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A fine mapping strategy is essential for optimizing the layout and execution

speed of large-scale neural networks on many-core systems. However, the

benefits of many-core systems diminish when applied to neural networks

with significant data and computational demands, due to imbalanced resource

utilization between space and time when relying on existing single spatial or

temporal mapping strategies. To tackle this challenge, we introduce the concept

of spatial-temporal density and propose a spatial-temporal density mapping

method to fully leverage both spatial and computational resources. Within the

framework of the proposed method, we further introduce two approaches:

the Negative Sequence Memory Management (NSM) method, which enhances

spatial resource (i.e. core memory) utilization, and the Many-core Parallel

Synchronous (MPS) approach, which optimizes computational resource (i.e. core

multiply and accumulate units, MACs) utilization. To demonstrate the superiority

of these methods, the mapping techniques are implemented on our state-of-

the-art many-core chip, TianjicX. The results indicate that the NSM method

improves spatial utilization by a factor of 3.05 compared to the traditional

Positive Sequence Memory Management (PSM) method. Furthermore, the MPS

approach increases computational speed by 6.7% relative to the previously

widely adopted pipelinedmethod. Overall, the spatial-temporal density mapping

method improves system performance by a factor of 1.85 compared to the

commonly employed layer-wise mapping method, e�ectively balancing spatial

and temporal resource utilization.

KEYWORDS

many-core, spatial-temporal density mapping, memory management, spatial resource,

computational speed

1 Introduction

Recent many-core architectures have been widely adopted by accelerators (Shao et al.,

2019; Chen et al., 2019; Modha et al., 2023) and neuromorphic chips (Sawada et al.,

2016; Shen et al., 2016; Benjamin et al., 2014; Pei et al., 2019; Ma et al., 2022; Davies

et al., 2018; Shrestha et al., 2024; Ambrogio et al., 2023; Le Gallo et al., 2023) due

to their low power consumption and high parallelism. A crucial aspect of many-core

systems involves mapping neural networks into pipeline groups, where each group is

assigned a cluster of cores to handle computational tasks. In a many-core system, spatial

resources correspond to the memory storage capacity of each core, which is closely
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associated with the number of parameters in a neural network.

Computational resources refer to the number of multipliers and

accumulators in each core, which are closely related to the

computational workload of the neural network. In homogeneous

many-core systems, the temporal and computational resources are

consistent across cores. However, the distribution of parameters

and computational workload between the layers of a neural

network is imbalanced. Two common strategies to implement

neural networks are temporal mapping and spatial mapping, as

illustrated in Figure 1. In temporal mapping, tasks are executed

through time slicing, with each Processing Element (PE) or core

independently accessing data and taking on tasks according to

their time complexity. However, this approach leads to data

duplication between cores, resulting in inefficient utilization of

spatial resources. Although this method eliminates tail latency

between cores, it incurs significant data movement between cores

and external storage due to the limited memory capacity of

the cores, as shown on the left side of Figure 1. Alternatively,

spatial mapping divides tasks according to spatial slicing, where

clusters of cores are assigned tasks based on spatial volume (Ma

et al., 2022). Although this method reduces data movement,

it introduces tail latency across clusters, leading to inefficient

utilization of computational (i.e., temporal) resources, as shown

on the right side of Figure 1. Moreover, the layer-wise mapping

approach, commonly employed in many-core systems (Zimmer

et al., 2020; Chen et al., 2019; Pei et al., 2019; Le Gallo et al.,

2023), integrates both temporal and spatial mapping strategies,

offering improved mapping efficiency compared to single-method

approaches. However, it still encounters issues of imbalance

between spatial and computational resources, as inconsistencies in

the partitioning scheme across layers may introduce latency during

reshaping between adjacent layers. To tackle this challenge, we

propose spatial-temporal densitymapping to balance the utilization

between the spatial resource and the computational resource.

Nevertheless, the spatial-temporal mapping scheme faces

challenges like memory constraints and time delays. During the

mapping process, spatial resources are prioritized when allocating

cores. Because core memory space directly impacts data movement

and memory access, which play a critical role in chip energy

consumption and memory footprints (Han et al., 2016; Chen

et al., 2016). In neural networks, most historical and intermediate

data must either be discarded or updated during computation

(Hu et al., 2021), allowing memory space to be reused once it is

freed. Current research efforts have largely focused on reducing

memory footprints and data movement in traditional hardware

systems. Techniques such as fine-grained memory management

(Nie et al., 2022), reinforcement-based memory management

for GPUs (Liu et al., 2021), and machine intelligence-driven

hybrid memory management (Doudali and Gavrilovska, 2022)

have shown promising results. However, there remains a notable

gap in research addressing storage management strategies tailored

specifically for many-core systems. When mapping large neural

networks onto hardware, partitioning is necessary due to the

limited memory and MACs available on individual cores. In

practice, the input channel (Cin) of the neural network is typically

selected for partitioning, as the channel dimension is strongly

correlated with the computational load, including multiplications

and accumulations (Xie et al., 2017). Partitioning along the Cin

dimension results in the generation of partial sums (Psums) across

multiple cores. To ensure computational precision, hardware

architectures such as TianjicX (Pei et al., 2019) and Simba (Shao

et al., 2019) expand the bit-width of these Psums. However, the

increased width of Psums necessitates their accumulation across

cores or PEs, leading to significant communication latency. Given

these two aspects, it is critical to develop optimized methods

for memory management and Psums computation to improve

the utilization of both spatial and computational resources, thus

enhancing memory efficiency and reducing computational latency.

In this work, we propose a fine-grained spatial-temporal

density mapping scheme to balance the utilization of spatial and

computational resources. Decentralized many-core systems (Lin

et al., 2018; Shen et al., 2016; Benjamin et al., 2014; Pei et al., 2019;

Ma et al., 2022; Zhong et al., 2024) are well-suited for executing

multiple neural networks concurrently, enabling the simultaneous

exploitation of both spatial and temporal complexities. To

demonstrate the feasibility of our proposed mapping scheme,

we leverage our state-of-the-art many-core chip, TianjicX (Ma

et al., 2022). TianjicX chip is capable of spatial-temporal elasticity,

effectively executing and coordinating multiple tasks in parallel.

Various neural network models have been successfully deployed on

TianjicX chip (Zheng et al., 2024; Wu et al., 2024), which has also

been utilized for applications such as gaming and place recognition

in edge robotics (Ma et al., 2022; Yu et al., 2023). To further

explore the advantages of spatial-temporal density mapping,

we introduce Negative Sequence Memory Management (NSM)

method to enhance spatial resource utilization, and Many-core

Parallel Synchronous (MPS) approach to optimize computational

resource utilization. We conduct a theoretical analysis of the

proposed spatial-temporal density mapping scheme and applied it

to map the typical neural network architecture, ResNet-50, onto

TianjicX hardware. Experimental results show that our method

outperforms traditional mapping approaches, demonstrating its

superiority in terms of efficiency.

The remainder of this article is organized as follows: Section

2 provides background on spatial and temporal mapping, along

with memory space management and partial sum computation.

Section 3 details the proposed approach, including the theoretical

analysis of spatial-temporal density mapping, NSM, and MPS.

The hardware implementation of TianjicX is discussed in Section

4. Section 5 presents the experimental results of the proposed

mapping method, followed by a comparative analysis with

traditional mapping approaches. Finally, Section 6 concludes the

paper and offers insights for future work.

2 Related works

2.1 Spatial and temporal mapping

The hardware architecture dictates the mapping scheme.

Neuromorphic chip architectures based on crossbar arrays employ

mapping schemes to enhance memory space utilization (Amir

et al., 2013; Cui et al., 2022; Wei et al., 2022; Rueckauer et al.,

2022; Zou et al., 2021). For instance, a compiler has been
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FIGURE 1

Illustration of the distinction between temporal mapping and spatial mapping scheme: the left of the figure shows that a large amount of data

accesses the external memory in the temporal mapping, the right of the figure shows that the tail-latency exists in the spatial mapping which is

determined by the longest time.

proposed that utilizes a greedy layer-wise optimization algorithm

and connection sharing to minimize the duplication of weight

kernels in convolutional topologies for the Loihi core (Davies

et al., 2018; Rueckauer et al., 2022). This approach achieved near-

optimal space resource utilization of 80 % across 16 chips for a 28-

layer network. Similarly, FangTianSim has been introduced, which

flattens input images and output neurons into one-dimensional

arrays for mapping spiking neural networks (Wei et al., 2022).

This method aims to improve the utilization of resistive random-

access memory (RRAM) in crossbar structures. Additionally,

channel-major search and square-major search algorithms have

been proposed to ensure high resource efficiency and compactness

in hardware modules (Zou et al., 2021). These algorithms also

introduced density metrics for axons, neurons, and synapses

as practical evaluation criteria for assessing crossbar resource

efficiency. In addition to spatial mapping, some neuromorphic

chips employ temporal mapping schemes. A loop representation

with simulated annealing has been used to place local structures

on hardware, minimizing communication hops and optimizing

energy costs (Cui et al., 2022). Another approach involves a

fully-unfolded temporal mapping that reuses limited crossbar

resources through time-division multiplexing (Esser et al., 2016).

However, this method incurs substantial memory overhead despite

achieving high computational parallelism. To balance spatial and

temporal resource utilization, a semi-folded mapping paradigm

has been proposed that strategically allocates resources to optimize

overall efficiency (Deng et al., 2018). In a recent study, a

neuromorphic chip with 1024 scalable cores was designed, and

mapping experiments demonstrated that the semi-folded mapping

strategy significantly reduced core overhead by a factor of 0.07,

while only moderately decreasing inference throughput by a factor

of 0.04 (Zhong et al., 2024). Despite these advancements, the

challenge of balancing spatial and temporal resource utilization

in crossbar-based neuromorphic architectures remains a critical

issue. While substantial research has focused on improving

spatial resource utilization through various mapping schemes, the

exploration of temporal efficiency in artificial neural networks

(ANNs) is still relatively limited. Similarly, mapping ANNs onto

many-core architectures also faces the challenge of unbalanced

utilization efficiency between spatial resources and computational

resources. However, research on effectively balancing spatial-

temporal resource utilization for ANNs remains underexplored

to date.

On the other hand, most many-core designed without

crossbar achitecture adopts layer-wise approach for artificial neural

network mapping (Chen et al., 2019; Pei et al., 2019; Le Gallo

et al., 2023; Zimmer et al., 2020), as illustrated in Figures 2a,

b in a pipelined manner. The distribution of parameters and

computational workload across each layer is imbalanced, leading

to tail latency being determined by the longest execution time

among the allocated cluster cores. While TianjicX architecture

(Ma et al., 2022) represents a pioneering effort in integrating

spatial-temporal mapping for multi-task processing, its underlying

spatial-temporal coordination mechanism has not been thoroughly

explored, particularly in terms of strategies for mitigating tail

latency. To address the critical challenge of optimizing spatial-

temporal resource utilization in ANNs, this paper proposes a novel

spatial-temporal density mapping framework.

2.2 Management of the memory space

Efficient memory management systems are crucial for

minimizing memory footprint and reducing data movement.

Existing memory management systems are predominantly

designed for the Von Neumann architecture, which relies on

external memory. The vDNN architecture (Rhu et al., 2016)

introduces a swap strategy and employs a layer-wise memory

management approach. Several studies (Huang et al., 2020; Jiang

et al., 2019; Wahib et al., 2020) address GPU memory footprint

reduction using coarse-grained methods. These methods typically

involve swapping or recomputing data during the backward
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FIGURE 2

The process of generating partial sum: (a) neural network with multi-layers; (b) layer-wise mapping by temporal mapping or spatial mapping; (c)

partitioning the neural networks; (d) process of resulting Psums.

phase and evicting tensors during the forward phase. Many of

these approaches (Huang et al., 2020; Chen et al., 2018; Xiao

et al., 2020) focus on tensor-wise memory management. However,

this approach limits the flexibility of the swapping policy (Nie

et al., 2022). To overcome this limitation, a fine-grained memory

management system based on tensor splitting has been proposed,

aiming to alleviate memory bottlenecks while maintaining neural

network training efficiency (Nie et al., 2022).

Additionally, various other memory management techniques

have been developed, such as reinforcement-based methods

for class-incremental learning, holistic approaches for GPU

systems, and layer-conscious memory management frameworks

for FPGA-based accelerators. Despite these advancements, many-

core systems, unlike the Von Neumann architecture, typically lack

external memory. As a result, methods for memory management in

decentralized many-core systems remain underexplored.

TianjicX chip, a many-core system, utilizes Positive Sequence

Memory Management (PSM), as shown in Figure 3. However, this

approach struggles with efficient memory space reuse. For instance,

the space of S3 is larger than the combined space of S1 and S2,

so the S2 space can only be reused when both S1 and S2 spaces

are released. To address these limitations and improve memory

utilization in many-core systems, we propose a Negative Sequence

Memory Management (NSM) approach.

2.3 Partial sum computing

As shown in Figures 2c, d, partial sums (Psums) are prevalent

in the AI hardware computation process, particularly when the Cin

dimension is selected for partitioning to address limited memory

capacity (Shao et al., 2019; Wang et al., 2021; Wu et al., 2020). To

reduce both the number of parameters and computations, some

researchers have adopted grouped convolution (Xie et al., 2017;

Howard et al., 2017; Zhang et al., 2019; Wang et al., 2019), where

Psums are directly activated on each core of the GPU platform

without aggregation. However, this approach entails a quantifiable

trade-off in accuracy (Howard et al., 2017). Empirical validation

reveals a 1% reduction in ImageNet classification accuracy when

employing direct activation of depth-wise separable convolutions,

as opposed to full convolutions where partial sums (Psums) are

activated post-aggregation.

To maintain accuracy, most accelerators perform activation

after Psums aggregation and expand the bit-width of Psums. To

address the challenges posed by large-bit-width Psums, several

accelerators adopt a Pipelined Manner (PM) (Shao et al., 2019;

Chen et al., 2019; Jouppi et al., 2017; Sze et al., 2017; Yin et al.,

2017; Kung et al., 2019). In this approach, Psums are propagated

through the processing element (PE) array or cores (Deng et al.,

2020) during convolution or Matrix-Vector Multiplication (MVM)

operations, which enhances data reuse and reduces the need for

memory bandwidth.

TianjicX neuromorphic chip (Pei et al., 2019; Wang et al.,

2021) adopts cluster cores with a dedicated function for managing

Psums through Vector-Vector Accumulation (VVA). However, this

configuration introduces latency between the VVA cores and other

cores within TianjicX chip. To mitigate the latency associated with

computing Psums, we propose theMany-core Parallel Synchronous

(MPS) approach for Psums computation.

3 Motivation and approach

3.1 Spatial-temporal density mapping

TianjicX chip can support flexible mapping schemes, such

as temporal mapping, spatial mapping, and spatial-temporal

mapping. Firstly, we define a concept of spatial-temporal density

(ρ) for a computing core. The spatial-temporal density can be

described as the Calculation Amounts (CA) per unit space (S) of

a core. The spatial-temporal density of a core can be described by

Equation 1:

ρi =
CAi

S
(1)

where the i represents the i-th core. Assuming N tasks are assigned

toM cores, it can be described by Equation 2:

M∑

i=0

CAi =

N∑

j=0

OPsj (2)
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FIGURE 3

Positive sequence memory management for multi-layers. The data and the start address of each layer are stored along the direction of address

increase. The S1 has a forward propagation due to the residual connection. And the space of the S1 can be released after the phase of the T4. The S2

can not be reused in the phase T3 in real time for the space of the S3 is larger than that of the S2.

where the OPs represent the operations of the task. Therefore,

the variance of the core density σρ can be described as follows

Equation 3:

σρ =

M∑
j=0

(ρj − ρ̄)2

M
(3)

As shown in Figure 4a, the density of each cluster core varies

under spatial mapping. Figure 4b illustrates that the mapping

scheme may fail if the first task occupies the largest memory

space, requiring the allocation of 9 cores. While temporal mapping

reduces latency, it leads to inefficient memory utilization. In

contrast, spatial-temporal mapping effectively leverages the core

density. The Tianjicat (Ma et al., 2022) adopts a coarse density

mapping scheme, as depicted in Figure 4c.

To further optimize spatial-temporal density, we propose a fine

spatial-temporal density mapping strategy. As shown in Figure 4d,

this approach evenly distributes the operations and parameters

of each layer across 16 cores. Notably, in this configuration, the

density ρ of each core is uniform, and the standard deviation σρ

is zero, as observed in Figure 4d.

In the fine spatial-temporal density mapping scheme, the

output activation for each layer does not require communication,

since the partitioning of each layer is consistent and the output

activation is stored locally. Consequently, reshaping latency caused

by partition mismatches and communication latency between

adjacent layers are eliminated.Moreover, by reusing the space of the

preceding layer’s input activation, memory consumption is further

reduced.

3.2 Memory management for many-core
system

In deep neural networks, the input to a given layer is the

output of the preceding layer, and pipelined execution occurs

between adjacent layers. Since activation data must be continuously

updated, the memory allocated for output activations can be

dynamically reused for input activations in real time, provided

there is no data scrambling. To enhance memory reuse efficiency,

we propose a negative sequence memory management (NSM)

strategy for multi-layer execution, as illustrated in Figure 5.

As shown in Figure 5, the memory allocated to S1 is not

immediately reused during forward propagation. However, the

memory regions allocated to S2 and S4 can be efficiently reused

in real time through the NSM mechanism. Once S1 completes

its forward propagation and is released, its memory can also

be reused. Compared to conventional positive sequence memory

management, NSM effectively reduces the peak memory footprint,

which is determined by the combined memory usage of S1 and S3,

leading to improved memory efficiency.

In order to avoid a scrambling between the input activation

and output activation in real-time, the relationship of start address

between two adjacent layers can be described as follows:

if (Vi+1 > Vi)

Addri+1 = Addri − (Vi+1 − Vi)− const (4)

else

Addri+1 = Addri − const (5)

where the Addri represents the address of input activation or

intermediate data in the i-th layer, the Vi+1 represents the volume

of the space parameters, the const is an address constant which is

determined by the hardware. The scrambling of space between the

adjacent layers can be eliminated by adjusting the value of const.

3.3 Many-core Parallel Synchronous (MPS)
computing partial sum

After allocating spatial-temporal resources to each cluster

core, TianjicX system proceeds with neural network computation.

As previously discussed, Psums must be efficiently managed

during this process. TianjicX supports multiple approaches for

addressing Psums, including the Step-by-Step (SS) method,

the Dichotomy Step-by-Step (DSS) method, and the Many-

core Parallel Synchronous (MPS) method. When using a Cin

partitioning scheme with M = 4 groups, these methods are

illustrated in Figure 6. Notably, the SS and DSS methods operate

asynchronously, leading to inefficient utilization of computational

resources, as some cores remain idle during Psums processing.

To achieve higher computational efficiency and minimize

resource wastage, we adopt the MPS method. The detailed process

is illustrated in Figure 6c. In this approach, each core partitions its
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FIGURE 4

TianjicX supports flexible mapping. (a) Spatial mapping allocates cores according to the parameters of the task; (b) temporal mapping allocates cores

according to the operations of the task; (c) coarse spatial-temporal density mapping allocates cores according to both the parameters and

operations naively; (d) fine spatial-temporal density mapping.

FIGURE 5

Negative sequence memory management for multi-layers. The data is stored along the direction of address increasing. While the start address of

each layer is stored along the direction of the address decreasing. The space of the post layer can be reused as that of the current layer in real-time.

assigned Psums into M groups, corresponding to the number of

Cin partitioning groups. This process can be formally expressed as

Equation 6.

∀i 6= j, ∪M
i=1 Pn[i] = Pn, Pn[i] ∩ Pn[j] = ∅ (6)

where n represents the n-th core. Secondly, the partitioning

Psums sets of each core are communicated to other cores

concurrently based on their corresponding serial numbers. Finally,

each core aggregates Psums synchronously after communication.

The aggregation and results of each core can be described as

Equations 7, 8.

∀n,OA[n] =

M∑

j=0

Pj[n] (7)

∀i 6= j, n, ∪M
n=1 OA[n] = OA, OA[i] ∩ OA[j] = ∅ (8)

where the OA[n] represents the n-th set of the output activation.

By the method of MPS, each core can compute 1/M parts
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FIGURE 6

Illustration of supporting flexible methods for computing Psums: (a) Step-by-Step (SS) method; (b) Dichotomy Step-by-Step (DSS) method proposed

by wallace tree; (c) Many-core Parallel Synchronous (MPS) method.

FIGURE 7

The architecture of the TianjicX based on a many-core design implemented with digital circuits.

of output activation set concurrently. Throughout the entire

addressing Psums process, all the cores work in communication

and computation synchronously all the time. Therefore, the

computation speed of MPS is faster than that of SS or DSS.

4 Implementation details

TianjicX chip was fabricated using the UMC 28-nm High

Performance Compact Plus (HPC+) CMOS process and assembled

in an FPGA-225 package. Prior studies have demonstrated its

outstanding performance in terms of fundamental characteristics,

computational capabilities, and power efficiency (Ma et al., 2022).

TianjicX employs a decentralized many-core architecture

comprising 160 functional cores, as shown in Figure 7.

Additionally, the chip supports flexible mapping strategies

and partitioning methods, allowing for optimized neural network

execution. TianjicX architecture employs a fully digital design

featuring a non-crossbar memory through innovative memory

addressing schemes. Each computational core functions as a

reconfigurable processing engine capable of executing vector-

matrix multiplication (VMM), vector-vector multiplication

(VVM), and vector-vector accumulation (VVA) operations

through synergistic collaboration of its six functional modules:
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controller, axon, dendrite, dual-port memory (2×64KB), soma,

and router. The axon module specializes in the orchestration of

tensor data and input buffering for dendrite operations, while

preprocessed input vectors and synaptic weights are managed by

an external controller and stored in the dual memory banks of

the core. The dendrite module incorporates a high-throughput

arithmetic unit with 128 parallel 8-bit multipliers coupled

with 128 32-bit signed accumulators, enabling simultaneous

multiply and accumulate (MAC) operations. Post-processing

operations including nonlinear activation functions (ReLU),

leakage integration mechanisms, and spiking neural models (LIF)

are implemented in the soma module through configurable

data transformation pipelines. The axon and soma operations

employed in the subsequent experiments are listed in Table 1.

The router is responsible for data communication between each

core. The architecture implements unifiedmemory addressing with

dynamic resource allocation, allowing flexible memory partitioning

TABLE 1 Axon and soma operations.

# Uint Operation Defination

Axon VMM y = w · x

Axon VVA y =
∑

i xi

Soma Relu y = max(x,0)

and shared access across computational modules. This memory

virtualization scheme supports various neural network paradigms

through software-defined memory mapping, enabling efficient

execution of neural networks.

The experimental setup includes an Intel Arria 10 FPGA, a

host computer, TianjicX chip, and an oscilloscope, as depicted in

Figure 8. Neural network parameters and inputs are configured

and downloaded onto the chip via dedicated software on the host

computer. Execution time is measured using a RIGOL MSO8104

oscilloscope. Prior to deployment on hardware, experiments are

first simulated using TianjicX simulator, which faithfully replicates

the real chip’s behavior. This simulation system employs a

dual-verification mechanism: the Behavioral Simulator and the

Cycle-Accurate Simulator, which are implemented in different

programming languages. The simulation results are deemed

reliable only when the outputs from both levels of simulators

are completely consistent. Once validated in simulation, the

corresponding configuration files are downloaded to the chip for

final execution.

The ResNet-50 is often adopted to benchmark by many

hardwares (Myung et al., 2021; Zimmer et al., 2020; Jouppi

et al., 2021), which contains basic operator of Conv, Pooling,

Skip and Relu. First, to evaluate the effectiveness of the proposed

negative sequence memory management, all blocks of ResNet-

50 are mapped onto the cores of TianjicX. Second, to assess the

FIGURE 8

Testing system based on TianjicX neuromorphic chip.
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performance improvements achieved by the Many-core Parallel

Synchronous (MPS) method, we conduct simulations comparing

SS, DSS, PM, and MPS approaches. Finally, to demonstrate the

benefits of fine spatial-temporal density mapping, we implement

two neural network configurations on TianjicX chip: (1) a network

consisting of two blocks (2b, 2c) from ResNet-50 and (2) a custom-

designed network derived from the first configuration by removing

residual connections. The parameters of the designed network are

summarized in Figure 9.

5 Experiments and analysis

5.1 Simulation of the memory
management

To evaluate the space utilization of the negative sequence

memory management mechanism, all blocks of ResNet-50 are

partitioned and mapped onto TianjicX cores. Both negative

sequence and positive sequence memory management approaches

are tested separately. The analysis results are presented in Figure 10.

As illustrated in Figure 10, our proposed NSM mechanism

exhibits superior memory efficiency when compared to the

conventional PSM approach. The experimental results yield three

key observations: Firstly, the implementation of PSM for Blocks

2b and 2c leads to a negative residual memory capacity of -14 KB,

signifying memory overflow and the necessity for additional core

allocation to fully map the network. Secondly, NSM achieves its

maximum optimization in Block 4a, where the residual memory

capacity reaches 45 KB, marking a 3.75-fold improvement over the

12 KB achieved by PSM. Thirdly, a system-level analysis across all

17 benchmark blocks demonstrates that NSM increases the total

available memory from 204 KB with PSM to 631.5 KB, which

represents an average enhancement of 3.05 times.

Since NSM enables real-time memory release, it enhances

memory utilization compared to PSM. By adopting NSM, input

FIGURE 9

A part blocks of ResNet-50 network and a custom-designed network.
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FIGURE 10

The space utilization of a core by the negative sequence memory management and the positive sequence memory management.

activation and output activation can be updated dynamically,

allowing memory to be predominantly allocated for weight storage.

Consequently, the weights of multiple tasks can be accommodated

within the memory of a single core, further optimizing resource

efficiency.

5.2 Simulation and analysis for the MPS

To evaluate the performance of MPS in computing partial sums

(Psums), we conducted a simulation to compare the computational

efficiency of various methods. Based on the computation process

of Psums, all methods can be divided into two phases: the

communication phase and the computation phase. Let t1 and

t2 denote the execution times of the communication phase and

computation phase, respectively.

We assume that the number of cores is m, which corresponds

to the number of groups in the partitioning of Cin. The amount of

data handled by each core during communication is denoted as X

(in KB). The hardware processing speed for data communication

and data addition is represented by K1 (in B/s) and K2, respectively.

By employing 8-bit integers for weights and activations, and 32-

bit integers for Psums, the total execution time for the SS, DSS, PM,

and MPS methods can be computed as follows:

tSS = t1 + t2

= (m− 1)
X

K1
+ (m− 1)

X

K2

= (m− 1)X
K1 + K2

K1K2

(9)

FIGURE 11

The running time of the methods for processing the Psums.

tDSS = t1 + t2

= [log2(m− 1)+ 1]
X

K1
+ [log2(m− 1)+ 1]

X

K2

= [log2(m− 1)+ 1]X
K1 + K2

K1K2

(10)

tPM = t1 + t2

=
X

K1
+

X

K2

= X
K1 + K2

K1K2

(11)
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TABLE 2 Di�erent coupling mapping schemes of designed networks.

# cores Layer-wise 2-layers-c 3-layers-c 6-layers-c

Layer 1 7

Layer 2 14 24

Layer 3 7 28

Layer 4 7 8 56

Layer 5 14

Layer 6 7 24 28

Aggregation 56 56 56 56

σρ 629.4 69.8 0 0

TABLE 3 Di�erent coupling mapping schemes of ResNet-50 (2b,2c).

# cores Layer-wise 2-layers-c 3-layers-c 6-layers-c

Layer 1 14

Layer 2 28 42

Layer 3 14 56

Layer 4 14 28 112

Layer 5 28

Layer 6 14 42 56

Aggregation 112 112 112 112

σρ 184.1 43 0 0

tMPS = t1 + t2

= (m− 1)
X

K1m
+ (m− 1)

X

K2m

= (m− 1)X
K1 + K2

mK1K2

(12)

tPM − tMPS

tMPS
=

1

m− 1
(13)

Here, tSS, tDSS, tPM , and tMPS represent the execution times

under the SS, DSS, PM, and MPS methods, respectively. The

simulation results are presented in Figure 11. The SS method

is employed by the mixed-signal in-memory computing chip

proposed in Le Gallo et al. (2023). The DSS method, based on the

Wallace tree multiplier, has been widely adopted by many designers

(Lakshmi et al., 2021; Solanki et al., 2021; Srinivas and Umapathi,

2022). The PMmethod, on the other hand, is commonly utilized by

accelerators (Shao et al., 2019; Chen et al., 2019; Jouppi et al., 2017;

Sze et al., 2017; Yin et al., 2017; Kung et al., 2019).

From the simulation results, it is evident that the MPS method

achieves the shortest runtime compared to the other approaches.

In particular, the MPS method, implemented by TianjicX platform,

demonstrates significant superiority in enhancing the computation

speed of Psums compared to the PM method, which is widely

adopted by many accelerators. Specifically, the number of

processing elements (PEs) in the accelerators is 16, corresponding

to a partitioning of Cin into 16 groups. MPS demonstrates

enhanced runtime performance when utilizing 16 PEs, achieving

a reduction in computational latency of 6.7% compared to the

PM, as delineated in Equation 13. Furthermore, the speedup factor

displays an inverse relationship with the number of PEs, thereby

attaining the highest efficiency gains at this configuration.

5.3 Experiment of spatial-temporal density
mapping

The layer-wise mapping approach is widely utilized by

accelerators and neuromorphic chips in a pipelined manner

(Zimmer et al., 2020; Pei et al., 2019; Le Gallo et al., 2023).

Consequently, we use layer-wise mapping as the baseline for

comparison. To evaluate the performance of the proposed

fine spatial-temporal density mapping scheme, we designed

multiple experimental groups with varying spatial-temporal

density variances while keeping the total number of allocated

cores constant. The allocation of cores and the coupling layer

configurations for these groups, corresponding to the two types of

networks, are summarized in Tables 2, 3.

In Tables 2, 3, the abbreviation x-layers-c denotes the use of

X coupling layers. By applying the multi-layer coupling method,

the spatial-temporal density and the variance σρ of core utilization
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FIGURE 12

The running time and latency of di�erent spatial-temporal densities mapping: (a) two blocks of ResNet-50; (b) two blocks without residual

connection. (c) the runtime of chip under the layer-wise mapping tested by the oscilloscope. (d) the runtime of chip under the multi-layers-coupling

mapping tested by the oscilloscope.

can be adjusted. For instance, as shown in Table 2, under the layer-

wise mapping scheme, the computational tasks for each layer are

distributed across 7 cores, 14 cores, and 7 cores, respectively. By

systematically varying the spatial-temporal density, we conducted

experiments using different mapping schemes, including a 2-layer

mapping scheme, a 3-layermapping scheme, and a 6-layermapping

scheme.

The results, presented in Figure 12, demonstrate that reducing

the spatial-temporal density variance σρ leads to decreases in both

execution time and tail latency. In the layer-wise mapping scheme,

the computation times for the first and third layers were measured

at 259µs using an oscilloscope. Similarly, the computation times

for the second and fifth layers were recorded at 192µs. Notably,

the total computation time for the sixth layer, from initiation

to completion, was also 259µs. In contrast, under the 6-layer

coupling scheme illustrated in Figure 12a, where all six layers are

interconnected, the computation time for each individual layer was

consistently reduced to 140µs. All runtime data for these chips

were acquired through oscilloscope measurements. Figures 12c, d

present two examples, and similar data can be obtained from the

provided materials. As a result, the computation speed under the 6-

layer coupling scheme was improved by a factor of 1.85 compared

to the layer-wise mapping scheme. Furthermore, the tail latency

was completely eliminated in the 3-layer coupling and 6-layer

coupling mapping schemes.

This improvement is attributed to the fact that no reshaping is

required between adjacent layers, as the dimensions of partitions

within each layer remain consistent under the 6-layer coupling

mapping scheme. Additionally, the output activations in the

coupling layers are stored in local memory, eliminating the need

for communication between layers. This significantly reduces the

proportion of time dedicated to data communication during task

execution, thereby enhancing the computational efficiency of the

hardware. Since large-scale networks can be divided into multiple

flow blocks, this density mapping technique can be broadly applied

to full-scale implementations of ResNet-50 and other larger neural

networks.

However, it should be noted that full layer-coupling mapping is

not universally optimal. Although coupling all layers can effectively

eliminate the tail latency of each core by reducing σρ , it may

have adverse effects on computation time and overall latency. As

the number of coupled layers increases, the partitioning scheme

becomes more complex and less efficient. This leads to increased

reshaping latency and a significant reduction in MAC utilization

efficiency. Therefore, a trade-off exists between the number of

coupled layers and the value of σρ in spatial-temporal density
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mapping. This trade-off is ultimately determined by the specific

hardware design.

6 Conclusion

In this work, we propose spatial-temporal density mapping

for the first time that leverages computational resources and

spatial resources of a many-core chip. Furthermore, we propose

the Negative Sequence Memory Management (NSM) approach to

improve space utilization. The NSM can improve space utilization

by average 3.05 times compared with the (PSM) used by many-

core systems. And we propose the Many-core Parallel Synchronous

(MPS) approach to improve the computational speed. It is

demonstrated that the MPS can be improved by 6.7% compared

to the Pipelined Method (PM) which is adopted by the many-

core systems. To demonstrate the superior performance of Spatial-

Temporal density Mapping with these optimized approaches, we

implement the mapping methods on our state-of-the-art many-

core chip, TianjicX. Intensive experiments show that using fine

spatial-temporal density mapping improves performance by 1.85x

compared to layer-wise mapping used by many-core systems.

We believe that optimizing methods for fine spatial-temporal

density mapping can help establish a general and efficient

mapping framework for many-core systems with variable spatial-

temporal density.
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