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With Moore’s law nearing its end due to the physical scaling limitations of CMOS 
technology, alternative computing approaches have gained considerable attention 
as ways to improve computing performance. Here, we evaluate performance 
prospects of a new approach based on disordered superconducting loops with 
Josephson-junctions for energy efficient neuromorphic computing. Synaptic 
weights can be stored as internal trapped fluxon states of three superconducting 
loops connected with multiple Josephson-junctions (JJ) and modulated by input 
signals applied in the form of discrete fluxons (quantized flux) in a controlled 
manner. The stable trapped fluxon state directs the incoming flux through different 
pathways with the flow statistics representing different synaptic weights. We explore 
implementation of matrix–vector-multiplication (MVM) operations using arrays 
of these fluxon synapse devices. We investigate the energy efficiency of online-
learning of MNIST dataset. Our results suggest that the fluxon synapse array can 
provide ~100× reduction in energy consumption compared to other state-of-
the-art synaptic devices. This work presents a proof-of-concept that will pave the 
way for development of high-speed and highly energy efficient neuromorphic 
computing systems based on superconducting materials.
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1 Introduction

In the era of artificial intelligence (AI), artificial neural networks (ANNs) are at the 
forefront of the modern computing paradigms used in a wide range of applications, including 
image and video classification, pattern recognition, natural language processing (NLP), 
autonomous vehicles, robotics, gaming, virtual reality, and bioinformatics (Heaton, 2018; 
LeCun et al., 2015; O'Kelly et al., 2020; Schmidhuber, 2015; Vamathevan et al., 2019; Vaswani 
et al., 2017) The complexity and scaling requirement of targeted applications push AI models 
towards more complex and larger architectures. This results in significant increase in the 
overall energy requirement while performing massive training exercises for such large and 
complex models, leading to severe environmental issues in the future (Boahen, 2022). 
Specifically, multiply and accumulate (MAC) operations in ANNs contribute ∼ 70–90% to the 
total operational cost (Jouppi et al., 2017). Therefore, developing energy-efficient neuromorphic 
hardware solutions has become one of the most critical challenges for future computing systems.
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Hardware accelerators based on various types of nanoelectronic 
devices have already been proposed to improve performance of 
various neuromorphic applications and algorithms (Dutta et  al., 
2021; Dutta et al., 2020; Ge et al., 2018; Kumar and Bezugam, 2024; 
Oh et al., 2021; Oh et al., 2018; Park et al., 2024; Rafiq et al., 2023; 
Selcuk et al., 2024; Seo et al., 2020; Shi et al., 2018). For large and 
energy efficient neural network implementations, a synaptic device 
must show some of the main attributes, i.e., low energy consumption 
for read and write operations, scalability to achieve high synaptic 
density, high reliability, in-situ nonvolatile storage and computation, 
and linear and symmetric synaptic weight updates, i.e., upward and 
downward (Kuzum et al., 2012; Park et al., 2024). However, many 
synaptic device candidates still suffer from limited precision, large 
variations, and high energy consumption to achieve the required 
conductance values representing the weights of a network. There has 
been recent interest in exploring disordered physical systems which 
exhibit a complex energy landscape with a finite number of local 
minima exhibiting synaptic memory behavior. These have long been 
considered as models to describe emergent computational behavior 
displayed by neural networks including our brain from the 
perspective of statistical mechanics (Hopfield, 1982; Little, 1974; 
Niazi et  al., 2024). Such systems ‘collectively’ host an almost 
continuum of states that can be used to represent synaptic memory 
configurations, in an alternative approach when compared to 
distributed synaptic memory states.

In this context, fluxon synapses based on superconducting loops 
combined with Josephson Junctions (JJs) arise as a promising 
technology that can offer several advantages, including low power 
consumption, high-speed operation, indefinitely large endurance 
and scalability.

JJ translate input excitations to flux flow (fluxons). JJs are the only 
switching elements in the system and superconducting loops are 
responsible for storage of trapped fluxon as circulating 
superconducting currents. These JJs can be switched without any 
degradation and cycled indefinitely without change (Duzer, 1989). It 
has also been validated that the switching current ‘IC’ of a well 
fabricated JJ is independent of repetition rate and applied magnetic 
field (or input) from one test to another (Schroen, 1968). Russek et al. 
(2016) proposed a fluxon based neuromorphic computing for large 
scale neuromorphic system with each JJ spiking at the rate of ~1010 
per second. This indicates the indefinite reuse of fluxon based 
synaptic device if used under optimum operating conditions. These 
Josephson memory cells store information as persistent circulating 
currents and equivalent to fluxons in superconducting loops. No 
refreshing/rewriting is necessary because currents can be maintained 
indefinitely in ideal lossless superconducting loops (Zmpe, 1980). 
This method of storage is nonvolatile and has no power consumption 
after storing the state. In a superconducting loop system, the magnetic 
flux is quantized as fluxons (Φ0 = 2.065×10−15 T/m2), and cells have 
been built which operate either with only one flux quantum, or with 
many of them with non-destructive read (Wolf, 1978; Zmpe, 1980; 
Goteti et al., 2022). JJs work as bridges between superconducting 
loops and can operate at high speeds up to a few THz. JJs are 
interconnected due to macroscopic coherence with long-range 
interactions in superconductor loops and display a rich spectrum of 
memory states while having zero-static power dissipation (Goteti 
et al., 2022; Goteti and Dynes, 2021; Jué et al., 2022; Schneider et al., 
2022). The memory states trapped in the form of fluxons in the loops 

result in stable flux flow pathways when excited with input signals. 
The flow pathways can be characterized as synaptic weights from 
statistical correlations of flux between Josephson Junctions.

Recently, a few studies have proposed disordered networks 
consisting of several superconducting loops with Josephson’s junction 
showing stable memory configurations of trapped fluxons in loops 
and movement of spike signals (e.g., neuronal activity) in small-scale 
disordered networks of superconducting loops (Goteti et al., 2022; 
Goteti et al., 2024; Goteti and Dynes, 2021). The study of physics of 
collective behavior of these randomly connected superconducting 
loops showed a great promise to perform some neuromorphic 
computations at small-scale (Goteti et al., 2022; Goteti and Dynes, 
2021). However, to date such disordered superconducting loops have 
not been studied at the network-level to perform complex 
computations more relevant to modern AI models or to implement 
learning and inference tasks using a standard dataset. In this work, 
we  explore crossbar architecture based on a previously studied 
configuration with three superconducting loops as individual 
synaptic elements and evaluate its performance using standard 
models and datasets. We  experimentally characterize the fluxon 
synapses to investigate stable memory states when arranged into a 
crossbar structure to implement MVM operations in a 2-layer MLP 
neural network. We simulate fluxon synapse crossbar based synaptic 
core to perform learning and inference tasks on the MNIST dataset. 
Finally, we benchmark the performance and energy efficiency of the 
proposed superconducting (disordered) loop based synaptic device 
against other state-of-the-art synaptic device technologies.

2 Fabrication of Josephson Junction 
(JJ) and three superconducting loop 
device

A Josephson Junction (JJ) is a superconductor-insulator-
superconductor (SIS) structure. A helium ion microscope can be used 
to selectively create a tunnel barrier (insulator region) in high-Tc 
(85 K) YBa2Cu3O7 (YBCO) superconductors to form a JJ by exposure 
to focused He+ ions. The detailed fabrication steps are provided in the 
methods section. A JJ generates quantized flux, also called fluxons 
when a current greater than a critical current IC passes through the JJ 
(Fulton et al., 1973; Likharev and Semenov, 1991). A superconducting 
YBCO loop consisting of JJs can trap such quantized flux in the form 
of either clockwise or counterclockwise circulating supercurrents.

A structure consisting of three YBCO superconducting loops has 
been fabricated with JJ tunnel barriers as shown in Figures 1A,B. The 
JJs connect loops together and allow fluxon movement in and out of 
the loops. The fluxons in the form of voltage spikes are fed in and out 
of the network of loops through JJs at input and output nodes as 
designated in Figure 1B. Loops labeled 1 to 3 can trap multiples of 
fluxons while an additional loop is used to induce individual fluxons 
through the input junction J1 using input current I1 as shown in 
Figure  1B. A constant flow of fluxons induced at the input can 
be measured by the voltage 1V  and the resulting output flow of fluxons 
can be measured as 2V  as illustrated in Figure 1B. Fluxons are injected 
at a frequency of 

0

V
Φ

 given by the 
Josephson Equations 1–3, where 

each individual fluxon is represented by a voltage spike and 0Φ  
represents a single fluxon as shown in Figure 1C.
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Here, ϕ is the superconducting phase difference across the 
junction and 0Φ  is the flux quantum.

A schematic of a simple three loop superconducting fluxon 
synapse circuit illustrating the loops, JJs, and input & output spikes 
is shown in Figure 2A. Input and output of fluxon synapses are spikes, 
represented as equivalent voltages (

0

t
Vdt∫ =nΦ0). When a constant flow 

of spikes (as VIN) is applied to the input (J1) of a three loop fluxon 
synapse, it produces a flow of spikes (as VOUT) at the output junction 
(J6) as illustrated in Figure 2A. The connected superconducting loops 
exhibit macroscopic coherence across all the connected loops. 
However, JJs can be strongly or weakly connected to each other, and 
the connection strength can be systematically programmed using the 
trapped fluxon configurations (Goteti et  al., 2024; Goteti and 
Dynes, 2021).

Figure 2B shows this network level connectivity of JJs in the three 
superconducting loops consisting of 6 JJs. Two distinct signal flow 
pathways can be identified through J1-J4-J5-J6 and J1-J2-J3 in the 
superconducting structure as illustrated in Figure  2B. In this 
structure, fluxons can be stabilized into different flux configurations 
representing different nonvolatile synaptic weights as illustrated in 
Figure 2C. Each superconducting loop can trap multiples of fluxons 
(Φ0) and internally results in either clockwise or counterclockwise 
circulating supercurrents around each loops as illustrated in 
Figure 2C. The arrow width represents number (n) of trapped fluxons 
(Φ0) and direction represents a resultant circulating current in the 
loop either in clockwise or counterclockwise. A typical trapped 
fluxon configuration with circulating currents around an individual 
loops can be shown as nΦ0. The input flux diverges into these two 
pathways and one of these pathway signals can be read across the 
output node J6 as 2V . The strength/weight of the pathway between 
input and output is defined as Equation 4.

 
2

1

V #output fluxonsp
V #input fluxons

= =
 

(4)

Several fluxon configurations are possible for this 
superconducting loop array, which result in the two flux (signal) 
flow pathways with different weights between input and output 
nodes. The amount of flux in individual loops together with the 

FIGURE 1

(A) Illustrates the fabrication of Josephson junction in between two YBCO superconducting regions. (B) Optical microscope image of a YBCO-based 
fabricated three superconducting loop circuit illustrating loops’ structure, all junctions from input (J1) to output junction (J6). All Josephson junctions 
lie within a square of a 200 μm x 200 μm of fabricated superconducting loop structure which is exposed to chemically remove the gold layer while 
maintaining the YBCO thin film. (C) Shows the high-frequency simulation of a few individual input spikes (fluxons) entering superconducting loops 
through input junction J1 and exiting through one of output-junction J6 (shown in B). At these timescales, the output spiking activity appears 
stochastic with a constant frequency activation at the input. Fluxon statistics is averaged over many spikes and results in a steady flux flow pattern and 
fixed output number.
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direction of the resulting input or output flux can be  used to 
represent different weights. The output spikes individually mimic a 
stochastic pattern in time when observed at the pico-second scale as 
illustrated in Figure  1C using an exemplary high-frequency 
simulation of few individual input spikes/fluxons entering at input 
junction. However, when the spiking statistics are averaged for 
longer times (i.e., 500 ps) over many spikes it results in a steady flux 
flow pattern leading to stable synaptic weights between the pairs 
J1-J4, J4-J5, and J5-J6.

The measured I-V characteristics at input (J1) and output (J6) 
junctions are shown in Figures 3A,B. The fluxon states as a function 
of voltage and the corresponding input spiking frequency derived 
from the I-V characteristics. Figure  3C contains the connection 
weights (fluxon states) between input J1 and only selected output 
node J6. Figure 3C shows a larger number of weights (ratioed value) 
due to a small input step size (~1uV) and larger sweep range up to 
1 mV. However, adding an additional bias current (denoted by I2 in 
Figures 1B, 2A) enables accessing different energy minima (fluxon 
states) by reconfiguring the energy configuration space inside the 
three loops fluxon synapse device. The obtained synaptic weights of 
different fluxon states as a function of input voltage in Figure 3C 
corresponds to zero I2 bias current. With longer integration times 
the superconducting loops are subjected to steady flow input 
patterns and the resulting synaptic weights as a function of different 
input spiking frequencies is shown in Figure 3C. The fluxon flow rate 
at each junction is quantified by the number of discrete fluxons 
traversing the junction over a fixed period, which can 
be  characterized by the constant average frequency or voltage. 
Adjusting the number of input fluxons within a fixed period can 
be interpreted as either a change in voltage (with fixed duration) or 
a change in fluxon frequency (with fixed amplitude). This 
relationship can be  simply defined by considering the fluxons 
amplitude (Φ0) over a fixed integration time (i.e., f = V/(nΦ0)). 

Figure 3D shows the stable relaxed energy states when input 1V  is 
varied systematically from 0 to 1.0 mV. Figure 3D also shows the 
physical significance of fluxon storage in the superconducting loops 
as a change in synaptic strength. The energy of states in three loop 
circuit can be estimated corresponds to the excitation input voltage 
V1 (i.e., average flow rate ‘n’ is V1/Φ0) for a fixed duration of t1 = 1 ns. 
Discrete energy states get modulated using different pulse heights of 
input V1 as shown in Figure 3D. The value of the energy state is 
estimated using Equation (5) where, n is the number of input spikes, 
IC – junction critical current (~100 μA), N - number of junctions 
between input and output, P6 – output spike ratio at J6, P3- output 
spike ratio at J3.

 

3loop C 0 C 0 J1 J6

6 C 0 J1 J3 3

E n I n I N
P n I N P

−

−

= Φ + Φ
+ Φ  (5)

3 Superconducting loop array for 
neuromorphic computing tasks

Performing MVM operation in a crossbar structure is a widely 
used approach to accelerating neural networks towards achieving 
massive parallelism through in-memory computing (Gokmen and 
Vlasov, 2016; Hu et  al., 2018; Li et  al., 2018). In this section, 
we investigate crossbar arrays of fluxon synapses to perform MVM 
operations. Different numbers of synaptic weight states, i.e., 32, 64, 
128, and 256 are obtained using fluxon synapses based on three 
superconducting loops in the form of energy states as shown in 
Figure 4A. These different numbers of states are achieved by varying 
input voltages in ~100 μV to 500 μV range with different step sizes 
(i.e., ~12 μV, 6 μV, 3 μV, and 1.5 μV). The write operation involves the 
application of high frequency spike input (equivalent to large write 

FIGURE 2

(A) Schematic of a fluxon synapse device based on three loop superconducting circuit with JJs. Spikes represented as equivalent voltages VIN and 
VOUT at J1 and J6. (B) A possible connectivity schematic of involved JJs in the superconducting loop network. (C) Schematics of superconducting 
loops with different fluxon configurations with circulating currents (clockwise and anticlockwise) representing non-volatile synaptic states.
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voltage) to reach the desired number of output fluxons (synaptic 
weight) whereas, the read operation involves application of a fixed 
lower frequency spike input (equivalent to smaller read voltage) to 
accumulate the output fluxon statistics without changing the internal 
energy state of the superconducting loops. The write operation excites 
the superconducting loops with a number of high frequency fluxons 
(e.g., 100 GHz) generated by a higher input voltage (≥100 μV) to 
induce a change in the energy state. Synaptic weight is modulated by 
changing the fluxon excitation frequencies (or equivalent input 
voltages, Figure  3C). During read operations, we  use the low 
frequency fluxons (e.g., 1 GHz) generated by a smaller input voltage 
(2.065 μV). Therefore, for the MVM implementation with crossbars 
utilize low fluxon excitation frequency (~1 GHz), which could 
be understood as a low amplitude read signal that will not disturb the 
programmed weights. Figure  4B shows upward and downward 
changes in energy states during implementation of the nonvolatile 
synaptic weight update operation in a neural network with input 
voltage step size change of 6 μV to obtain 64 states. In the fluxon 
synapse device, there is no distinction between LTP and LTD states. 

When the device is properly configured, a particular synaptic state 
(energy minima) corresponds directly to the absolute input signal, 
regardless of LTP or LTD operation. These nonvolatile changes in the 
internal energy states represent weight-matrix elements in the 
synaptic core as shown in Figure 5A. In the system-level simulation 
framework, we employed an incremental/decremental pulse scheme 
with identical specifications to achieve the different states in the 
synaptic core.

3.1 Neural network implementation and 
system-level performance benchmarking

The fluxon synapse device can be used to store and update/train 
the weights of multilayer perceptron (MLP) neural network 
implementation. We  performed system level assessment using 
experimental data from fluxon synapse devices for classification of 
the handwritten digits from MNIST dataset (LeCun, 1998) consisting 
of 60,000 training and 10,000 test images. The implemented 2-layer 

FIGURE 3

(A) Applied input current and measured voltage characteristics corresponding to fluxons (spikes) generated at input junction/node J1. (B) Applied 
input current and measured voltage characteristics corresponding to fluxons (spikes) generated at output junction J6. (C) Synaptic weights of 
different fluxon states as a function of input voltage and the corresponding input spiking frequency, derived from the I-V characteristics at zero bias 
current between input J1 and only selected output node J6. The calculated spiking ratio (using Equation 4) from 0 to 0.4 represents the connection 
weight between input and output. The calculated ratios are mapped to the synaptic weight from the lowest to the highest value. (D) Different states 
(denoted by their potential energy due to the trapped fluxons in the loops) achieved after relaxation as the input V1 flows systematically in the loops. 
Inset shows representative stable states.
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MLP network of sized 400(input)-100(hidden)-10(output) nodes, 
where the edge cropped 20×20 MNIST images are used for 400 input 
nodes as illustrated in Figure  5B. Two different sizes of weight 
matrices, WIH (40,000) and WHO (1,000), corresponding to input-
hidden and hidden-output layers respectively, are implemented 
(Figure 5B).

To evaluate the system level hardware performance for online-
learning, we  used the circuit-level macro-model NeuroSim 
platform (Chen et  al., 2018). We  emulated the synaptic core 
hardware for MLP network using the fluxon synaptic devices. For 
benchmarking purposes, we performed the online learning within 
NeuroSim framework for fluxon synaptic core and various other 
synaptic devices. For emulating the proper crossbar level operation, 
we assumed superconducting interconnections with extremely low 
resistivity. These interconnects are used inside the crossbar 
architecture to connect fluxon synapses and propagate the required 
signals in and out of the array. For benchmarking, we focused on 

the metrics for the crossbar arrays and did not include the 
periphery for a fair comparison between different synaptic 
device technologies.

For on-line learning with the MLP network, we  used low 
precision step activation function for simpler hardware 
implementation and Adam optimizer. We utilized backpropagation 
as the weight update algorithm. The network is trained over 125 
epochs with Adam optimizer to obtain classification accuracy results 
using 64 synaptic/energy states per crosspoint, as shown in 
Figure 6A. In case of high C2C variations Adam optimizer with lower 
learning rates compared to in case of stochastic gradient dissent 
(SGD) optimizer shows better accuracy with an increase in energy 
consumption. SGD shows relatively higher variance in results and 
low accuracy due to stochastic gradient choice between application 
of gradient function while minimizing the training error. However, 
it converges faster than other optimizers and provides the optimal 
solution in case of large number of training/test cases with small C2C 

FIGURE 5

(A) Crossbar structure of the synaptic core implemented with three superconducting loops acting individual synaptic element. (B) Schematic of 
implemented MLP neural architecture and used MNIST Dataset for image classification.

FIGURE 4

Number of energy states representing synaptic levels. (A) Different number of states (i.e., 64, 128, and 256) obtained using three superconducting loops 
under the controlled application of input fluxons. (as V1 in Figure 3) with different input steps. These different numbers of energy states correspond to 
input voltages varied in between ~100 μV and 500 μV with different step sizes (i.e., ~6 μV, 3 μV, and 1.5 μV). (B) Gradual modulation of energy states in 
both upward and downward directions with input voltages representing the number of applied input fluxons or rate of fluxons for the 64 states.
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variations. SGD also has smaller memory footprints and learns 
quickly (Gupta et al., 2021; Ruder, 2016; Zhou et al., 2020). Finally, 
we  benchmarked the fluxon synaptic core implementation with 
different synaptic crossbars using other state of the art device 
technologies, i.e., RRAM, PCM, FeFET etc. The fluxon synaptic core 
reduces the overall on-chip learning energy requirement significantly 
while achieving comparable learning accuracy using only 64 synaptic 
states as shown in Figure 6B and Table 1.

4 Discussion

In this work, we investigated and evaluated potential performance 
of a synaptic core made of fluxon synapse devices for highly energy 
efficient neuromorphic computing. The fluxon synapse device 
exhibits nonvolatile states as well as gradual modulation of states by 
the application of varied fluxon excitation frequency. Our 
experimental results show that the fluxon synaptic devices have the 
capability to provide a significantly large number of synaptic states, 
which can be leveraged for implementation of low energy on-chip 
learning with high precision weights. We performed system-level 
simulations for a hardware implementation of MLP network with the 
fluxon synaptic core. We benchmarked the superconducting loop 
synaptic core against the state-of-art synaptic devices, i.e., RRAM, 
PCM, EpiRAM, and FeFET. Our results suggest up to ~100x potential 

improvement in energy consumption for online learning over other 
technologies. It is important to mention that our analysis currently 
does not involve the cooling costs, which are difficult to estimate. 
Today, cooling costs are no longer specific to low temperature 
computing systems such as quantum computers or cryogenic 
CMOS. Data centers invest more than a third of their power budget 
on cooling costs, the aim of which is simply to prevent servers from 
shutting down induced by overheating (Saligram et al., 2024). Further 
work is needed for an accurate assessment of cooling costs for all new 
technologies. In addition, there is an increasing number of application 
areas for specialized low temperature computing, including cryogenic 
CMOS (Saligram et al., 2024) and quantum computing (Riel, 2021). 
Hardware accelerators based on fluxon synaptic arrays can 
be operated at liquid nitrogen temperature (~77 K) (Murduck, 2001). 
Parallel research and development of quantum computing and 
cryogenic CMOS may result in cheaper cooling, and it may provide 
a new and unique application for the superconducting loop devices 
for high performance AI applications.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

FIGURE 6

(A) On-chip learning accuracy of implemented MLP network for MNIST image classification over 125 epochs with 64 synaptic states using the fluxon 
synaptic core. (B) Online learning energy consumption of different synaptic cores using MNIST dataset over 125 epochs.

TABLE 1 System level benchmark results for state-of-art synaptic devices.

Devices Ag:a-Si 
(Jo et al., 

2010)

TaOX/HfOX 
(Wu et al., 

2018)

GST-PCM 
(Kuzum et al., 

2012)

EpiRAM (Choi 
et al., 2018)

FeFET (Jerry 
et al., 2017)

Fluxon Synapse 
Device (This 

work)

Synaptic States 97 128 100 64 32 64

Weight update NLs 2.4, −4.88 0.04, −0.63 0.105, 2.4 0.5, −0.5 1.75, 1.46 −1.25

ON/OFF 12.5 10 19.8 50.2 45 ~10.5

Weight increase pulse 3.2 V, 100 μs 1.6 V, 50 ns 0.7 V (avg.), 6 μs 5 V, 5 μs 3.65 V (avg.), 7 ns 382 μV (avg.), 0.5 ns

Weight decrease pulse −2.8 V, 300 μs 1.6 V, 50 ns 3 V (avg.), 125 ns -3 V, 5 μs −2.95 V (avg.), 75 ns 382 μV (avg.), 0.5 ns

C2C variation 3.5% 3.7% 1.5% 2% 0.5% 9%

Online learning accuracy ~ 72% ~ 80% ~ 89% ~ 92% ~ 88% ~ 81.5%

Synaptic array energy 12.3 mJ 1.21 mJ 8.75 mJ 21.7 mJ 0.93 mJ 9.6 μJ
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