N) network, adjustments were 
made to the tau-related gate voltages in the DPI circuit, ensuring that 
the current variation corresponding to the memristor’s state remained 
consistent. Upon the application of input spikes to the gate of the 
NMOS transistor, the current flows in accordance with the 
conductance of the memristor, with Vread set to 50 mV. The current is 
then amplified by the TIA using operational amplifier 1, and the 
inverted output voltage is applied to the gate of the MN3 transistor in 

the DPI circuit via operational amplifier 2. In 1989, Mead put forth a 
circuit that emulates a pulsed current source synapse, whereby synapse 
current is conducted when pulse signals are applied. This circuit has 
undergone continuous improvement, with the current form of the 
DPI proposed by Bartolozzi and Indiveri (2007), fabricated, and 
verified using foundry processes.

The voltage input to the MN3 transistor in the DPI circuit, which 
includes the memristor’s weight value, generates the total current, Itot. 
This current is the result of the discharge of Csyn, with the amount of 
discharge varying in accordance with the magnitude of the signal at 
the gate of MN3. A change in the voltage applied to the MP2 
transistor, Vsyn, will result in a corresponding alteration of the gate 
voltage, which in turn will affect the current flowing through the 
synapse, Isyn. The decay time (τ) of Isyn and the charging time of Vsyn 
can be modified by adjusting the Vsyn,tau value at the gate of the MP1 
transistor, thereby controlling Itau. A portion of the generated Isyn flows 
to the ground through MN5, while the remainder charges Cmem. The 
voltage across Cmem (Vmembrane) represents the post-neuron’s membrane 
potential, and the membrane τ can be adjusted by controlling the gate 
voltage Vmem,tau of MN5.

Consequently, when a spike signal occurs in the 1T1R structure, a 
voltage signal incorporating the memristor’s weight value is generated 
through the utilization of the TIA. This signal is then converted into the 
Isyn current via the DPI circuit, which discharges Cmem, thereby altering 
the Vmembrane signal. From a mathematical perspective, the synapse 
exhibits both a charge time constant and a discharge time constant. The 
membrane potential rises in accordance with Isyn, excluding the 
influence of the discharge current ID0 caused by the MN5 transistor.

The operation of the circuit can be mathematically described by 
Equations 6, 7, which account for the charge and discharge of the 

FIGURE 6

The circuit structure that mimics biological behavior in a Neuron-Synapse-Neuron configuration consists of four parts: the Memristor part, TIA part, 
DPI synapse part, and Post-neuron part. The Memristor part features a 1T1R structure that converts the input spike (Vinput, spike) into a current spike based 
on the memristor’s weight. In the TIA part, the current spike is converted into a voltage spike signal. The DPI synapse part processes the voltage spike, 
incorporating the weight, and converts it into synaptic current (Isyn) following the double exponential rule through the charging and discharging of Csyn, 
resulting in changes in Vsyn. Finally, in the Post-neuron part, Isyn drives the charging and discharging of Cmem, leading to the membrane potential of the 
neuron, represented as Vmembrane.
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synapse. Ultimately, the change in membrane potential is expressed 
by Equation 8.
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In practice, factors such as the subthreshold slope factor (k) and 
the thermal voltage (uT) were employed due to the use of actual 
transistors (Streetman and Banerjee, 2000). The aforementioned set of 
equations indicates that the dynamic rise and fall behaviors of the 
synapse current, as described by Equations 6, 7, and the membrane 
potential Equation 9 in the form of the LIF neuron, can provide a 
similar operational output to that simulated in PyTorch, provided that 
the appropriate parameters synapse current tau (τsyn), membrane 
potential tau (according to ID0), Vth, Cmem are selected.

3.4 Implementation of memristive spiking 
neural networks for inference

As stated above, the dynamic spiking neural network behavior can 
be simulated in PyTorch using the set of the equations (Equations 1–5) 
and emulated in SPICE using the hardware shown in Figure  6, 

respectively. With the proper choices of the parameters of the circuit, 
the spiking neural network behavior of the circuit can be matched to 
that of PyTorch simulation. Input spike signals fired at 10, 110, 150, 
and 200 ms as shown in Figure 7A were used both of the PyTorch and 
SPICE simulations. In PyTorch, the time step is defined in 1 ms 
increments, resulting in an impulse-like firing structure. In SPICE, the 
signal was generated as a pulse with a rise time of 100 μs, a fall time of 
100 μs, and a pulse width of 900 μs. When these pulses were applied, 
the changes in Isyn were observed as shown in Figure 7B. In PyTorch, 
τrise was set to 0.5 ms and τfall was set to 2.0 ms. To mimic this in 
SPICE, Vsyn,tau was set to 1.44 V and Csyn was set to 260 pF. Lastly, 
Figure 7C is provided to verify the accuracy of the following pattern, 
the membrane potential in PyTorch used τmem of 15 ms, while in 
SPICE, Vmem,tau was set to 0.1 V and Cmem was set to 260 nF. The result 
showed a time error of approximately 2.1% relative to the maximum 
potential in the membrane potential, achieving a satisfactory match.

The prepared components were employed in the performance of 
pattern recognition, which is an exemplar of edge computing. An 
8 × 8 handwritten digit image with 16 intensity levels, as illustrated in 
Figure 8A, was employed, and the values were transformed through 
latency coding.
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The equation for latency coding is presented in Equation 10. Latency 
coding employs tmax as the maximum value, with the firing time 
determined when the pixel intensity, x, surpasses the threshold (xthr). Upon 
applying a tmax of 20 and a thr of 0.3 to the image in Figure 8A, the neurons 
firing at each time step are determined, as illustrated in 
Figure 8B. Subsequently, the latency-coded spike signals were introduced 
as input into the PyTorch neurons, as illustrated in Figure 8C. Subsequently, 
the signals were conveyed through a 64 × 10 configuration of weights to 
the output neurons. By examining the membrane potential signals within 
the output neurons, we  were able to verify whether the neuron 
corresponding to the correct label exhibited the highest membrane 
potential. Upon completion of the PyTorch simulation, the 64 × 10 weights 
were extracted and input into the normalized state variable parameters 

FIGURE 7

The following results were obtained from both PyTorch and SPICE simulations, showing the voltage spike signal, synaptic current, and membrane 
potential. Panel (A) illustrates the shape of the voltage spikes that occur at 10, 110, 115, and 120 ms in both PyTorch and SPICE simulations. Panel 
(B) shows the changes in synaptic current in response to the spike events in the PyTorch simulation, where 𝛕rise was set to 0.5 ms and 𝛕fall was set to 
2.0 ms. Panel (C) illustrates the resulting membrane potential graph, with 𝛕membrane set to 15 ms (converted to arbitrary units for relative comparison).
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(ranging from 0 to 1) of the SPICE memristor model. Upon inputting the 
latency-coded spikes as gate voltages to the 1T1R devices, a net current was 
generated by Vread, set at 50 mV. The current was then converted into a 
voltage signal by the TIA and subsequently input as the gate voltage to the 
DPI circuit. Based on the input signal, Isyn was generated, and ultimately, 
the maximum value of the membrane potential of the LIF neuron over a 
100 ms time period was employed as the criterion for verifying accuracy. 
The SPICE implementation structure is depicted in Figure 8D.

As illustrated in Figure 9A, the simulation outcomes demonstrate the 
precision outcomes as a function of the number of bits. The results 
demonstrate that for both PyTorch ANN and PyTorch SNN, as well as 
SPICE SNN, the accuracy reaches a saturation point at 3 bits or more. 
Notably, both PyTorch SNN and SPICE SNN exhibit a saturation accuracy 
of 90%. This finding is consistent with other literature on bit dependence, 
indicating that a certain number of bits beyond a threshold are necessary, 
but not unlimited. The discrepancy in accuracy between PyTorch SNN and 
SPICE SNN at 2 bits and 3 bits can be attributed to the differing sizes of the 
training datasets. The PyTorch SNN utilized 1,124 images from the training 
data set, whereas SPICE simulations were conducted on only 100 images 
due to time constraints, resulting in a sampling bias. In light of the fact that 
the conductance results obtained from the 1T1R devices yielded nine 
distinct states, it may be reasonably assumed that accuracy should not differ 
significantly with more than three bits of conductance states. Figure 9B 
illustrates that, although not observed in PyTorch SNN, real hardware 
implementation demonstrated a range of tuning errors due to the inability 
to achieve the target conductance with precision. The aforementioned 

tuning error affects the accuracy of the system, with a tolerance of up to 5% 
exhibiting no significant decline in accuracy. However, beyond a 10% 
tuning error, there is a notable reduction in the accuracy of the system. 
Although the absolute accuracy is lower for a one-bit binary representation, 
it demonstrates a higher tolerance to tuning errors. Figure 9C examines the 
influence of intrinsic noise on accuracy without constraints on bit precision 
or tuning error, with a 3% tuning error from our device. In the SPICE 
model, noise was defined as a time-dependent function, with values 
ranging from 0 to 7% relative to a 0% noise baseline. Although intrinsic 
noise has a slight impact on accuracy, the overall system demonstrates 
tolerance, as the cumulative effect of the DPI circuit and its function as a 
low-pass filter effectively suppresses the noise (Bartolozzi et al., 2006).

These results are in line with the study of chemical synapses, which 
show that despite the presence of intrinsic noise, chemical synapses which 
our DPI circuit mimics enhance the system’s coherence through the 
selective reduction of unnecessary correlations, thereby suggesting more 
robust and reliable information processing compared to electrical 
synapses (Balenzuela and García-Ojalvo, 2005). The LIF neuron exhibits 
low-pass filter behavior due to the cumulative effects of the RC circuit. 
However, parameter tuning can suppress the neuron’s operation. To 
address this, we implemented a tunable and stable low-pass filter for noise 
attenuation using a differential pair integrator (DPI) circuit. Additional 
data, presented in Supplementary Figure S7 and Supplementary Table S3, 
demonstrates the impact of intrinsic noise on the membrane potential. 
Despite a noise level of 7%, the peak difference in membrane potential is 
approximately 3%. Consequently, as shown in Figures 2D, 6, the proposed 

FIGURE 8

(A) The input data is a reduced 8×8 MNIST image with 16 intensity levels representing digit patterns. (B) Based on the intensity of the input image, the 
spike firing time is calculated using the Equation 10, and the neurons that fire at each time step are plotted. (C) To verify the accuracy of MNIST pattern 
recognition in PyTorch, the signals are converted using latency coding. These signals are fed into an input neuron layer with 64 inputs, 640 weights, 
and 10 output neurons. The accuracy is then assessed based on the membrane potential of the output neurons. (D) In SPICE, the spike signals from 64 
input neurons are applied to a 1T1R gate. The current, modulated by the read voltage and the memristor conductance, is converted to synapse current 
through a DPI circuit, and the final output neuron’s membrane potential is used to evaluate the accuracy.
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Cu device exhibits intrinsic noise within 5% and a tuning error around 
3%, allowing for the implementation of analog behavior with a precision 
exceeding 3 bits. Additional detailed results for bit count and tolerance 
are presented in Figure 9C. As a result, a final inference accuracy of 90% 
can be achieved. In terms of intrinsic noise and tuning error, the array 
using only memristors demonstrated greater stability compared to 
traditional configurations (Park et al., 2022). In previous DNN-based 
research, significant accuracy degradation was observed due to system 
tuning errors and the intrinsic noise of the devices (such as RTN noise). 
Under conditions similar to ours, with 5% intrinsic noise and 3% tuning 
error, systems with conductance below 80 μS showed an accuracy 
decrease of over 20% (Park et  al., 2022). However, in our research, 
we utilized a high-performance memristor that suppresses intrinsic noise 
to within 2% even in the conductance range below 100 μS. Even when 
assuming 5% noise in simulations, we  constructed a noise-tolerant 
inference system by leveraging the cumulative effects of the DPI circuit 
to attenuate noise. Additionally, we employed a 1T1R configuration to 
suppress sneak path currents, thereby preventing the overlap of errors 
and noise during actual operation (Youssef et al., 2021).

This study builds upon the design of SNN inference accelerator for 
power efficiency, extending it to the implementation of SNN edge 
computing functionalities. This is demonstrated through the reduction 

of MNIST 8 × 8 simulations. In a SNN-based edge computing system 
employing latency coding, spikes from low-intensity pixels below the 
threshold are not processed. The spike sparsity of latency coding is 
demonstrated in Figure 9D. Spike sparsity refers to the average number 
of neurons that fire per image. When the operation of all neurons in a 
DNN is considered 100%, the SNN, due to latency coding, shows a 
spike sparsity of less than 40% across datasets such as Reduced MNIST, 
MNIST, and Fashion MNIST, although the exact sparsity varies 
depending on the dataset. Furthermore, the analysis process and results 
were reflected in Supplementary Figure S8 through power analysis of 
the SPICE circuit. Although the circuit does not exhibit the highest 
power efficiency, we compared its power efficiency with that of research 
from other groups outside the state-of-the-art level.

Although the actual simulation was conducted using a single-layer 
neural network, the power consumption was calculated based on a 
more complex multilayer structure. The network for the Reduced 
MNIST (8 × 8) dataset comprised 64 input neurons, 21 hidden neurons, 
and 10 output neurons. The network was composed of 28 × 28 input 
neurons, 256 hidden neurons, and 10 output neurons for the MNIST 
and Fashion MNIST datasets. In memristive neural networks, power 
consumption is primarily attributed to the access of memristors by 
spikes. With sparsity levels within 40% in the input layer and within 6% 

FIGURE 9

We summarize the accuracy and sparsity of pattern recognition based on the PyTorch network and SPICE circuit simulations. (A) The accuracy was 
evaluated as a function of the synapse bits. (B) A graph was generated by performing SNN simulations in SPICE, accounting for tuning error (i.e., 
mapping accuracy) and synapse bits. (C) PyTorch and SPICE simulations were conducted, considering the combined effects of intrinsic noise, a 3% 
tuning error, and varying synapse bits. Our experimental results from measured device data, with 3-bit precision, 3% tuning error, and 5% intrinsic noise, 
achieved 90% accuracy. (D) A comparison table between latency-coded SNN and DNN highlights the spike firing sparsity. While variations exist 
depending on the dataset, all three representative examples show spike sparsity within 40%.
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in the hidden layer, the efficiency increases as the number of layers 
grows. Previous studies have also reported a reduction in spikes in 
multilayer structures (Chowdhury et al., 2022; Dampfhoffer et al., 2022).

Furthermore, SNNs benefit from sparse input signals, which 
reduces the current burden on the driving circuit and enables 
temporal operation. This allows for intermittent inference and lower 
idle power consumption due to event-driven operation. From a power 
and circuit perspective, memristor-based deep neural network 
research has revealed considerable power consumption and noise 
susceptibility in analog-to-digital converter (ADC) and digital-to-
analog converter (DAC) components (Moro et al., 2022). In contrast, 
the use of DPI and LIF neurons eliminates the necessity for an ADC 
and a DAC, thereby offering a distinct advantage (Li et al., 2023).

4 Conclusion

In order to overcome the limitations of power consumption that 
are inherent to the traditional von Neumann architecture, which is 
characterized by a bottleneck, ASIC systems have been proposed. 
Among these, there is a particular need for research on the hardware 
accelerator in order to address the issue of bottlenecks. We put forth 
the proposition of SNN edge computing, wherein memristors are 
employed in a PIM capacity. We provide a detailed account of the 
operational and utilitarian aspects of the requisite components, 
including memristors, transistors, TIAs, and LIF neurons.

In particular, we elucidated the distinctions between MOS and 
MOD configurations when integrating memristors and transistors 
into a 1T1R structure, emphasizing the challenges associated with 
conventional resistors and their categorization according to their set 
and reset behavior when employed as memristors. By delineating the 
selection criteria for suitable transistors for our memristors, 
we  enhanced the comprehension of 1T1R configurations and 
furnished practical directives for implementation.

Following a comprehensive examination of the attributes of 
individual devices, we devised a SPICE hardware simulation to emulate 
PyTorch simulations, thereby demonstrating that devices exhibiting 
conductance levels of 3 bits or more do not exhibit notable discrepancies 
in accuracy. Moreover, we  addressed the implementation challenges 
posed by tuning errors, demonstrating that a tolerance within 5% 
enhances feasibility. The cumulative effect and low-pass filter functionality 
of the DPI circuit mitigated the intrinsic noise, allowing for up to 7% noise 
without significantly affecting accuracy.

In addition to the superior hardware design, the benefits of SNNs, 
such as latency coding and reduced load due to temporal operation, 
were also leveraged. The elimination of the necessity for ADC and 
DAC resulted in a notable reduction in power consumption and 
enhanced resilience to noise. While PIM has not yet supplanted 
traditional computing, ongoing research into high-quality hardware 
and software technologies is anticipated to facilitate the deployment 
of memristor-based SNN analog computing.
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