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Steady-state visual evoked potential (SSVEP) is a widely used brain-computer

interface (BCI) paradigm, valued for its multi-target capability and limited EEG

electrode requirements. Conventional SSVEP methods frequently lead to visual

fatigue and decreased recognition accuracy because of the flickering light

stimulation. To address these issues, we developed an innovative steady-state

motion visual evoked potential (SSMVEP) paradigm that integrated motion and

color stimuli, designed specifically for augmented reality (AR) glasses. Our

study aimed to enhance SSMVEP response intensity and reduce visual fatigue.

Experiments were conducted under controlled laboratory conditions. EEG data

were analyzed using the deep learning algorithm of EEGNet and fast Fourier

transform (FFT) to calculate the classification accuracy and assess the response

intensity. Experimental results showed that the bimodal motion-color integrated

paradigm significantly outperformed single-motion SSMVEP and single-color

SSVEP paradigms, respectively, achieving the highest accuracy of 83.81%± 6.52%

under the medium brightness (M) and area ratio of C of 0.6. Enhanced signal-to-

noise ratio (SNR) and reduced visual fatigue were also observed, as confirmed

by objective measures and subjective reports. The findings verified the bimodal

paradigm as a novel application in SSVEP-based BCIs, enhancing both brain

response intensity and user comfort.

KEYWORDS

brain-computer interface (BCI), steady-state motion visual evoked potential (SSMVEP),
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1 Introduction

A brain-computer interface (BCI) system translates brain activity patterns into

commands for interactive applications (Anumanchipalli et al., 2019; Heelan et al., 2019;

Lamti et al., 2019; Spiegel et al., 2019; Kubanek et al., 2020). The steady-state visual evoked

potential (SSVEP) paradigm is a widely used BCI stimulationmethod, featured by its ability

of providing multiple commands, requiring few EEG electrodes, and offering robust anti-

interference properties. Compared to other BCI methods such as motor imagery (MI)

(Li et al., 2023; Phang and Ko, 2020; Khademi et al., 2023), P300 event-related potential

(ERP) (Yin et al., 2015a), and transient visual evoked potential (tVEP), SSVEP BCI does

not necessitate extensive training, and can achieve high recognition accuracy (Yin et al.,

2015b). However, traditional SSVEP paradigms, which typically employ light flicker or

graphic flipping for stimulation, often lead to visual fatigue and discomfort, resulting in

an underlying decrease in recognition accuracy.
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Recently, to prevent the adverse effects of sustained intense

stimulation on brain neurons, researchers have developed motion-

based BCI paradigms (Snowden and Freeman, 2004). Motion-

elicited visual evoked potentials (mVEPs) are divided into transient

and steady-state categories (Vialatte et al., 2010). Guo et al.

(2008) and Hong et al. (2009) presented transient N2 based BCI

systems relying on motion detection. These paradigms showed

notable benefits in VEP-based BCI research by utilizing consistent

luminance and non-flickering methods. However, it also has

limitations as the transient approach requires multiple stimulation

targets to move in a single direction, which may result in motion

after-effect (MAF) (Hammond et al., 1986).

To overcome these challenges, Xie et al. (2012, 2014) designed a

BCI paradigm based on steady-state motion visual evoked potential

(SSMVEP) utilizing Newton’s rings, which enhanced recognition

accuracy. However, maintaining uniform brightness in the central

region of Newton’s rings during motion is still difficult, resulting in

low signal-to-noise ratios (SNR) in frequency peaks.

SSVEP primarily depends on the human visual system’s (HVS)

sensitivity to variations in light intensity. The HVS, consisting of

the retina, lateral geniculate nucleus (LGN), and visual cortex,

is a sophisticated system. The visual cortex, encompassing the

primary visual cortex (V1) and extrastriate regions (e.g., V2, V3,

V4, V5/MT), is part of the advanced central neural network (Lu

et al., 2023; Kam and Chang, 2023). The dorsal stream, or the

M-pathway, is essential for motion detection and spatial analysis,

with identifying the velocity and direction of movement (Gmel

et al., 2023). The ventral stream, also known as the P-pathway,

is responsible for color vision and object identification, with

discerning luminance and color (Kravitz et al., 2013). When visual

stimuli have two colors with equal brightness, flicker sensitivity in

the eyes is diminished (Nagai et al., 2022).

In tasks where specific targets need to be found, the ability

to quickly identify targets is influenced by various factors, one of

which is the understanding of the target’s specific characteristics.

This helps more effectively to catch attention, and more likely to

focus on the location of the target. These key factors include certain

static or dynamic features, such as color changes, the appearance

of targets, etc. When there is a target or event that cannot be

ignored by the brain, this phenomenon is considered as “attentional

capture” (von Mühlenen and Conci, 2016). As long as they are

unique in time, any local changes can attract attention. Therefore,

local color changes can make it easier for subjects to increase

attention, so color changes can be added to the SSMVEP paradigm

to achieve the effect of enhancing attention.

To overcome the limitations of traditional SSVEP paradigms,

we propose an innovative SSMVEP framework that integrates color

contrast into the Newton’s rings design. This framework combines

motion patterns with color variations to boost SSMVEP responses

while minimizing discomfort. By analyzing the principles of AR

presentation, we designed experiments to refine the paradigm

parameters and examined the effects of color contrast on multi-

ring SSMVEP paradigms at low frequencies. This method aims

to provide a new solution for improving SSMVEP paradigms in

AR environments.

We hypothesize that equal-luminance color contrast in

Newton’s rings based visual stimulation can activate more neuronal

responses in the visual cortex of M- and P-pathways, resulting

in higher SNRs of SSMVEP responses. This study developed a

color-contrast Newton’s rings paradigm that incorporates color,

shape, luminance, and motion characteristics. The aim was to

determine if this equal-luminance color-contrast paradigm could

evoke distinct SSMVEPs with improved SNR, thereby enhancing

BCI interactive performance.

2 Materials and methods

2.1 Subjects

Ten subjects (six males and four females) from Xi’an Jiaotong

University, with an average age of 25 years (±3 years), were

recruited for the study. All had either normal or corrected-to-

normal vision and hearing and were experienced with SSVEP-BCIs

before. None had a history of visual or auditory disorders, and none

received compensation for their participation. The study adhered

to the principles of the Declaration of Helsinki. Each subject gave

written informed consent, following the protocols sanctioned by

the institutional review board of Xi’an Jiaotong University.

2.2 EEG recordings

Using the International 10–20 electrode placement system

(Homan et al., 1987), we recorded six-channel EEG recordings

from the parietal and occipital regions, specifically at locations

Po3, Poz, Po4, O1, Oz, and O2. The g.USBamp device (g.tec,

Graz, Austria) was used for the recordings at a 1,200Hz sampling

rate. To minimize environmental background noise, subjects were

asked to sit in front of a vertically placed black cloth during the

experiments. EEG recordings were referenced to one earlobe and

the ground electrode was at the Fpz location, with resistance levels

maintained under 5 kOhm. The EEG responses first underwent

analog filtering, followed by digital filtering with an 8th-order

Butterworth band-pass filter to retain frequencies from 2 to 100Hz.

A 4th-order Butterworth notch filter was also used to eliminate

powerline interference in the 48–52 Hz range.

2.3 Stimulation design

The multi-ring SSMVEP paradigm consists of rings with low

contrast brightness against a high contrast background. The main

parameters of the rings include inner and outer diameters. The high

contrast background determines the maximal diameter of the rings.

The area ratio between the rings and the background is defined as

the following relationship:

C =
S1

S− S1
(1)

where, S1 is the total area of the rings, and S is the total area of

the background.

Initially, the outer diameters of the rings are set in an arithmetic

sequence. Given the maximum diameter rmax, the relationship
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between the outer diameter ri and the maximum diameter rmax of

each ring can be defined as:

ri = (2i− 1) ·
rmax

2n
(2)

where, i is the index of the ring and n is the total number of rings.

The inner radius ri−1 can be calculated using the area ratio C

and the following relationship:

r2i−1 = (1− C) · r2i + C · r2i−1 (3)

The multi-ring paradigm elicits SSMVEPs through the

movement of rings. As the rings move, their colors and the

background color change simultaneously, presenting a color

modulation mode. In this study, red and green were chosen as

the alternating colors. To avoid flickering, the color was designed

to be gradually and smoothly varied. Thus, black color would

change to red color and white color would change to green color

(Anumanchipalli et al., 2019).

The changes of color affect the brightness, which could enhance

the paradigm’s stimulation effect. Therefore, it is crucial tomaintain

constant luminance across the visual fields of the subjects. The

following equation is used to calculate perceived luminance:

L
(

r, g, b
)

= C1(0.2126R+ 0.7152G+ 0.0722B) (4)

where, L(r, g, b) represents perceived luminance, C1 is a constant

value determined by the presentation device used. For this study,

C1 was selected as 0.7, which provides a good balance between

contrast and smoothness for the specific characteristics of the AR

glasses utilized, and R, G, and B denote the red, green, and blue

color values.

As the stimulation starts, the color of the rings begins to

change. To ensure smooth contrast change, a sine wave function

is employed. The color value of the rings at any given time is

calculated as follows:

R(t) = Rmax(1− cos(2π ft)) (5)

where, Rmax is the maximum brightness, f is the frequency, and t is

the time.

Figure 1 illustrates the movement patterns within one motion

cycle for three different Newton’s rings paradigms used in the

experiments. Figure 1A represents the bimodal Newton’s rings

paradigm combining motion and color, where the rings alternately

change colors between red and green while expanding outward

from 0 to π and contracting inward from π to 2π. Figure 1B

shows the monochrome motion paradigm, featuring black and

white Newton’s rings that expand outward from 0 toπ and contract

inward from π to 2π without any color change. Figure 1C depicts

the paradigm with only color changes, where the rings alternate

between red and green without any motion. Each paradigm

demonstrates complete motion cycles to present the stimulation to

subjects, providing a comparison between the three approaches.

The AR interface in the experiments displayed four targets

through AR glasses, designed to elicit EEG responses at 3, 3.5,

4, and 4.5Hz. Subjects wore AR glasses to experience consistent

visual stimuli. Due to the low refresh rate of AR glasses, the low

stimulation frequency band was chosen in this study. In addition,

the low stimulation frequency band can reduce visual discomfort

and corresponding fatigue, while maximizing the eliciting effect of

EEG responses under the current AR glasses device (Vialatte et al.,

2010).

In the AR interface, the four targets are arranged in a specific

layout as the top (i.e., 4Hz) and bottom (i.e., 4.5Hz) targets are

positioned vertically 240 pixels from the center of the screen,

and the left (i.e., 3Hz) and right (i.e., 3.5Hz) targets are 360

pixels from the center of the screen horizontally. As shown in

Figure 1D, this arrangement ensures clear distinguishability and

an unobstructed field of view for subjects. The visual stimuli

are represented as concentric rings that either change colors

or expand and contract according to their specific paradigms.

This setup ensures that subjects receive consistent and controlled

visual stimuli throughout the experiments, allowing for accurate

measurement of EEG responses.

The experimental procedure, shown in Figure 2, comprises

three blocks as bimodal SSMVEP, single-motion SSMVEP, and

single-color SSVEP paradigms. Each block includes four tasks

with respect to stimulation frequencies of 3, 3.5, 4, and 4.5Hz,

corresponding to task 1, task 2, task 3, and task 4, respectively. Task

1 to task 4 are carried out sequentially. Each task is further divided

into three runs, and each run representing different brightness

levels (i.e., low, medium, and high) and varying contrast levels

(i.e., C = 0.5, C = 0.6, and C = 0.7, where C represents the area

ratio). During each run, subjects were presented with four targets

simultaneously and were instructed to focus on one specific target

designated by the operator. Each trial lasts for 5 s, with a 1-s cue

and a 1-s gray screen as the inter-trial interval. To ensure the

subjects’ comfort and the reliability of the experimental results,

a rest period of at least 2min is provided after completing each

block. During this time, subjects can adjust their posture, blink, and

perform other necessary actions. After resting, subjects will restart

the experiments by clicking the start button. The complete BCI

configuration is shown in Figure 3.

2.4 Data preprocessing

The acquired responses from each subject were preprocessed

offline. EEG segments corresponding to each run were extracted,

resulting in a data matrix of 10 subjects × 3 brightness levels × 4

stimulation frequencies × 20 trials × 6 channels × 6,000 sampling

points. The responses from all trials were then combined and

averaged, followed by band-pass filtering of 1–30Hz to remove low-

frequency artifacts and high-frequency interferences. Subsequently,

the data were examined usingWelch’s power spectral density (PSD)

method and EEGNet as described below.

2.5 SNR analyses

PSD is a commonly used method in signal processing to

describe the power distribution of a signal across different

frequency range (Zhang et al., 2023; Kang et al., 2020). It represents

the energy distribution of a signal in the frequency domain and
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FIGURE 1

Visual stimulation paradigms for SSMVEP experiments. (A) Bimodal Newton’s rings combining color and motion. (B) Monochrome motion Newton’s

rings. (C) Color change Newton’s rings without motion. (D) AR interface displaying four stimulus points at di�erent frequencies.

can be used to analyze the spectral characteristics of the signal. The

definition of PSD is as follows:

Sx
(

k
)

=
2π

N

∣

∣

∣

∣

∣

N−1
∑

n=0

X (n)e−i(2π/N)kn

∣

∣

∣

∣

∣

2

, 0 ≤ k ≤ N − 1 (6)

where, N is the number of sampling points.

The SNR is a measure of the relative strength of the signal to

noise and is used to describe the intensity of the signal (Kim et al.,

2023). It represents the ratio of signal power to noise power and is

expressed using the PSD. The equation for SNR is as follows:

SNR = 10log10

∑n
l=1 Sx

(

lfN
Fs

)

∑N
j=0 Sx(k)−

∑n
l=1 Sx

(

lfN
Fs

) (7)

where, n is the number of harmonics, Fs is the sampling frequency,

f is the stimulation frequency.

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2025.1506104
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2025.1506104

FIGURE 2

Experimental procedure for SSMVEP paradigms. Sessions include bimodal, single-motion, and single-color paradigms. Tasks involve frequencies of 3,

3.5, 4, and 4.5Hz. Runs vary in brightness (low, middle, high RGB) and contrast levels (C = 0.5, 0.6, 0.7). Each trial consists of cue, target presentation,

and gray screen intervals.

2.6 EEGNet method

EEGNet is a compact convolutional neural network

architecture specifically designed for EEG signal processing

and brain-computer interface BCI systems. Its streamlined

structure and high efficiency enable it to adapt to a wide range

of BCI tasks (Lawhern et al., 2018), is illustrated in Figure 4.

Therefore, we selected this model as the SSVEP classification

tool for the present study. It consists of three essential network

components as conventional convolutional layers, depth-wise

convolutional layers, and separable convolutions. These elements

extract and refine the critical features necessary for complex neural

response classification.

The input layer of the neural network receives EEG data matrix.

Initially, this data is processed by a two-dimensional convolutional

layer. The kernel size of this layer is determined by the sampling

rate of the EEG responses, with L set to half the sampling frequency

(i.e., 600), resulting in a convolution kernel dimension of L×1.

This design enables the row-wise filtering of EEG responses,

performing channel-wise filtering and generating feature maps

through an activation function. This process is mathematically

expressed as:

yj = f ((X ∗ wj)+ bj) (8)

where, yj is the j-th feature map, X is the input signal, wj is the

weight matrix of the j-th convolutional kernel, bj is the bias value,

and f is the activation function.

Following the initial convolutional layer, the network includes

a depthwise convolutional layer. Here, the convolutional kernel’s

dimensions are equal to the number of channels. Unlike the initial

layer, each kernel in the depthwise convolutional layer corresponds

to a single input feature map, maintaining a depth of 1. This can be

mathematically described as:

yj = f (
∑

h

(Xj,h · wj,h)+ bj) (9)

In this equation, yj represents the j-th feature map, X is the

input signal,wj is the weightmatrix of the j-th convolutional kernel,

bj is the bias term.

The separable convolutional layers perform spatial and

temporal filtering. By separating these stages, EEGNet efficiently
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FIGURE 3

The overall BCI system diagram. The subject wears AR glasses displaying the stimulation interface. Visual stimulation is presented, and EEG signals

are recorded using electrodes. Data is transmitted via WiFi to the main controller for processing and analysis.

FIGURE 4

EEGNet architecture.

processes EEG responses, capturing intricate patterns within the

neural data to ensure robust classification of EEG responses.

In general, the initial convolutional layer performs channel-

wise filtering to produce feature maps. These feature maps are

further processed by depthwise convolutional layers, which

enhance the SNR by focusing on specific frequency components.

Finally, separable convolutional layers refine the features

by separating spatial and temporal filters, ensuring robust

classification of EEG responses.

2.7 Statistical analyses

The classification accuracies for each subject across different

paradigms (i.e., bimodal, single-color, and single-motion) under

different brightness levels and contrast levels were analyzed using

one-way ANOVA (Gelman, 2005). Statistical significance was

determined at p < 0.05 with Bonferroni adjustment applied for

multiple comparisons. Results were presented as mean ± standard

deviation (SD).
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3 Results

3.1 The influence of paradigm parameters
for recognition accuracies

Figure 5A shows the classification accuracies of the bimodal

paradigm under different brightness levels and area ratio

configurations. The results indicate superior classification

performance across all configurations, especially at medium

brightness (M) and an area ratio of C = 0.6 with an average

accuracy of 83.81%± 6.52%. Significance analysis revealed that the

accuracy differences between C= 0.6 and both C= 0.5 and C= 0.7

at medium brightness (M) were statistically significant (p < 0.001).

Figure 5B presents the classification accuracies of the single-color

paradigm. Despite overall lower performance compared to the

bimodal paradigm, the single-color paradigm showed the average

accuracy of 73.31%± 8.88% under the same conditions (p < 0.01).

Figure 5C displays the classification accuracies of the single-motion

paradigm, which outperformed the single-color paradigm but were

still inferior to the bimodal paradigm, with an average accuracy of

75.72%± 8.34% under the same conditions (p < 0.01).

The results demonstrated the advantage of the bimodal

paradigm in eliciting SSMVEP responses, particularly under

specific brightness and area ratio configurations. In the

subsequent experimental analysis, we will focus on the data

obtained at medium brightness (M) and an area ratio of C

of 0.6 to further explore its potential in maximizing SSMVEP

classification accuracy.

3.2 Response amplitudes evaluation

EEG responses from the bimodal paradigm with the medium

brightness (M) and an area ratio of 0.6 were further analyzed

to compare with the responses from other paradigms. The fast

Fourier transform (FFT) analyses (Ravi et al., 2019) were used

for evaluating the frequency characteristics of EEG responses. It

helps identifying dominant frequency components and harmonics.

Figure 6 presents FFT results at the four stimulation frequencies

from all 10 subjects.

EEG data from 10 subjects were filtered using a 4th-order

Butterworth band-pass filter with a frequency range of 2–40Hz.

The filtered data were averaged, and FFT was performed to

obtain the corresponding frequency spectrum. Across all four

frequencies, the SSMVEPs from the bimodal paradigm consistently

show the most prominent peaks at the fundamental frequencies,

indicating robust evoking effect. This suggests that the bimodal

paradigm is more effective in eliciting EEG responses compared

to the single-motion and single-color paradigms. Notably, the

SSMVEPs from the bimodal paradigm also display obvious

second harmonic components, further emphasizing its reliability.

Generally, the single-motion paradigm outperformed the single-

color paradigm, with discernible peaks at the fundamental

frequencies, although these peaks are not as pronounced as those

in the bimodal paradigm. The single-color paradigm exhibits the

lowest performance, with minimal SSMVEP amplitudes at both

the fundamental and harmonic frequency components. Overall, the

FFT analyses consistently demonstrates the efficacy of the bimodal

SSMVEP paradigm in eliciting steady-state EEG responses. By

combining motion and color changes, the bimodal paradigm

leverages their synergistic effects to enhance SSMVEP responses,

indicating its robustness and reliability for the application of

SSMVEP-based BCIs.

3.3 PSD based SNRs evaluation

To determine the response intensity, the SNR was calculated

using PSD with the number of harmonics set to 4. The

average SNRs for the 10 subjects are illustrated in Figure 7. In

Figure 7, the red color represents the bimodal paradigm, the blue

color represents the single-color paradigm, and the yellow color

represents the single-motion paradigm.

As shown in Figure 7, the interquartile range lines for the

SNRs of the bimodal paradigm are consistently higher than

those of the single-motion and single-color paradigms across

all four stimulation frequencies and the mean results. This

indicates that the majority of SNR values in the bimodal paradigm

surpass those of the other two paradigms, highlighting its greater

effectiveness. Particularly at the stimulation frequencies of 3.0

and 4.5Hz, the SNRs of the bimodal paradigm were distinctly

higher than those of the single-motion and single-color paradigms

(p < 0.001). At the stimulation frequencies of 3.5 and 4.0Hz,

the SNRs of the bimodal paradigm were significantly higher

than those of the single-motion and single-color paradigms

(p < 0.01). This is consistent with the response amplitude

results in this study, reinforcing the robustness of the bimodal

paradigm. Conversely, across all four stimulation frequencies and

the mean results, there was no significant difference in SNR

values between the single-motion and single-color paradigms (p

> 0.05). This analysis underscores that the bimodal paradigm

not only enhances the corresponding response amplitudes but

also achieves higher signal quality, making it a more reliable

and effective approach compared to the single-motion and single-

color paradigms.

3.4 Cognitive load and fatigue performance

When cognitive load increases, the power of θ rhythm in EEG

increases, while the power of α rhythm decreases. An increase in

fatigue leads to a reduction in β rhythm and an enhancement in α

and θ rhythms. Here, the θ /α ratio was used to measure changes in

cognitive load, and the (θ + α)/β ratio was employed to evaluate

the paradigm-related fatigue (Diez et al., 2024; Azadi Moghadam

and Maleki, 2023). The calculated ratio values for cognitive load

and fatigue were normalized by subtracting the mean and dividing

by the standard deviation for each subject to reduce variability due

to differences in EEG amplitudes among subjects and to ensure

comparability across different individuals.

As described before, three blocks of experiments corresponded

to bimodal SSMVEP, single-motion SSMVEP, and single-color

SSVEP paradigms, respectively. Each block includes four tasks

with respect to stimulation frequencies of 3, 3.5, 4, and 4.5Hz,
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FIGURE 5

Classification accuracy for three SSMVEP paradigms under di�erent brightness levels and area ratios. (A) Bimodal: highest accuracy at medium

brightness (M) and C = 0.6. (B) Single-color: best accuracy at medium brightness (M) and C = 0.6. (C) Single-motion: highest accuracy at medium

brightness (M) and C = 0.6. **p < 0.01 indicates a significant di�erence, and ***p < 0.001 indicates a highly significant di�erence.

FIGURE 6

FFT comparison of SSMVEP paradigms under di�erent frequencies. (A) 3Hz. (B) 3.5Hz. (C) 4Hz. (D) 4.5Hz.

corresponding to task 1, task 2, task 3, and task 4, respectively. Task

1 to task 4 are carried out sequentially. The ratio values were linearly

fitted from task 1 to task 4 to characterize the evolution process

of cognitive load and fatigue over time. The relative difference

between the linearly fitted ratio values of task 4 and task 1 was

calculated as the variation extents (%) of the cognitive load and

fatigue over time, as presented in Table 1.

As in Table 1, for the bimodal and single-color paradigms

that both contain color change modalities, the θ /α ratios, which

represent the extents of the cognitive load, decreased by 7.4 and

5.1% in average from task 1 to task 4, respectively. Conversely,

the cognitive load of the single-motion paradigm increased by

5.9% in average from task 1 to task 4. This demonstrates the

effectiveness of the color modality in reducing the cognitive load.

Particularly, the cognitive load of Subjects S6 and S7 decreased

by 49.5% and 55.2% from task 1 to task 4, respectively, under

the bimodal paradigm. While Subject S5’s cognitive load decreased

by 38.0% under the single-color paradigm, indicating a significant

reduction in cognitive load when color modalities were present.

In addition, Subject S2’s cognitive load increased by 31.0% under

the single-motion paradigm, suggesting that cognitive load may

increase without color changes.
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FIGURE 7

SNRs of di�erent paradigms. The symbols represent the statistical significance levels derived from the Mann-Whitney U test, as follows: **p < 0.01

(highly significant), ***p < 0.001 (extremely significant), ns: Not significant (p ≥ 0.05). These annotations indicate the significance of di�erences

between the SNR values of the Bimodal, Single Motion, and Single Color methods at each stimulus frequency.

TABLE 1 The variation extents (%) of the cognitive load and fatigue of three di�erent paradigms.

Subject Bimodal Single color Single motion

Cognitive load Fatigue Cognitive load Fatigue Cognitive load Fatigue

S1 19.4 33.3 35.8 23.4 9.7 3.8

S2 26.6 11.8 41.4 12.3 31.0 5.4

S3 23.8 9.6 17.3 10.2 11.0 39.4

S4 35.9 31.7 −8.1 0.4 −16.8 14.5

S5 13.5 6.4 −38.0 28.7 14.9 −6.7

S6 −49.5 −33.6 47.1 17.2 23.2 2.3

S7 −55.2 −43.1 −48.6 −46.4 −1.2 −25.5

S8 −45.4 500.3 −37.0 125.9 4.0 180.4

S9 −45.7 −40.3 −44.9 −2.0 −25.7 −5.9

S10 −16.4 −0.3 22.4 9.2 38.0 −13.7

Mean −7.4 7.3 −5.1 8.2 5.9 9.9

In terms of fatigue, the average increase from task 1 to task

4 was 7.3% under the bimodal paradigm, which is lower than

the average increases of 8.2 and 9.9% observed in the single-

color and single-motion paradigms, respectively. Exceptionally,

Subject S8’s fatigue increased by 500.3% under the bimodal

paradigm, compared to an increase of 125.9% under the single-

color paradigm and 180.4% under the single-motion paradigm,

respectively. While this individual case demonstrates an extreme

change in fatigue, the majority of subjects displayed relatively

consistent fatigue changes.

To comprehensively evaluate the effects of different paradigms

on cognitive load and fatigue, both Mixed-Effects Models and

Analysis of Variance (ANOVA) were employed. The Mixed-Effects

Models accounted for both fixed effects (paradigm types) and

random effects (individual differences among subjects), providing

a robust analysis of the data. Following the Mixed-Effects Models, a

one-way ANOVA was conducted to further assess the significance

of paradigm effects on cognitive load and fatigue, offering F-values,

degrees of freedom (df) and partial eta squared (η²) to quantify the

effect sizes.
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TABLE 2 Mixed-e�ects models and analysis of variance results: cognitive load and fatigue across di�erent paradigms.

Variable Paradigm Mixed-e�ects ANOVA

B (95% CI) p-value F (df1, df2) η²

Cognitive load Bimodal Reference Reference 15.67 (2, 18) 0.64

Single color +2.30 (+0.514,+3.161) p= 0.029

Single motion +13.30 (+10.308,+16.354) p= 0.016

Fatigue Bimodal Reference Reference 8.45 (2, 18) 0.48

Single color +0.90 (+0.432,+1.419) p= 0.042

Single motion +2.60 (+0.824,+4.442) p= 0.031

The findings from the mixed-effects models and the analyses

of variance (ANOVAs) are summarized in Table 2. With regard to

cognitive load, the mixed-effects model indicated that, compared

to the dual-modal paradigm, the single-color paradigm produced

a significantly smaller change in cognitive load [b = +2.30,

95% CI (+0.514, +3.161), p = 0.029], whereas the single-

motion paradigm resulted in a significantly greater increase

in cognitive load [b = +13.30, 95% CI (+10.308, +16.354),

p = 0.016]. An ANOVA confirmed the significant effect of

paradigm on cognitive load, F(2,18) = 15.67, η² = 0.64. Regarding

fatigue, the increase in fatigue observed in the single-color

paradigm relative to the dual-modal paradigm was not statistically

significant [b = +0.90, 95% CI (+0.432, +1.419), p = 0.042].

In contrast, the single-motion paradigm yielded a significantly

greater increase in fatigue compared to the dual-modal paradigm

[b = +2.60, 95% CI (+0.824, +4.442), p = 0.031]. An ANOVA

confirmed the significant effect of paradigm on fatigue, F(2,18)
= 8.45, η² = 0.48. Post-hoc comparisons using the Tukey

HSD test indicated that the dual-modal paradigm resulted in

significantly lower fatigue compared to both the single-motion and

single-color paradigms.

Despite the lack of obvious differences in the mean values,

the results indicate that the bimodal paradigm effectively alleviates

fatigue through the addition of color modalities, showing an

advantage in reducing fatigue compared to the single-color and

single-motion paradigms, thus validating the design strategy in

Section 2.3.

3.5 Evaluation of classification performance
across di�erent paradigms

We employed the deep learning algorithm EEGNet to calculate

classification accuracy for 2-s segments of data under different

experimental parameters.

The above study has shown that medium brightness (M) and

an area ratio of C = 0.6 significantly enhance SSVEP responses.

Therefore, this study specifically selected these conditions for

detailed analysis. Analyzing classification accuracy across different

frequencies and data segment durations helps us understand which

paradigm performs best under varying experimental conditions,

thereby providing a basis for further optimization and design of

BCI systems.

Figure 8A presents the averaged results across all subjects

and all trials, showing the classification accuracy for different

frequencies. The bimodal paradigm consistently demonstrated the

highest classification accuracy across all frequencies, with the peak

accuracy observed at 4.5Hz (84.18% ± 6.26%). In comparison,

the single-color and single-motion paradigms exhibited lower

accuracies. The mean accuracy across all frequencies was highest

for the bimodal paradigm (83.81% ± 6.52%), followed by

single-motion (75.72% ± 8.34%) and single-color (73.31% ±

8.88%) paradigms.

Figure 8B highlights the classification accuracy for different

data segment durations, averaged across all subjects, trials, and

frequencies. The bimodal paradigm outperformed the other

paradigms across all durations. Accuracy increased with longer

data segments, peaking at 2 s (83.81%± 6.52%). The single-motion

paradigm showed a similar trend, achieving its highest accuracy

(75.72% ± 8.34%) at 2 s, while the single-color paradigm had the

lowest peak accuracy (73.31%± 8.88%) at the same duration.

To further validate the effectiveness of the EEGNet model

in SSVEP identification, we introduced the traditional Canonical

Correlation Analysis (CCA) method as a comparison. It is

important to note that in this study, the CCA method utilized a

data segment length of 5 s, as illustrated in Figure 8C, whereas the

EEGNetmodel achieved effective classification with only 2 s of data.

However, to ensure a fair comparison, we conducted a classification

accuracy analysis of CCA and EEGNet under the same 2-s data

segment length. In this 2-s data segment and across different

paradigms, the EEGNet method demonstrated higher classification

accuracy in all paradigms, particularly in the bimodal paradigm,

where its accuracy surpassed that of the CCA method (Bimodal

EEGNet: 83.81% ± 6.52%, Bimodal CCA: 72.34% ± 7.08%). The

ability of EEGNet to achieve high accuracy with shorter data lengths

is primarily attributed to its deep learning architecture, which

effectively extracts and leverages complex nonlinear features within

the EEG signals. This capability is especially crucial for real-time

BCI systems, as real-time applications require the system to make

accurate judgments within brief timeframes.

Furthermore, both the traditional CCA classifier and the deep

learning EEGNet model confirmed that our bimodal paradigm

outperforms the single-color and single-motion paradigms in

enhancing SSVEP recognition accuracy. This further supports the

importance of the bimodal paradigm in designing efficient and

accurate BCI systems.
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FIGURE 8

(A) EEGNet classification accuracy across di�erent frequencies. (B) EEGNet classification accuracy across di�erent data segment durations (0–2 s).

(C) CCA classification accuracy across di�erent data segment durations (0–5 s).

4 Discussion

This study introduced a novel SSMVEP paradigm

incorporating bimodal motion-color stimuli, specifically designed

for AR glasses. The primary aimwas to enhance signal intensity and

reduce visual fatigue commonly associated with traditional SSVEP

paradigms using light flicker stimuli. Our results demonstrated

that the bimodal motion-color paradigm significantly improves the

classification accuracy and signal quality of SSMVEP responses,

presenting a highly effective solution for BCI applications.

The bimodal paradigm consistently achieved higher

classification accuracy compared to single-motion and single-color

paradigms across different frequencies and data segment durations.

Notably, under medium brightness (M) and an area ratio of C

= 0.6, the bimodal paradigm achieved the highest accuracy of

83.81% ± 6.52%, significantly outperforming the other paradigms

(p < 0.001). These findings highlight the paradigm’s potential to

enhance SSVEP responses and improve BCI performance, offering

new avenues for developing more effective BCI systems.

The significant improvement in SNR and classification

accuracy with the bimodal paradigm underscores its robustness

in inducing SSVEP responses. This paradigm effectively leverages

the human visual system’s sensitivity to both motion and

color changes, engaging the M- and P-pathways in the brain.

The higher SNRs and more pronounced evoked responses

observed in the frequency domain analyses affirm the paradigm’s

efficacy in enhancing neural activation. These results suggest

that the bimodal paradigm could substantially advance the

field of BCI by providing more reliable and less fatiguing

user experiences.

However, this study does have several limitations. First, the

variability observed in the EEGNet model, as shown in Figures 6,

8, may stem from the model’s sensitivity to data quality and

quantity. The relatively small sample size of 10 participants,

while sufficient for preliminary validation, and the inherent

variability of EEG data likely contributed to fluctuations in

classification performance. To address this, future research will

focus on generating additional EEG datasets and optimizing the

EEGNet model to enhance classification accuracy and stability.

Moreover, this study focused on specific brightness levels and

area ratios, limiting the scope of the parameters explored.

Further investigation is needed to explore a wider range of these

parameters. Additionally, the use of AR glasses for stimulus

presentation may not fully capture other potential application

environments. Exploring the effectiveness of the bimodal paradigm

across different presentation media, such as virtual reality (VR)

and various screen technologies, will be crucial for broader

applicability. A notable limitation of this study is the lack of self-

report measures for fatigue and cognitive load. The absence of

these measures means we could not fully assess the participants’

subjective experiences during the experiment. While EEG data

provided valuable objective insights, incorporating self-report data

in future studies would help us gain a more comprehensive

understanding of how participants perceive the stimuli and how

fatigue or cognitive load might affect SSVEP responses. We

recognize that this limitation may impact the interpretation of

our findings and plan to address it in future studies by including

self-reported data.

By addressing these limitations, we aim to reduce observed

variability and enhance the robustness of EEGNet across

diverse experimental conditions. This will help ensure the

generalizability and practical applicability of our findings in

real-world BCI applications.
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