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Cross-modal congruency
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accumulation, not decision
thresholds
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Audiovisual cross-modal correspondences (CMCs) refer to the brain’s inherent

ability to subconsciously connect auditory and visual information. These

correspondences reveal essential aspects of multisensory perception and

influence behavioral performance, enhancing reaction times and accuracy.

However, the impact of di�erent types of CMCs–arising from statistical co-

occurrences or shaped by semantic associations–on information processing

and decision-making remains underexplored. This study utilizes the Implicit

Association Test, where unisensory stimuli are sequentially presented and linked

via CMCs within an experimental block by the specific response instructions

(either congruent or incongruent). Behavioral data are integrated with EEG

measurements through neurally informed drift-di�usion modeling to examine

how neural activity across both auditory and visual trials is modulated by

CMCs. Our findings reveal distinct neural components that di�erentiate between

congruent and incongruent stimuli regardless of modality, o�ering new insights

into the role of congruency in shaping multisensory perceptual decision-

making. Two key neural stages were identified: an Early component enhancing

sensory encoding in congruent trials and a Late component a�ecting evidence

accumulation, particularly in incongruent trials. These results suggest that cross-

modal congruency primarily influences the processing and accumulation of

sensory information rather than altering decision thresholds.

KEYWORDS

multisensory perception, audio-visual integration, perceptual decision-making, cross-

modal correspondences, EEG, cognitive modeling

1 Introduction

Perception is not limited to information derived from a single sensory modality; rather,

it involves the integration of multisensory inputs, which collectively inform and refine our

perceptions (Franzen et al., 2020; Mercier and Cappe, 2020; Romo and de Lafuente, 2013).

A key aspect of multisensory integration is the presence of cross-modal correspondences

(CMCs)—associations between stimuli across different sensory modalities—that help

guide accurate and efficient decision-making (Bizley et al., 2016; Tuip et al., 2022).

Audiovisual CMCs refer to consistent associations that our brain establishes between

auditory and visual modalities. For example, a high-pitched sound is naturally linked to

a small visual object, while a low-pitched sound is linked to a larger visual object (Bien

et al., 2012; Spence, 2011; Gallace and Spence, 2006; Sciortino and Kayser, 2023). These
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cross-modal correspondences reveal the underlying ways in which

our brain interprets sensory information. However, different

CMC types—statistical, structural, or semantically mediated—

may have varying consequences for human decision-making

and information processing and might originate from different

neural mechanisms (Spence, 2011; Spence and Parise, 2012).

Statistical correspondences arise from the frequent co-occurrence

of sensory features in the environment, such as the pairing

of large objects with low-pitched sounds (Deroy et al., 2013;

Spence and Parise, 2012; Parise and Spence, 2012). Structural

correspondences are based on inherent similarities between the

sensory properties of different modalities (Spence, 2020), such

as the association between sharp sounds and angular shapes.

Semantically mediated correspondences, in contrast, involve

learned associations influenced by language (McCormick et al.,

2018; Spence, 2011), such as the association between high-

pitched sounds and higher spatial positions or low-pitched

sounds and lower spatial positions. These metaphorical mappings

are often encoded in language, like describing a “high note”

or a “low tone,” but they also rely on universal perceptual

experiences (Eitan and Timmers, 2010). It is important to note

that these types are not entirely distinct. For instance, statistical

components may contribute to semantic correspondences (e.g.,

size associations in language), and semantic interpretations

may reinforce statistical pairings through frequent co-occurrence

(Spence, 2011). These cross-modal associations significantly

influence perceptual decision-making by altering how sensory

information is processed and interpreted. Audiovisual CMCs often

rely on relative, rather than absolute, sensory attributes. For

example, congruency effects are shaped by the relative pitch of

auditory stimuli (a perceptual attribute derived from the physical

property of frequency) and the relative size or elevation of visual

stimuli (perceptual qualities linked to physical dimensions such

as diameter), rather than their absolute values (Spence, 2019).

This relative nature of congruency highlights the brain’s ability

to interpret sensory input within context-dependent frameworks,

which is essential for guiding perceptual decision-making in

varying environments. Behavioral performance improvements,

such as faster response times (RTs) and higher accuracy,

have been demonstrated for congruent cross-modally associated

stimuli (Parise and Spence, 2012; Kayser and Kayser, 2018; Franzen

et al., 2020; Kayser et al., 2017; Tuip et al., 2022). Understanding

these effects is essential for uncovering the mechanisms that

underlie efficient sensory processing and perceptual judgment.

In particular the origin and neuro-functional correlates of

CMCs remain debated and previous work disagrees on whether

they result in low-level sensory cortices or whether they are the

result of high-level integration processes in semantic or object

identification networks in associative cortices (McCormick et al.,

2018; Sciortino and Kayser, 2022). Some studies support a low-level

origin: for example an EEG study on sound-symbolic associations

found association-specific activations around 140 ms (Kovic et al.,

2010) and primary auditory and visual cortices are activated

in the Bouba-Kiki effect (Peiffer-Smadja and Cohen, 2019) or

other multisensory paradigms (Brang et al., 2022; Kayser et al.,

2010; Lakatos et al., 2009; Schroeder and Foxe, 2005). Other

studies, however, support a high-level origin in the parietal and

frontal regions. These include Some EEG studies on the pitch-

size association (Bien et al., 2012; Stekelenburg and Keetels, 2016),

and fMRI studies on cross-modal associations (McCormick et al.,

2018, 2021). Finally, one EEG study that is methodologically

related to the present work (Bolam et al., 2022) examined EEG

responses to auditory trials for CMCs between auditory pitch and

size found early sensory (around 100 ms post-stimulus onset)

and late decisional (300–400 ms post-stimulus onset) components

that distinguish between congruent and incongruent audiovisual

pairings. Hence, across the literature, there does not seem to be

a consistent picture of whether cross-modal associations reflect

more late and decision-related processes or indeed engage early and

low-level sensory processes.

Our study aims to deepen the understanding of the neural

origins of audiovisual cross-modal associations. We focus on

two distinct types of CMCs statistical and semantic examining

whether the underlying processes observed in previous research are

confined to specific modalities and CMC types, or whether they

generalize across sensory systems. By investigating these different

types of congruency, we aim to uncover modality-independent

mechanisms that govern how congruency influences perceptual or

decision processes across various sensory contexts.

For our study, we combined the implicit association test

(IAT) (Parise and Spence, 2012) with concurrent EEG recordings.

In this IAT, cross-modal correspondences are probed in unisensory

trials via different stimulus-response assignments presented

in different blocks. Hence, the cross-modal congruency is

manipulated by altering stimulus-response mappings between

blocks. Importantly, the design avoids confounding influences of

selective attention arising in experiments where multiple stimuli

are presented in each trial and avoids tapping into processes

that judge the spatio-temporal congruency of simultaneously

presented stimuli, which are other factors relevant to multisensory

integration that do not directly pertain to CMCs. This contrasts the

present study from previous work, which often relied on speeded

classification tasks (Marks, 2004; Bien et al., 2012).

By using the IAT, we were able to isolate the specific

effects of audiovisual congruency on perceptual decision-making.

Combining the IAT with EEG, multivariate analysis, and neurally

informed cognitive modeling (Bolam et al., 2022; Franzen et al.,

2020; O’Connell et al., 2018), our approach provides insights

into the neural stages of processing where congruency effects

between acoustic and visual stimuli occur, and how these effects

shape perceptual decision-making. This methodology enables us to

examine the neural dynamics underlying cross-modal associations

and their role in decision formation across different types of CMCs.

2 Materials and methods

2.1 Participants

Thirty participants (14M, 16F, aged 23–32, mean 27,3 years

old) joined this study, all with normal/corrected vision, and

hearing and no self-reported history of neurological disorders.

Participants were multilingual, with diverse linguistic backgrounds.

Experiment instructions were in English. Given the abstract nature
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of the audiovisual stimuli used in this study, linguistic influences

on semantic processing were considered minimal. They received

e15/h for their participation. The experiment adhered to the

ethical guidelines outlined in the Declaration of Helsinki. Prior to

the experiment, all participants gave written informed consent to

participate and agreed to the processing of their data in accordance

with EU data protection regulations.

2.2 Stimuli and apparatus

Two auditory and two visual stimuli were used for each

experiment. Auditory stimuli consisted of two 300 ms tones

(“high” and “low” pitch, 2,000 Hz and 100 Hz respectively). Visual

stimuli consisted of two dark gray circles [“small” and “large”,

1 and 5 height units respectively, as defined in PsychoPy (v.

2023.1.3) (Peirce et al., 2019)] for size CMC and of two dark

gray circles (“high” and “low”, 6 and –6 height units relative

to monitor center respectively) for elevation CMC (see task

description). Visual stimuli were also presented for 300 ms. All

stimuli were created and presented using Python (v. 3.11) and

PsychoPy (v. 2023.1.3) (Peirce et al., 2019). The experiment was

conducted in an acoustically isolated hearing booth. Both tones

were calibrated to a loudness of 4 sone, which approximately

corresponds to 60 dB SPL for 2,000 Hz tone and 80 dB SPL for

100 Hz tone. Auditory stimuli were presented using GENELEC

6010A active loudspeaker placed at 0◦ in front of the participant

and visual stimuli were presented on an LG 23MB35PM monitor

at a refresh rate of 60 Hz with a resolution of 1,920 × 1,080 in a

distance of 1m.

2.3 Implicit association test and procedure

We explored the implicit associations of two audiovisual cross-

modal correspondences: size CMC (visual size and auditory pitch)

and elevation CMC (visual elevation and auditory pitch) were

explored using a modified Implicit Association Test (Parise and

Spence, 2012) similarly to Bolam et al. (2022). Size CMC represents

a statistical type of correspondence, linking high-pitched sounds

to smaller objects and low-pitched sounds to larger objects, which

might stem from associations grounded in frequent co-occurrences

of given stimuli (Spence, 2011; Parise and Spence, 2012; Gallace

and Spence, 2006). Elevation CMC represents a semantic type

of correspondence, which manifests from symbolic relationships

between sensory inputs, linking high pitch and high elevation, low

pitch, and low elevation (Spence, 2011; McCormick et al., 2018;

Zeljko et al., 2019).

The two different types of CMCs were introduced as a between-

subject effect. The experiment involved four distinct stimuli: two

auditory (high and low pitch) and two visual (small and large

circles for size CMC; high and low elevation for elevation CMC).

Each experimental block consisted of a training and testing phase.

During the training phase, participants practiced a stimulus-

response mapping with two response keys. One auditory and

one visual stimulus were mapped to one response key, and the

remaining stimuli were mapped to the other (Figures 1A, B). By

pressing the respective response buttons, they played the auditory

stimuli assigned to each key, allowing them to learn the mappings.

There was no time limit to practice the mapping. This mapping

could be either congruent (i.e., high pitch with high elevation or

small circle) or incongruent (i.e., high pitch with low elevation

or big circle) and was balanced across blocks. To prevent biased

associations between keys and stimuli features (e.g., right key and

high pitch) the mappings were also balanced in regards to the

response keys and altered in each experimental block resulting

in four key-stimulus mappings per CMC type (Figure 1A). In

the testing phase, participants classified one stimulus at a time

using the designated button, striving for speed and accuracy,

with immediate feedback provided via color-coded fixation cross

(Figure 1B). The correct answer was when the appropriate key

assigned to the stimuli for the given condition was pressed.

For example in Figure 1B, if the left key was pressed for the

first trial (high visual elevation, mapped to the right key), the

answer would be incorrect and the red fixation cross would

be displayed.

2.4 Procedure

The participants were seated 1m from the monitor and

loudspeaker in an acoustically optimized booth. The experiment

procedure started with instructions to respond to stimulus

presentation as fast and as accurately as possible by pressing the

left or right response button. Each trial began with a presentation

of a fixation cross at the center of the screen for a randomized

period (uniform distribution 500 to 1,000 ms). Next, one of

the four stimuli, visual or auditory, was presented for 300 ms.

After the participant’s response feedback in the form of a red

(incorrect answer) or green (correct answer) cross was provided

for a randomized period (uniform distribution 300 to 600 ms).

The experiment in total comprised 1,280 trials in 16 blocks

(i.e., 80 trials per block, 20 per stimulus feature, resulting in 640

congruent and incongruent trials, 320 congruent and incongruent

trials per stimulus modality) and lasted approximately 3 h,

including 1.5 h for EEG setup and 1.5 h for the experiment.

The methodology for processing EEG data is illustrated

in Figure 1C.

2.5 Behavioral data analysis

Response times and accuracy were recorded for each

participant as dependent measures of behavioral performance.

RTs shorter than 250 ms and longer than 3 · 1.4826 · MAD

(median absolute deviations) were rejected as outliers (Leys

et al., 2013). That led to the rejection of 7.2% of all trials, leaving

35,228 trials to analyze. RT and accuracy data were not normally

distributed, therefore median participant RTs and mean accuracy

were computed and subjected to paired random permutation

tests. Effect sizes were estimated using Cliff ’s Delta for RT

data (non-parametric measure of effect size) and Cohen’s d for

accuracy data.
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FIGURE 1

(A) Example of response key-stimulus mappings for the implicit association test. The two di�erent types of audiovisual cross-modal correspondences

(CMCs)—elevation (top), and size (bottom)—were introduced as a between-subject e�ect. To prevent biased associations between keys and stimuli

features (e.g., right key and high pitch) the mappings were balanced in regards to the response keys. (B) In each block of trials, participants first

memorized the response key-stimulus mapping during a training phase. By pressing the respective response buttons, they played the auditory stimuli

assigned to each key, allowing them to learn the mappings. In the subsequent testing phase, they were presented with a single stimulus per trial

(auditory or visual) and instructed to categorize the stimulus by pressing the correct response key, as assigned in the corresponding block. The

congruency and the association between response buttons and stimulus features were systematically manipulated across blocks. (C) Overview of the

methodology. First, raw EEG data were preprocessed. Then, pseudo-trials were created by averaging four trials of the same condition (congruency,

modality, answer: correct/incorrect) enabling reliable neural signatures. Linear Discriminant Analysis (LDA) was applied to each participant’s data to

classify conditions and to obtain time-resolved classifier performance (ROC AUC), discriminant components y(t), and scalp topographies. From the

LDA results, the maximum amplitudes ymax
early

and ymax
late

for early and late windows were first extracted for each pseudo-trial. Finally, these amplitudes

were used as neural regressors in a neurally informed hierarchical drift-di�usion model (nHDDM) to assess the impact of neural activity on

decision-making processes. Given the hierarchical nature of the model, group-level and participant-level parameters are estimated jointly.
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2.6 EEG data preprocessing

EEG data were recorded for each participant using 64 channels

with an actiChamp PlusTM (Brain Products GmbH) amplifier

system at a sampling rate of 2,500 Hz and an analog anti-

aliasing filter with an upper cutoff frequency of 690 Hz. Recorded

data were preprocessed in MATLAB R2023a using the EEGLAB

Toolbox (v. 2023.1) (Delorme and Makeig, 2004). First, data were

filtered using a linear-phase high-pass filter with a 1 Hz cutoff

frequency. Then, the EEG data were down-sampled to 200 Hz.

Next, data were re-referenced to average reference, and Artifact

Subspace Reconstruction was used to identify noisy channels. These

channels were removed after visual inspection and reconstructed

using spherical spline interpolation. Potential signal artifacts were

removed using independent component analysis; components

identified by ICLabel (Pion-Tonachini et al., 2019) as being eye-

or muscle-related and components related to noisy electrode

channels were removed after visual inspection. EEG data from three

participants were excluded from further analysis due to excessive

noise or poor signal quality.

Subsequent processing of EEG data was conducted via custom

scripts in Python (v. 3.11) using the MNE library (v. 1.6.0) (Larson

et al., 2024; Gramfort et al., 2013) and the scikit-learn library (v.

1.4.1) (Pedregosa et al., 2011). For further analysis, the data were

additionally low-pass filtered with a low cutoff frequency at 30 Hz.

Epochs between –0.3 to 0.7 s relative to stimulus onset were created,

with baseline correction using the signal from –0.3 to 0 s relative to

stimulus onset.

2.7 Single trial EEG data analysis

To quantify whether EEG activity differs between experimental

conditions, a linear multivariate single-trial analysis based on

regularized linear discriminant analysis (LDA) was performed (Li

et al., 2024; Franzen et al., 2020; Kayser et al., 2017; Blankertz

et al., 2011; Philiastides et al., 2006, 2014; Sajda et al., 2009; Parra

et al., 2005, 2002). LDA is a technique used for dimensionality

reduction and data classification, which integrates information

across the multidimensional electrode space, instead of across

trials as in trial-average event-related method methods. LDA

with sliding window approach was used to learn the spatial

weighting matrix w (spatial filter) which was then applied to

generate the one-dimensional projection y(t) of the multichannel

EEG signal that maximally discriminates between given two

conditions of interest within each time window t and for each

trial i

y(t) = wTx(t) =

D∑

i=1

wixi(t) (1)

Here, T denotes the transpose operator, and D refers to

the number of EEG channels. The epoched EEG data xi(t)

were segmented into a sliding window of 60 ms shifted by

5 ms increments. For each time window, the EEG data were

averaged across time. Pseudo-trials were created by averaging

four trials from a single condition—congruency, modality,

and correct/incorrect (Scrivener et al., 2023). More extreme

discriminant component amplitude y(t) values indicate a higher

likelihood of categorizing the trial as one of the conditions, while

values near zero suggest less discriminative component amplitudes.

Specifically, in our case, higher negative amplitudes indicate more

evidence for incongruent stimuli, while higher positive amplitudes

indicate more evidence for congruent stimuli. The classifier

performance was obtained for each participant as the receiver

operating characteristic area under the curve (AUC), gained by a

20-foldMonte-Carlo stratified cross-validation procedure. Both the

y(t) and the AUCwere aligned with the onset of the sliding window.

Group significance thresholds for the discriminator

performance, rather than assuming an AUC of 0.5 as chance

performance, were determined using bootstrap analysis. In this

analysis, congruent and incongruent labels were randomized

and subjected to a separate 20-fold Monte Carlo stratified cross-

validation procedure. This randomization process was repeated

1,000 times. For each randomization, we computed the group-

averaged AUC score value and identified the maximal AUC score

value over time, building a distribution of AUC score values. From

this distribution, we extracted the 99th percentile, which, due to

the maximum operation, provides a Family-Wise Error Rate of p =

0.01, corrected for multiple comparisons over time points (Holmes

et al., 1996; Nichols and Holmes, 2002).

Scalp topographies corresponding to the given classifier were

determined by estimating the forward model, defined as the

normalized correlation between the discriminant component and

the EEG activity (Parra et al., 2005). To identify components

that reflect physiologically distinct processes, we applied k-means

clustering with a Euclidean distance metric (Duda et al., 2012) to

the forward models in the time window of significant classification

performance. We optimized the number of clusters (representing

different time windows with similar scalp topographies) using

silhouette values similarly to Blank et al. (2013) and Franzen

et al. (2020). Our results remained robust regardless of the choice

of criterion.

Stimulus and response-locked trials were classified to identify

early sensory and late decisional processes sensitive to congruency.

For the stimulus-locked trials, classification was also performed to

determine different stimuli features (high-/low-pitch for auditory

trials, high-/low-elevation, or small-/big-size circle for visual trials),

so as to better understand the timing of sensory-related processes.

2.8 Neurally informed hierarchical
drift-di�usion modeling

The Hierarchical Drift-Diffusion Model (HDDM) is a

computational framework used to model and analyze decision-

making processes. It builds upon the traditional Drift-Diffusion

Model (DDM), which characterizes decision-making as a process

where noisy evidence accumulates over time until it reaches one of

two decision boundaries, representing different choice alternatives

(e.g., correct vs. incorrect choices). The key parameters of the

DDM include the drift rate, representing the average rate of

evidence accumulation; the decision boundary, which reflects the

amount of evidence required to make a decision; the starting point,
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indicating any bias toward one of the decision boundaries; and

the non-decision time, accounting for processes such as sensory

encoding and motor response latency (Ratcliff and McKoon, 2008;

Ratcliff, 1978; Forstmann et al., 2016).

The HDDM extends this framework by incorporating a

hierarchical Bayesian modeling approach, allowing for the

simultaneous estimation of group-level and individual-level

parameters. This hierarchical structure leverages the assumption

that individual participant data are random samples from a

broader population distribution, thereby improving parameter

estimation accuracy, particularly in datasets with a low number

of trials (Wiecki et al., 2013; Ratcliff and Childers, 2015;

Vandekerckhove et al., 2011). The model fitting in HDDM is

executed through Markov Chain Monte Carlo (MCMC) sampling,

which iteratively adjusts prior distributions of estimated parameters

using a likelihood function that maximizes the probability of the

observed data (Gamerman and Lopes, 2006). An advantage of

the HDDM is its ability to incorporate external variables, such

as neural data (e.g., EEG and fMRI signals), as regressors to

inform the estimation of specific decision-making parameters.

This feature allows for a more direct examination of how

neural activity influences parameters like drift rate or decision

boundary (Delis et al., 2022; Frank et al., 2015; Franzen et al.,

2020). The use of the Bayesian hierarchical frameworks in HDDM

also enables the estimation of posterior distributions for each

parameter, thereby quantifying the uncertainty associated with

these estimates (Navarro and Fuss, 2009; Gelman, 2003).

2.8.1 Fitting
The HDDM implementation involves an “accuracy-coding”

approach, where the model is fitted to RT distributions assuming

that the upper and lower decision boundaries correspond to correct

and incorrect choices, respectively. For each decisional process, the

HDDM provides estimates for key parameters such as drift rate δ,

decision boundary θ , and non-decision time τ , while the starting

point z was fixed at the midpoint between the decision boundaries

in cases without a priori bias (Philiastides et al., 2014; Wiecki et al.,

2013).

To fit the HDDM, the HDDM Python library (Wiecki et al.,

2013) was used, which provides a suite of tools for hierarchical

Bayesianmodeling of decision-making processes. Themodel fitting

was executed using a Docker container, designed to streamline

the HDDM workflow (Pan et al., 2022). When fitting the model,

special attention was given to the convergence and stability of the

MCMC chains. Four chains were run with 11,000 samples, with

the initial 5,000 “burn-in” samples discarded and thinned by factor

20 to reduce auto-correlation. Convergence was assessed using

the Gelman-Rubin R̂ statistic, with values between 0.98 and 1.02

indicating reliable convergence across chains (Gelman and Rubin,

1992). For model comparison, the Deviance Information Criterion

(DIC) was used, a metric widely applied in the assessment and

comparison of hierarchical models (Spiegelhalter et al., 2002). DIC

selects the model that best balances goodness-of-fit with model

complexity, where lower DIC values indicate models that achieve

a better trade-off between high likelihood and minimal degrees

of freedom.

2.8.2 EEG regressors
To inform the fitting of the HDDM to behavioral data,

we incorporated the results from EEG discriminant analysis

(Figure 1C). Specifically, EEG discriminant component amplitudes

from pseudo-trials (see Section 2.7) were used as regressors for

drift rate, decision boundary, and non-decision time to assess their

linear relationship with these decision-making parameters. The

RT for each pseudo-trial was obtained by computing an average.

Based on our observations, where lower RTs were consistently

found for congruent trials, we hypothesized that the component

amplitudes in congruent trials would predict increases in drift

rate, decreases in decision boundary, and shorter non-decisional

processes. Conversely, for incongruent trials, we expected the

component amplitudes to predict decreases in drift rate, increases

in decision boundary, and longer non-decisional processes.We also

included stimulus modality (S) as a predictor for drift rate. During

the model fitting within the HDDM framework, we constructed

regressors using the EEG discriminant amplitudes for congruent

and incongruent trials, separately for different types of CMC (size-

pitch and elevation-pitch), as follows:

δ = α0 + α1 ∗ y
max
early + α2 ∗ y

max
late + α3 ∗ S (2)

θ = β0 + β1 ∗ y
max
early + β2 ∗ y

max
late (3)

τ = γ0 + γ1 ∗ y
max
early + γ2 ∗ y

max
late (4)

Here, ymax
early

and ymax
late

represent the maximum discriminator

amplitudes of subject-specific, stimulus-locked EEG components

that capture the highest classification performance between

congruent and incongruent trials. Early EEG components were

derived from individual peak AUC score values and corresponding

forward models in the time range of 125–350 ms post-stimulus

for Size CMC and 125–300 ms for Elevation CMC. Late EEG

components were based on individual peak AUC scores and

corresponding forward models in the time range of 450–600 ms

for both CMC types (see Section 3.2). The coefficients α1, β1, γ1,

and α2, β2, γ2 weight the slope of each parameter according to the

values of ymax
early

and ymax
late

, respectively, with intercepts α0, β0, and

γ0, on a trial-by-trial basis for each subject, congruency condition,

and type of CMC. S denotes the stimulus modality (either visual or

auditory). Note that ymax
early

and ymax
late

were normalized for the effects

of congruency (ignoring the sign), so that higher amplitude signifies

more sensory evidence.

2.8.3 Hypothesis testing
Our statistical approach relies on Bayesian hypothesis testing

rather than a classical frequentist approach. Specifically, to test

our hypotheses regarding the HDDM results, we employed a form

of posterior log-odds testing. This approach allows us to assess

the strength of evidence supporting our predefined hypotheses

using posterior distributions. Specifically, we employed the built-

in functions of the HDDM toolbox (Wiecki et al., 2013) to

compute the posterior distributions of the regression coefficients.

Our hypotheses predicted decreases in reaction times (RTs) for

congruent trials compared to incongruent trials, as well as in
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FIGURE 2

Behavioral task performance for the CMC between elevation and pitch (left) and between size and pitch (right). RTs (top) and accuracy (bottom) are

grouped by stimulus modality. Incongruent (I) trials demonstrate higher RTs and lower accuracy compared to congruent trials (C) for both CMCs.

Each line represents a participant.

congruent trials decreases in RTs for incorrect responses compared

to correct responses. For congruent drift rate (δC), decision

boundary (θC), and incongruent non-decision time (τ I) regression

coefficients, posterior probability densities were calculated based on

the proportion of posterior samples greater than zero (P(δC > 0);

[P(θ I > 0); P(τ I > 0)]. For incongruent drift rate (δI), decision

boundary (θ I) and congruent non-decision time (τC) regression

coefficients, posterior densities were calculated from the proportion

of posterior samples less than zero (P(δI < 0); [P(θC < 0);

P(τC < 0)].

To quantify the evidence for each hypothesis, we applied the

logit transformation to the proportions, resulting in posterior log-

odds for each coefficient (Ince et al., 2021). Given the hierarchical

nature of our model, where group-level and participant-level

parameters are jointly estimated, this Bayesian approach is

particularly suited as it avoids the independence assumptions

inherent in traditional frequentist null-hypothesis significance

testing (Wiecki et al., 2013). To further assess the predictive

strength of the regression coefficients, we calculated the posterior

log-odds for a hypothetical sample with a false-positive rate of α =

0.05 (i.e., a 95% true-positive threshold, 2.994 log-odds). Regression

coefficients with log-odds proportions greater than the threshold

provide evidence for a non-zero effect on posterior parameter

estimates, thus supporting our hypotheses. While high log-odds

indicate confidence in the direction of the effect, they do not

directly quantify the strength or magnitude of the effect.

3 Results

3.1 Behavior

We found a significant difference in RTs and accuracy

between congruent and incongruent trials for both types of

CMC, where incongruent trials show slower response times and

lower accuracy (c.f., Figure 2). This was confirmed by paired

random permutation tests for both median RTs (congruent vs.

incongruent size CMC, n = 15participants, p < 0.001, Cliff ’s

Delta 0.49, median congruent 0.51 s, median incongruent 0.62 s;

congruent vs. incongruent elevation CMC, n = 15participants,

p = 0.004, Cliff ’s Delta 0.38, median congruent 0.44 s, median

incongruent 0.53 s) and mean accuracy (congruent vs. incongruent

size CMC, n = 15participants, p = 0.012, Cohen’s d =

0.34, mean congruent 0.94, mean incongruent 0.92; congruent vs.

incongruent elevation CMC, n = 15participants, p = 0.002,

Cohen’s d = 0.78, mean congruent 0.96, mean incongruent

0.93). The effect size as quantified by Cliff ’s delta is bigger

for differences in response times for size-pitch correspondence,

whereas, for accuracy, the bigger effect as quantified by Cohen’s d

can be observed for correspondence between visual elevation and

auditory pitch.

3.2 EEG analysis

EEG data were analyzed to identify neurophysiological

processes sensitive to congruency, regardless of modality. For

each participant, a multivariate linear discriminant analysis was

conducted to estimate spatial weights that maximally discriminated

congruent from incongruent trials in sliding windows of 60

ms. Applying these weights to the pseudo-trial EEG signals

resulted in a projection y(t) of the multichannel signal that

maximally distinguishes between the two congruency conditions.

The amplitude of y(t) serves as an indicator of neural evidence,

with higher amplitudes suggesting greater evidence for one

of the conditions. Specifically, in our case, higher negative

amplitudes indicate more evidence for incongruent stimuli,
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FIGURE 3

Multivariate linear discriminant analysis results for the CMC between elevation and pitch and between size and pitch. (A) Time course of the mean

classifier performance of stimulus-locked trials, quantified by the AUC score obtained through a 20-fold Monte Carlo stratified cross-validation

procedure. The bold line represents performance based on congruency (congruent vs. incongruent), while the dotted and dashed lines represent

performance based on stimulus features (auditory high-low pitch and visual high-low elevation/small-big circle, respectively). The black line

indicates the group permutation threshold at p < 0.01. Beige vertical bars indicate stimulus presentation. Shaded gray vertical bars denote the Early

and Late EEG component windows, which were determined using temporal clustering of the topographies of the associated forward models. Mean

forward model topographies representing Early and Late peak components for both CMCs. These topographies were computed by averaging the

topographies at the time windows corresponding to maximum performance during the Early and Late time windows for each participant. (B)

Forward model topographies of stimulus and response-locked trials sensitive to congruency at time windows determined by temporal clustering.

Two spatiotemporal patterns were observed during the Early component. During the Late component, one spatiotemporal pattern was present,

which is identical to the activation pattern in response-locked trials.

while higher positive amplitudes indicate more evidence for

congruent stimuli.

The discrimination performance for stimulus-locked

congruent-vs-incongruent trials exceeded the chance level at

90 ms for size CMC and at 125 ms for elevation CMC (see

Figure 3A). Within the time range of significant classifier

performance, we applied temporal clustering on the mean

forward model topographies to identify the number of relevant

components. Scalp topographies were estimated using a forward

model (Parra et al., 2005), which identified three distinct

spatiotemporal patterns across both CMCs (Figure 3B). Two of

these patterns emerged early, mostly during stimulus presentation

(first 300 ms). The first pattern was observed between 125–

225 ms, the second between 230–300 ms and 230–350 ms

for the elevation and size CMCs, respectively. The latter

component was consistent across both CMCs and exhibited

a pronounced front-back polarization. The third spatiotemporal

pattern, present between 400–600 ms, showed a prominent

centroparietal activation cluster for both CMCs. The transition

point between the earlier components and the third component

occurred around 380 ms for size CMC and around 350 ms for

elevation CMC, with a longer transition period observed for

elevation CMC.

The congruent-vs.-incongruent discriminant analysis was also

performed on response-locked trials. Temporal clustering of the for

topographies within the time range of significant discrimination

identified one spatiotemporal pattern between –125–0 ms relative

to stimulus onset consistent across both CMCs. It showed a

centroparietal activation cluster identical to the third pattern in

stimulus-locked trials (Figure 3B).

Similarly, we applied the same discriminant analysis to

identify components that distinguish between stimulus features

(Figure 3A). This analysis was performed separately for auditory

and visual trials. For elevation CMC, low- and high-pitched tones

and low- and high-elevation circles were classified. For size CMC,

low- and high-pitched tones and small- and large-sized circles were

classified. Discriminator performance rose above the chance level

as early as 40 ms for visual stimuli and 50 ms for auditory stimuli.

Notably, the two early congruency-discriminating spatiotemporal

patterns temporally coincided with high classification performance

of stimulus features. Based on these observations, the Early

component was defined between 125–300 ms for size CMC and
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FIGURE 4

Neurally-informed cognitive modeling. (A) Graphical representation of the Bayesian hierarchical framework used to estimate neurally-informed

HDDM parameters. Circular nodes represent continuous random variables, with shaded nodes indicating observed or computed data, such as

behavioral data (RTs and Choices) and EEG component discriminator amplitudes y’s. Double-bordered nodes represent deterministic variables,

which are defined based on other variables. Plates indicate a hierarchical structure for modeling multiple random variables, where the inner plate

represents participants (n = 1,... , N), the outer plate represents CMC types and congruency conditions (Elevation CMC: pitch and elevation; Size

CMC: pitch and visual size, Congruent|Incongruent). Parameters are modeled as random variables with inferred means µ and variances σ 2,

constrained by estimates inferred across CMC conditions. External plates depict the constructed regression coe�cients, which serve as predictors

for drift rate δ, decision boundary θ , and non-decision time τ . (B) Discriminator amplitudes y for Congruent (blue) and Incongruent (red) components

are shown as histograms, separately for the Early (top) and Late (bottom) EEG components for both CMC types. Negative values reflect neural

evidence for incongruency, while positive values reflect evidence for congruency.

between 125–350 ms for elevation CMC, and was attributed

a sensory-related role. The Late, post-sensory component was

defined between 400–600 ms for both CMCs.

Additionally, maximal discriminator performance for

congruency was determined during the Early and Late time

windows for each participant. At the corresponding times,

projection amplitudes ymax
early

and ymax
late

were collected (Figure 4B).

On average, peak performance during the Early time window

occurred at 241 ms for elevation CMC and 253 ms for size CMC.

During the Late time window, the mean peak performance was

observed at 514 ms for elevation CMC and 503 ms for size CMC.

The corresponding mean peak scalp topographies for the Early

and Late time components showcase opposite polarities and are

consistent across both CMCs (Figure 3A upper topographies).

3.3 Neurally informed cognitive modeling

Following the identification of neural signatures that

differentiate congruent from incongruent trials, we aimed to

explore how trial-to-trial neural variations contribute to perceptual

decision-making across different types of CMCs. To achieve this,

we employed a neurally-informed variant of the Hierarchical Drift

Diffusion Model (Wiecki et al., 2013, Figure 4A). By incorporating

EEG discriminant component amplitudes, ymax
early

and ymax
late

, as

regressors for HDDM parameters, we constrained the model with

neural data, allowing us to assess the impact of neural activity

on perceptual decision-making processes between congruent and

incongruent trials.

In brief, the HDDM decomposes task performance into

three main components: drift rate (δ) for evidence accumulation,

decision boundary (α) for the amount of evidence required

to make a decision, and non-decision time (τ ) for processes

such as stimulus encoding and motor response. To examine

the relationship between neural activity and these parameters,

we used EEG-derived regressors–ymax
early

and ymax
late

–normalized for

congruency and included them as predictors in the HDDM for

drift rate, decision boundary, and non-decision time. The estimated

regression coefficients (α1, β1, γ1 for y
max
early

and α2, β2, γ2 for y
max
late

)

allowed us to assess how neural activity influenced decision-making

(see Figure 4B, Figure 5).

These EEG-derived regressors capture early bottom-up and

late top-down modulations in neural activity linked to associative

congruency, allowing us to investigate how these variations

influence perceptual decision formation. The component

amplitudes were used to reflect higher discriminant activity

between congruent trials and incongruent trials. By comparing

the obtained HDDM parameter values between congruent

and incongruent trials, as well as across different types of

CMCs, we aimed to identify the processes contributing to

the observed behavioral differences, such as improved task

performance and smaller RTs for congruent trials (as depicted

in Figure 2). We found a good model fit with the R̂ values

between 0.98 and 1.02 for all estimated parameters indicating

reliable convergence across chains (for posterior predictive checks

see Figure 6).

For elevation CMC, Early EEG components had a significant

predictive and positive effect on drift rate in congruent trials,

with [P(αC
1 > 0) = 0.955, log-odds = 3.053, Figure 5A].
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FIGURE 5

Neurally-informed cognitive modeling results for two types of cross-modal associations: (A) between elevation and pitch-elevation CMC and (B)

between size and pitch-size CMC. The figure depicts posterior density distributions of the estimated regression coe�cients for drift rate (α’s),

decision boundary (β ’s), and non-decision time (γ ’s). These coe�cients are linked to Early and Late EEG component discriminator amplitudes y’s for

both congruent and incongruent trials. The regression coe�cients were estimated using a neurally-informed Hierarchical Drift Di�usion Model,

based on data from n = 27 independent participants and 11,432 trials. Shaded areas represent the 95% probability mass, while dashed lines indicate

the zero point.

Similarly, Late EEG components positively influenced drift rate in

congruent trials [P(αC
2 > 0) = 0.94, log-odds = 2.75, Figure 5A],

though this effect did not meet the significance threshold (2.994

log-odds). In incongruent trials, Early EEG components did not

significantly affect drift rate, with [(P(αI
1 < 0) = 0.503, log-

odds = 0.011, Figure 5A], showing minimal predictive power.

However, for incongruent trials, Late EEG components had a

strong significant negative effect on drift rate, with [P(αI
2 < 0) =

0.997 log-odds = 5.855, Figure 5A], indicating that late neural

activity significantly reduces evidence accumulation in incongruent

trials. Visual modality consistently influenced drift rate positively in

congruent and incongruent trials, with P(αC
3 > 0) = 1.0, P(αI

3 >

0) = 1.0, suggesting a reliable positive effect across both conditions.

Early EEG and Late EEG components had no significant effect

on decision boundary [P(βC
1 < 0) = 0.149, log-odds = –1.743,

P(βC
2 < 0) = 0.706, log-odds = 0.877, Figure 5A] for congruent

trials. For incongruent trials, early EEG components were also non-

significant [P(βI
1 > 0) = 0.243, log-odds = –1.137], and late EEG

components failed to show a significant effect [P(βI
2 > 0) = 0.691,

log-odds = 0.807, Figure 5A].

For size CMC, the effects of Early EEG components on drift

rate in congruent trials were not as pronounced, with P(αC
1 >

0) = 0.632, log-odds = 0.539, see Figure 5B. Late EEG components

also positively influenced drift rate [P(αC
2 > 0) = 0.639, log-

odds = 0.571, Figure 5B], though again, this effect was weaker

and not significant compared to Elevation CMC. In incongruent

trials, early EEG components had a non-significant moderate

negative effect on drift rate, with P(αI
1 < 0) = 0.826 (log-

odds = 1.556, Figure 5B), while late EEG components had a

significant negative effect [P(αI
2 < 0) = 0.956, log-odds = 3.072,

Figure 5B], indicating that late neural activity disrupts evidence

accumulation in incongruent trials. Visual modality had a strong

positive effect for both congruent and incongruent trials, with

P(αC
3 > 0) = 0.966, P(αI

3 > 0) = 0.909. Early and Late EEG

components had no significant effect on decision boundary for

congruent trials, with P(βC
1 < 0) = 0.627 (log-odds = 0.52);

P(βC
2 < 0) = 0.227, log-odds = –1.228, Figure 5B. Also for

incongruent trials, both Early and Late EEG components had no

significant effect on decision boundary, with P(βI
1 > 0) = 0.189

(log-odds = -1.459), and P(βI
2 > 0) = 0.690, log-odds = 0.8,

Figure 5B.

In terms of non-decision time, the results differed between

Size CMC and Elevation CMC: For Elevation CMC Early EEG

components had a strong although not significant effect on non-

decision time - positive for congruent trials [P(γ C
1 > 0) = 0.94,

log-odds = 2.75] and negative for incongruent trials [P(γ I
1 <

0) = 0.931, log-odds = 2.609, Figure 5A]. Late EEG components

showed a non-significant positive effect [P(γ C
2 > 0) = 0.557, log-

odds = 0.231] for congruent trials and a moderate negative effect

[P(γ I
2 < 0) = 0.891, log-odds = 2.105, Figure 5A]. For Size CMC,

we found a significant negative effect of Late EEG components

[P(γ C
2 < 0) = 0.999, log-odds = 6.526, Figure 5B] non-decision

time for congruent trials. Early EEG components had no significant

effect on the non-decision time for congruent trials [P(γ C
1 < 0) =

0.55, log-odds = 0.199, Figure 5B]. For incongruent trials, Early and

Late EEG components also showed no significantmoderate positive

effect on non-decision time [P(γ I
1 > 0) = 0.851, log-odds = 1.746;

P(γ I
2 > 0) = 0.826, log-odds = 1.556, Figure 5B].

In summary, the analysis revealed that late EEG components

significantly reduced the drift rate in incongruent trials across

both CMC types. For elevation CMC, early EEG components

had a significant positive effect on the drift rate in congruent

trials, while early EEG components did not significantly affect

the drift rate in incongruent trials. Non-decision time was more

prominently affected in the size CMC, where late EEG components

had a significant negative impact in congruent trials. Decision
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FIGURE 6

Posterior predictive checks of the neurally-informed HDDM fitting. The histograms of the observed reaction time distributions, with the posterior

predictive distributions from the nHDDM model overlaid. The dashed line represents the mean of the posterior predictive distributions. The

alignment between the observed data and the model’s predictions demonstrates the model’s ability to capture the characteristics of reaction times

across all conditions. Negative RTs indicate incorrect responses. The figure compares the model fits for congruent trials (left) and incongruent trials

(right) across two types of CMCs–elevation and size (upper panel) and size and pitch (lower panel).

boundary parameters remained unaffected by both early and late

EEG components across congruent and incongruent trials for both

CMC types.

4 Discussion

We employed the Implicit Association Test (IAT; Parise and

Spence, 2012) combined with concurrent EEG measurements to

investigate the neural origins of statistical and semantic types of

audiovisual cross-modal correspondences. Our study expands on

previous research by examining both auditory and visual modalities

to explore whether the effects of congruency generalize across

different sensory modalities and CMC types. The behavioral data

clearly demonstrated a cognitive cost associated with incongruency,

reflected in slower reaction times and reduced accuracy for both

statistical CMCs, see Figure 2. These findings underscore the

cognitive advantage of congruent associations, reaffirming our

assumption that associative congruency shapes decision formation

in multisensory contexts (Bien et al., 2012; Zeljko et al., 2019;

Franzen et al., 2020; Bolam et al., 2022).

Our goal was to identify the neurophysiological correlates

of CMCs and to determine which of those influence perceptual

decisions. By applying multivariate linear discriminant analysis

and neurally-informed hierarchical drift-diffusion modeling, we

were able to identify two distinct functional stages, Early and Late,

associated with congruency across both CMC types. Crucially, the

behavioral benefits of congruent associations, such as faster RTs

and higher accuracy, were linked to these neural correlates. The

slower RTs observed in incongruent trials were associated with

reduced evidence accumulation (drift rate), which was modulated

by the Late EEG component consistently for both CMC types.

This suggests that late, post-sensory processing stages play a

critical role in modulating perceptual decisions in incongruent

trials. Additionally, the consistent positive influence of the visual

modality on drift rate, regardless of congruency, underscores the

role of sensory integration in audiovisual CMCs. Interestingly, we

also found differences between elevation and size CMCs in how

drift rate and non-decision time were associated with Early and

Late EEG components. This may suggest that the strength or nature

of cross-modal associations varies depending on the specific CMC

type, potentially reflecting differences in the relative contributions

of statistical and semantic processes.
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4.1 Behavior

Supporting previous research on CMCs, our behavioral

data demonstrate the existence of cross-modal correspondences

(CMCs) between auditory pitch and visual size (Bien et al., 2012;

Gallace and Spence, 2006; Deroy et al., 2013; Spence and Parise,

2012; Parise and Spence, 2012; Sciortino and Kayser, 2023), as

well as between auditory pitch and visual elevation (McCormick

et al., 2018; Spence, 2011). Using the IAT, we replicated findings

from Bolam et al. (2022) and Parise and Spence (2012), who

reported faster reaction times (RTs) and higher accuracy for

congruent trials in size CMCs (Parise and Spence, 2012).

Additionally, we demonstrated that the IAT is also suitable

for examining cross-modal associations between auditory pitch

and visual elevation. Our participant cohort included individuals

from diverse linguistic backgrounds. While linguistic variability

could theoretically influence semantic processing, the association

between high elevation and high spatial location is likely universal,

as it is rooted in shared perceptual and environmental experiences.

Consistent mappings between pitch and elevation have been

observed across cultures, though subtle variations may arise due to

linguistic or cultural influences (Eitan and Timmers, 2010). Future

research could further explore how linguistic diversity shapes the

processing of semantically mediated cross-modal correspondences.

Finally, it is worth noting that the associative congruency observed

in our study is relative in nature (Spence, 2019) and does not

depend on the absolute pitch frequency or e.g. absolute visual

size presented.

4.2 Multivariate LDA

Understanding how the brain integrates information from

multiple sources during decision-making is crucial for uncovering

the mechanisms that allow for efficient and accurate perceptual

judgments. The early and late integration hypotheses propose

different mechanisms for how multisensory information is

combined (Bizley et al., 2016). The early integration hypothesis

suggests that sensory inputs from differentmodalities are combined

during initial sensory encoding, supported by evidence of cross-

modal interactions in early sensory regions like the primary

auditory and visual cortices (Kayser et al., 2008; Foxe and

Schroeder, 2005; Rohe and Noppeney, 2015). In contrast, the late

integration hypothesis posits that sensory inputs are processed

separately and combined later during higher-order decision-

making. These two processes may not be mutually exclusive, as

recent findings suggest that both early sensory encoding and late

decision-related processes contribute to multisensory integration,

with early sensory modulations influencing the final decision-

making stage (Mercier and Cappe, 2020; Cao et al., 2019; Talsma,

2015; Rohe and Noppeney, 2015, 2016). Our study aimed to

investigate how these early (bottom-up) and late (top-down)

integration processes manifest in the brain’s neural responses to

audiovisual cross-modal correspondences.

To test these hypotheses, we conducted a multivariate linear

discriminant analysis to identify spatiotemporal patterns sensitive

to congruency, revealing distinct early and late neural components.

Analysis, similar to themethodology outlined by Bolam et al. (2022)

in their study on neurocomputational mechanisms underlying

cross-modal associations and their influence on perceptual

decisions, was performed.While their study focused on congruency

in auditory trials to explore cross-modal correspondence between

visual size and auditory pitch, our study aimed to determine activity

sensitive to congruency regardless of modality in two types of

CMCs. The discrimination performance between congruent and

incongruent trials rose above the chance earlier for size CMC,

already 90 ms post-stimulus onset, while for elevation CMC the

discrimination performance rose above the chance level at 125

ms post-stimulus. However, temporal clustering of the mean scalp

topographies gained by the forward model (Parra et al., 2005)

revealed consistent neural patterns across both CMCs (Figure 3B).

The Early component was defined within the range of 125–

300 ms (extended to 350 ms for the size CMC). Peak performance

in this window occurred at approximately 240–250 ms. Our

definition of the Early component diverges from that of Bolam

et al. (2022), who identified the Early component at 100–110

ms. Whereas they analyzed auditory-only trials, we included both

auditory and visual stimuli-locked trials, resulting in components

that were sensitive to congruency regardless of modality. Visual

trials, in particular, exhibited more sustained discrimination

performance for stimulus features compared to auditory trials,

which may explain why our congruency discrimination peaked

later. Moreover, the congruency discriminator’s performance in

our study was generally lower and did not precede nor exceed

the stimulus-feature discriminators, in contrast to Bolam et al.

(2022). This discrepancy between studies is unexpected, however,

audiovisual cross-modal associations should be weaker than the

clearly perceivable differences between stimulus features, therefore

our results appear more plausible. Nonetheless, the relatively

early onset of congruency discrimination in our results still

suggests a potential interaction between sensory encoding and

pre-existing perceptual priors. The overlap between the Early

component and the high performance of the stimulus-feature

discriminator suggests that audiovisual cross-modal associations

may automatically influence early sensory encoding. These

associations are likely active early in the perceptual process,

shaping neural representations before conscious decision-making

takes place. In line with this, our results support the idea that

the behavioral benefits of associative congruency, often seen in

faster and more accurate decisions, are likely modulated by neural

feedback mechanisms that influence the early stages of sensory

processing (Sciortino and Kayser, 2023).

The Late component was defined between 400–600 ms and

showed a prominent centroparietal activation. This activation

pattern is consistent with previously reported late decision-related

components (Franzen et al., 2020; Philiastides and Sajda, 2006;

Philiastides et al., 2014; Sajda et al., 2009) and resembles the

neural signature of decision formation, termed Centro-Parietal

Positivity (CPP) (O’Connell and Kelly, 2021; O’Connell et al.,

2018; Tagliabue et al., 2019; Herding et al., 2019). This activation

showed the samemain characteristics as the spatiotemporal pattern

we identified in response-related trials (Figure 3B), providing

more evidence for the decisional origin of this pattern. In the
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study by Mercier and Cappe (2020), the authors also linked

this late decision-related component, the CPP, to the process of

decision formation during multisensory integration. This aligns

with our observation of a centroparietal activation cluster during

the Late component, indicating that cross-modal congruency

modulates decision-related neural processes, likely contributing to

the behavioral benefits observed in congruent trials.

The longer transition period between the Early and

Late components for elevation CMC (Figure 3A) suggests

distinct neural dynamics compared to size CMC. Semantic

correspondences, such as pitch-elevation, likely engage higher-

order associative regions and involve more abstract cognitive

processing, reflected in the slower transition. In contrast, pitch-size

correspondences, which are more direct, exhibit a faster transition,

indicating reliance on more automatic sensory associations.

This extended transition for elevation CMC could indicate

greater involvement of top-down processes. Our findings further

support the idea that statistical CMCs, such as pitch-size, are

more automatic and processed earlier, while semantic CMCs,

like pitch-elevation, require more gradual processing and engage

top-down mechanisms.

Since individual trials in our study only presented isolated

unisensory stimuli, the neural benefits we observed from

congruency seem to be driven by perceptual processing rather than

purely decision-related mechanisms. Without the confounding

effects of simultaneous multisensory stimulation and selective

attention, the use of the IAT allowed us to localize the effects of

associative congruency to both early sensory-perceptual and late

decisional stages.

4.3 nHDDM

In this study, we were able to characterize the neural

mechanisms underlying the behavioral advantages of cross-

modal audiovisual associations. This was achieved through the

integration of cognitive modeling with both behavioral and

neural data, allowing us to link neural correlates of sensory

processing and decision-making to the internal processes driving

perceptual decisions. Specifically, the findings highlight that

late EEG components significantly reduce the drift rate in

incongruent trials across both CMCs. This suggests that late

decision-related processes are particularly sensitive to conflicts

between sensory modalities. Further, top-down processes may

disrupt or slow down evidence accumulation in the presence

of incongruent stimuli, likely reflecting the cognitive cost of

resolving conflicting information or the need for re-evaluation.

Such a role of multisensory incongruence in shaping later sensory

processes is also in line with models of multisensory causal

inference (Noppeney, 2021; Cao et al., 2019; Rohe and Noppeney,

2015). According to the current working model of multisensory

integration, incongruencies between sensory inputs are resolved

by determining whether two stimuli are likely to belong to one

common origin or to two distinct objects, and the resulting belief

in a common cause then shapes whether and how two sensory

signals are combined. The underlying neurophysiological processes

supposedly reside in higher parietal and frontal brain regions and

which emerge later after stimulus onset than the early unisensory

processing in low-level regions.

For the elevation CMC, the Early EEG component showed a

significant positive effect in congruent trials, supporting the idea

that early sensory encoding is more effective when cross-modal

stimuli are aligned. Interestingly, the non-decision time was more

prominently affected in the size CMC than in the elevation CMC.

Late EEG components had a significant negative impact on non-

decision time in congruent trials, indicating faster processing when

stimuli align, while early EEG components did not show a strong

influence. The absence of a significant effect on decision boundary,

a parameter that reflects how much evidence is needed before

making a decision, suggests that cross-modal congruency primarily

influences the rate and timing of sensory evidence accumulation

rather than the threshold for making decisions.

Our results show a key difference in the role of the Late

component compared to the previous study on CMCs by Bolam

et al. (2022). While their study linked the Late component with a

decrease in the amount of evidence required to reach a decision

(decision boundary), our Late component primarily influenced the

drift rate, particularly in incongruent trials. This suggests that in

our study, the focus of late neural processing was on evidence

accumulation rather than on modulating the decision threshold.

Notably, our findings align with those of Franzen et al. (2020),

where the Late component shares both the activation pattern and

timing and also reflects decision-related processes that modulate

the rate of evidence accumulation. Additionally, in Bolam et al.

(2022) results, incongruent stimulus-response mappings yielded

increased non-decision time estimates, modulated by their Early

component (defined around 100-110 ms). This suggests longer

stimulus encoding times in incongruent trials. In contrast, our

Early component, was found to positively affect the drift rate in

congruent trials, emphasizing the role of early sensory encoding

when stimuli align across modalities. This might be explained by

the fact that our Early component was identified later (125–300

ms), also similarly to Franzen et al. (2020), where they investigated

the auditory enhancement of visual object categorization. They

found no significant effects of the Early component. As previously

mentioned, a notable difference is that (Bolam et al., 2022)

only examined auditory trials, while our study incorporated

both auditory and visual stimuli, which could explain some of

the differences. This modality effect might also indicate that

congruency affects sensory processing differently depending on

whether stimuli are auditory or visual. The inclusion of modality

in our model as a separate factor significantly influenced drift rate

in all conditions (congruent and incongruent and both CMCs),

but it might be beneficial to examine the interaction between

modality and Early or Late EEG components and their effect on

model parameters, potentially including these effects also in non-

decisional time. Another explanation might be the fact that IAT is a

highly decisional task, where one stimulus at a time is presented and

therefore the sensory congruency effects on decision-making might

be weaker than when presenting both stimuli simultaneously,

resulting in the Early component’s weaker influence compared to

the more prominent Late component.

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2025.1513083
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Brožová et al. 10.3389/fnins.2025.1513083

In summary, our findings reveal the critical role of both early

sensory encoding and later decision-making stages in cross-modal

associations. Cross-modal congruency primarily influenced the rate

and timing of sensory evidence accumulation rather than altering

the decision boundary, suggesting that congruency modulates how

sensory information is collected rather than changing the threshold

for decisions. Our results underscore the importance of modality

in evidence accumulation and highlight the need for future

studies to explore the sequential and interactional nature of EEG

components across different sensory modalities. Understanding

these mechanisms could inform more effective models of

multisensory decision-making and expand our knowledge of how

sensory congruency influences perceptual judgments.
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