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Night shift is a prevalent workstyle in medical hospitals, demanding continuous 
health monitoring and rapid decision making of medical professionals. Night 
shifts may cause serious health problems to medical staff, including cognitive 
impairments, poor sleep, and inflammatory responses, leading to the altered 
gut-brain axis. However, how night shifts impact gut-brain axis and how long the 
impact lasts remain to be studied. Hence, we investigated the dynamic changes 
of brain-microbiota relations following night shifts and subsequent recovery days 
among medical shift workers. Young medical staffs were recruited for the 3-session 
assessments over the scheduled night shifts (pre-shift, post-shift, and recovery) by 
measuring (a) sleep metrics, (b) brain functions, (c) gut bacteriome compositions, 
and (d) cognitive assessments. Participants experienced partial sleep deprivation 
only during the 5-day night shifts but rapidly returned to baseline after the 4-day 
recovery, so as the elevated brain fluctuations in the superior frontal gyrus after 
night shifts. Meanwhile, the night shifts caused elongated connectivity changes 
of default-mode and dorsal attention networks without recovery. Nevertheless, 
we did not find prevailing night-shift effects on cognition and gut bacteriome 
compositions, except the Gemellaceae concentration and the multi-task performance. 
Collectively, night shifts may induce prolonged alterations on brain connectivity 
without impacts on gut bacteriome, suggesting the vulnerable brain functions 
and the resilient gut bacteriome to the short-term night shifts among medical 
shift workers.
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Introduction

Shift work, the irregularly arranged work schedule, is prevailing 
among the specific job types requiring consecutive surveillance and 
swift decision making, such as the road constructor, medical caregiver, 
and aircraft traffic controller (Machi et al., 2012; Mélan and Cascino, 
2022). It was reported that 15 million American and 1.5 million 
Australian are employed in a working style of night shifts or rotating 
shifts (Rajaratnam et  al., 2013; Rogers et  al., 2021), and the shift 
workers are generally suffered from the circadian misalignment, poor 
sleep quality, chronic fatigue and higher risk of dementia (Bokenberger 
et al., 2018; Gilavand, 2022). In Taiwan, the Taiwan Society of Sleep 
Medicine (TSSM) reported the prevalence of chronic insomnia among 
the Taiwanese shift workers was about 23.3%, about 2.18 times higher 
than the daytime workers (TSSM, 2019). In the Taiwanese medical 
field, the consecutive rotation of 3–5-night shifts in a row are a 
common schedule across medical specialties (Chang et al., 2017); 
however, the prolonged wakefulness and diminished vigilance during 
the circadian trough easily led the medical staffs to poor performances 
or even medical errors (Kalmbach et al., 2017; Kang et al., 2020; Qiu 
et al., 2020). The most prominent and subject drawback of the night 
shift is the attention impairment, and other domains of cognitive 
functions are also affected, such as the decision making, emotion and 
memory (Kecklund and Axelsson, 2016). During the COVID-19 
outbreak, the bursts of workloads further elevated the shift-work 
burdens to the clinical staffs, causing inevitable burnout and fatigue 
as the results (Xia et al., 2021; Gilavand et al., 2023). These aversive 
effects of medical shift work not only impact the quality of patient 
healthcare, but also a risk factor of traffic accident and work-life 
balance for the medical staffs.

Underlying the cognitive impairments and behavioral risks, 
previous literature has addressed that the night shift causes various 
detrimental effects on biology, such as the melatonin depletion, 
impaired glucose homeostasis, increased pro-inflammatory 
cytokines and oxidative stress (Kecklund and Axelsson, 2016; Wu 
et al., 2021). However, such biomarkers could cause the aversive 
effect on physical health, but indirect to the cognitive impairments 
following night shifts. The direct cause of the cognitive decline 
after night shifts is speculated as the neurophysiological factors, 
such as the brain functions and gut microbial functions. From the 
angle of brain functions, the shift work may induce abnormal brain 
functionality (Wu et al., 2021; Tian et al., 2022), regional cerebral 
blood flow (Park et al., 2019), and decreased cerebrospinal fluid 
(CSF) volume, leading to the alterations of plasma β-amyloid and 
tau protein (Ye et  al., 2023). For medical staffs, shift works 
associated with the reduction of long-range functional connectivity 
in the medial frontal gyrus (part of default-mode network, DMN) 
(Ye et al., 2022), and lower brain activity/connectivity in the right 
dorsal attention network (DAN) (Dong et al., 2024). Meanwhile, 
the gut microbiota and their corresponding metabolites are 
regarded as the second central nervous system involved in the 
cognitive performances as well (Mashaqi and Gozal, 2020). In the 
animal model, abundant evidence disclosed that the circadian-
rhythm misalignment could lead to the microbial malfunctions, 
such as the decreased proportion of Firmicutes and the elevated 
abundance of Proteobacteria at the phylum level (Hu et al., 2022), 
involved in dysfunctional glucose homeostasis (Altaha et  al., 
2022). However, even though literature discloses the key role of the 

gut-brain axis in cognition and circadian rhythms (Cryan and 
Dinan, 2012; Teichman et  al., 2020; Cai et  al., 2021), the 
quantifiable relationship between brain functions and gut 
microbial compositions remains to be  investigated for 
shift workers.

Rather than taking place as a switch, the medical staffs usually 
undergo night shifts in a long-term rotation, which lead to worse 
cognitive performances (Machi et al., 2012; Sun et al., 2021), and the 
cognitive decline might not return to the baseline after years (Marquié 
et  al., 2015). Such chronic effect of shift work induces additional 
question: How many resting days after the night shifts would 
be  sufficient to alleviate the aversive effects of cognitive and 
neurophysiological impairments? Previously, Belenky et al. (2003) 
exhibited that the 3 days of normal sleep following a 7-day sleep 
restriction were insufficient to restore the cognitive impairments, and 
Brown et  al. (2020) also showed that the reduced sleep efficiency 
during the night shifts might return to normal after 5 days of recovery. 
From such evidence, it is reasonable to speculate the aversive effects 
of night shift could prolong as an inertia effect for the consecutive few 
days with normal circadian rhythms, which awaits to be investigated 
as well.

Altogether, the research questions intrigued the following two 
hypotheses: (1) night shifts in medical professionals can lead to 
alterations of brain functions, gut microbial compositions, and their 
mutual relations; (2) night-shift-induced changes of brain function 
and gut microbiota may not quickly recover after few days of normal 
circadian rhythms. To probe the gut-brain relationship, we conducted 
a functional magnetic resonance imaging (fMRI) protocol to assess 
the brain functionality, collected the fecal sample for assessing the gut 
bacteriome composition and their metabolites, short-chain fatty acids 
(SCFA), and probed the cognitive performances and sleep metrics 
among Taiwanese medical staffs in a repeated-measure design (3 time 
points: pre-shift, post-shift, recovery).

Materials and methods

Participants

We recruited 15 medical personnel from hospitals in the Taipei 
metropolitan area, including registered nurses, radiologists, and 
pharmacists. Participants eligible for the study should meet the 
following inclusion criteria: (1) age between 20 and 65 years; (2) 
without any neurological or psychiatric disorders; (3) no history of 
addictive drug use or habitual alcohol consumption; (4) no antibiotics, 
probiotics, prebiotics, or antifungal medications for 3 months prior to 
experiment; (5) not taking any sleeping aids in the past 2 weeks; (6) 
without pregnancy; (7) without any metal implants incompatible with 
Magnetic Resonance Imaging (MRI), such as pacemakers, metal pins, 
or cardiac stents; (8) without claustrophobia; and (9) without any type 
of intestinal pathogens. The participants were recruited for having a 
normal schedule of consecutive shift work for at least 4 days with a 
subsequent three-day resting period after shifts, and all participants 
provided written informed consents. Procedures in this experiment 
were approved by the Taipei Medical University - Joint Institutional 
Review Board (TMU-JIRB N202105081), and we confirmed that all 
methods in this study were performed in accordance with the relevant 
guidelines and regulations.
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Experimental procedure

All participants were instructed to visit the MRI center for three 
times to assess the effects of shift work in a repeated-measure design. 
The three time points contained (a) before starting their shift work 
(pre-shift), (b) after working in night shift for at least 4 days (post-
shift), and (c) at least 3 days of back-to-normal-sleep after shift days 
(recovery). We  held an experimental briefing 7 days before each 
participant’s first fMRI experiment. All participants were required to 
wear actigraphy devices (Philips Respironics Inc., Pittsburgh, 
Pennsylvania) to measure their sleep metrics, including total sleep 
time (TST), sleep efficiency (SE), and wake after sleep onset (WASO).

Data collection: fecal sample, fMRI 
protocol and cognitive tasks

The MRI experiments were scheduled before 2 pm to fulfill the 
participants’ off-work times and to avoid circadian trough. On the 
scanning date, participants were requested to avoid consuming any 
beverages containing caffeine or alcohol 24 h prior to the experiment. 
In the morning before the scheduled MRI scanning, participants were 
instructed to collect fecal samples (1 g) properly using the DNA/RNA 
ShieldTM Fecal Collection Tube (PANGEA laboratory, USA). Fecal 
samples were stored in tubes containing DNA stabilization buffer to 
prevent DNA degradation at room temperature. We conducted the 
MRI experiments at National Taiwan University with a 3T PRISMA 
scanner (Siemens, Erlangen, Germany) using a 20-channel birdcage 
head coil. The scanning protocol included one 3D-MPRAGE T1-
weighted anatomical image and a resting-state fMRI scan. Parameters 
for the anatomical 3D-MPRAGE sequence: image 
dimensions = 256 × 256 × 192; voxel size = 1 × 1 × 1 mm3; repetition 
time (TR) = 2 s, echo time (TE) = 2.3 msec; flip angle (FA) = 8°; total 
scan time = 6 min 24 s. The fMRI scans were using single-shot 
gradient-echo-based echo-planar imaging (GE-EPI) sequence with 
the following imaging parameters: image dimensions = 64 × 64 × 33; 
voxel size = 3.44 × 3.44 × 3.4 mm3; TR = 2 s, TE = 32 msec, FA = 77°. 
The total scan time for resting-state fMRI was 7 min.

After the fMRI experiment, we  administered the Cambridge 
Neuropsychological Test Automated Battery (CANTAB) on an iPad 
(Apple Inc., California, US) to investigate the overall cognitive 
performances. We examined four cognitive domains of the CANTAB 
tasks, including (A) Memory function, including 3 tasks: delayed 
matching sample (DMS), paired associates learning (PAL), and spatial 
span (SSP); (B) Psychomotor ability, including reaction time (RTI) 
task; (C) Emotion and social recognition function, including emotion 
recognition task (ERT); and (D) Executive function, including 
multitasking test (MTT), spatial working memory (SWM), and stop 
signal task (SST). The time to complete the entire CANTAB 
examinations was approximately 1 h.

fMRI preprocessing and analyses

SPM 12 and CONN toolbox were used for image preprocessing, 
seed-based connectivity analysis, and region of interest (ROI) 
analysis. Functional and anatomical data were preprocessed using a 
flexible preprocessing pipeline including smoothing. Anatomical 

data were normalized into standard MNI space, segmented into 
grey matter, white matter, and CSF tissue classes, and resampled to 
1-mm isotropic voxels using SPM unified segmentation and 
normalization algorithm with the default IXI-549 tissue probability 
template. Functional data were smoothed using spatial convolution 
with a Gaussian kernel of 6 mm full-width half maximum (FWHM). 
In addition, functional data were denoised using a standard 
denoising pipeline including the regression of potential confounding 
effects characterized by white matter, CSF, motion parameters and 
their first order derivatives, outlier scans, and linear trends (2 
factors) within each functional run, followed by bandpass frequency 
filtering of the BOLD time series between 0.008 Hz and 0.09 Hz. 
From the number of noise terms included in this denoising strategy, 
the average degrees of freedom of the BOLD signal after denoising 
were estimated to be  482.3 (range from 182.4 to 549.7) across 
all subjects.

Two indices of brain functionality were chosen to estimate the 
shift-work effects: amplitude of low-frequency fluctuation (ALFF) and 
seed-based connectivity (SBC) analysis to estimate the patterns of 
spontaneity fluctuations and functional connectivity (FC), 
respectively, within the 164 ROIs of HPC-ICA and Harvard-Oxford 
templates (Whitfield-Gabrieli and Nieto-Castanon, 2012). FC strength 
was represented by Fisher-transformed bivariate correlation 
coefficients from a weighted general linear model (GLM), defined 
separately for each pair of seed areas, modeling the association 
between their BOLD signal time series. Targeting on the two brain 
networks, we prescribed the two seed regions, posterior cingulate 
cortex (PCC) and left intraparietal sulcus (IPS), for DMN and DAN, 
respectively. Group analysis was carried out using a second-level 
GLM, in which voxel-level hypotheses were evaluated using 
multivariate parametric statistics with random effects across subjects 
and sample covariance estimation. Inferences were performed at the 
level of individual clusters (groups of contiguous voxels), based on 
parametric statistics from Random Field theory. Results were 
presented using an FDR-corrected p < 0.05 with cluster-size (k) 
thresholds (kALFF ≥ 77 mm3; kDMN ≥ 108 mm3; kDAN ≥ 100 mm3).

Gene sequencing and SCFA

Within 3 h following the stool sample collection, bacterial DNA 
was extracted using the Qiagen DNA Mini Prep kit (Qiagen, Hilden, 
Germany) and stored at −80°C until further processing. Next, in the 
Joint Human Biobank at Taipei Medical University, the 16S rRNA 
gene was analyzed following Illumina’s recommended protocol 
(Illumina, San Diego, CA, USA). The v3–v4 region of the bacterial 16S 
rRNA gene was amplified to construct a DNA library. Dual-index tags 
and Nextera XT sequencing adapters (Illumina, San Diego, CA, USA) 
were added to the amplicons. The DNA quality and quantity were 
assessed using a QSep 100 analyzer (BiOptic, Taipei, Taiwan), and 
high-throughput sequencing was performed on an Illumina 
MiSeq 2000 sequencer. OTU identification and taxonomy assignment 
followed the methodology described by Callahan et  al. (2016). 
Sequence resolution and accuracy were improved using the DADA2 
R package (v1.14.1). Taxonomy was assigned based on the SILVA 
database (v138) with a minimum bootstrap confidence level of 80 
(Quast et al., 2013). Multiple sequence alignments were performed 
using DECIPHER (v2.14.0), and a phylogenetic tree was constructed 
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using phangorn (v2.5.5) (Schliep, 2010). The resulting count table, 
taxonomy assignments, and phylogenetic tree were integrated and 
visualized using phyloseq (v1.30.0) (McMurdie and Holmes, 2013).

Since the gene sequencing did not encompass other microbes 
(archaea, fungi, viruses), we  refer our findings as gut bacteriome 
instead of gut microbiome. Gut bacterial community diversity across 
the three repeated measures (pre-shift, post-shift, and recovery) was 
assessed using the phyloseq and vegan (v2.5.6) R packages. Alpha 
diversity indices, including observed OTUs, Shannon diversity index, 
Simpson diversity index, and Chao1 richness estimator, were 
calculated to measure richness, evenness, and overall diversity. 
Statistical comparisons of alpha diversity between groups were 
conducted using t-tests and Wilcoxon tests. For beta diversity, 
principal coordinate analysis (PCoA) based on UniFrac distances was 
performed using Adonis from the vegan package to assess differences 
in OTU composition across the time points. Differential abundance 
analyses for individual OTUs were conducted using Kruskal–Wallis 
and Wilcoxon tests with UniFrac (v1.1), with significance set at 
p < 0.05 (Chen et al., 2012).

For SCFA, we  homogenized 50 mg of human fecal sample in 
0.5 mL of phosphate-buffered saline (0.5%) and extracted the 
supernatant. Subsequently, we added an equal volume of ethyl acetate 
(EA) and mixed thoroughly, followed by centrifugation at 14,800 rpm 
for 15 min. We  injected 1 μL the supernatant into Gas 
Chromatography–Mass Spectrometry (GC/MS) for SCFA analysis, 
leading to determination of the contents, including acetate, propionate, 
and butyrate.

Statistical analyses

R software (4.3.3) and R Studio (2023.12.1 + 402) were used for 
data analysis after the ROI extraction. We  performed one-way 
repeated-measure analysis of variance (ANOVA) for between-
timepoint comparison on cognition, brain functions, and gut 
bacteriome with post-hoc tests for pairwise comparison, where the 
statistical significance was set as p < 0.05 with Bonferroni correction. 
Furthermore, to investigate the gut-brain relationship, the Pearson 
correlation analysis across the 3 repeated measures were conducted 
between the indices of brain function and gut bacteriome, with false 
discovery rate correction (FDR-corrected p < 0.05).

Results

Duration of night shifts, sleep metrics, and 
cognitive functions

Ten out of 15 recruited participants completed the entire 
procedure of three repeated measures and achieved all the 
requirements in night shifts. The averaged time spans of the shift-work 
and recovery days were listed in Table 1. The sleep metrics during the 
experimental procedure was shown in Figure 1. After the shift work, 
it was prominent that the TST reduced from the original 
420.6 ± 123.6 min to 350.5 ± 111.1 min, and rebounded back to 
440.7 ± 185.4 min in recovery days, indicating a consequence of 
partial sleep deprivation during the shift work (F2,145 = 5.12, p = 0.007). 
However, the SE did not show significant changes along the three 

measures (F2,145 = 0.53, p = 0.59), so as the WASO (F2,145 = 0.21, 
p = 0.81). Most of the assessed cognitive functions (i.e., memory 
function, psychomotor ability, and emotion recognition) did not show 
significant time effects (F2,27 < 2.61, p > 0.10) except the MTT task in 
the executive function. The MTT exhibited the reduced reaction time 
in recovery session as compared with that in pre-shift (Bonferroni-
corrected p < 0.002, Supplementary Figure S1).

Brain functions after night shifts and 
recovery

To evaluate the night-shift effects on brain functionality, 
we  specifically assessed the ALFF across the 3 repeated measures 
(Figure 2A). The superior frontal gyrus (SFG) exhibited a significant 
time effect on ALFF (F1.2,16.5 = 19.16, p < 0.001, ηp

2 = 0.36), where the 
post hoc tests, Bonferroni adjusted, revealed that the medical staff had 
elevated ALFF after shift work (p = 0.022) but returned to the baseline 
after recovery (p < 0.001), while no significant differences was found 
between the pre-shift and recovery sessions (p = 0.21). Figures 2B,C 
exhibit the FC changes across the 3 measures over the shift work, 
targeting on the two networks: DMN and DAN, respectively. In DMN 
(Figure 2B), we observed the time effect on the FC between PCC and 
thalamus (FCPCC-thalamus, F2,27 = 16.63, p < 0.001, ηp

2 = 0.53), indicating 
that a significant reduction of FCPCC-thalamus in the post-shift session 
(pre-shift vs. post-shift: p < 0.001) remained low in the recovery days 
(post-shift vs. recovery: p = 0.65). In DAN (Figure 2C), the time effect 
was found on the FC between the IPS and the precentral gyrus 
(PreCG) (F2,27 = 24.79, p < 0.001, ηp

2 = 0.31), indicating an elevated 
FCIPS-PreCG in the post-shift session (pre-shift vs. post-shift: p < 0.01).

Gut bacterial compositions and SCFA after 
night shifts and recovery

We estimated the gut bacterial composition across the 
repeated measures through the analysis of alpha and beta 
diversity. Figure 3A exhibits that no significant time effect was 
presented among the number of Observed species (F2,27 = 0.54, 
p = 0.59), the Chao1 index (F2,27 = 0.79, p = 0.47), and the 
Simpson diversity (F2,27 = 2.58, p = 0.10). Only the Shannon 
diversity exhibited significant variation (F2,27 = 4.95, p = 0.019), 
indicating a lowered diversity after night shifts and recovery; 

TABLE 1 Demographics and questionnaires from the experimental group.

Demographics and 
questionnaires

(mean ± s.d.)

Recruited sample size 15

Final sample size (All fMRI sessions 

completed)
10

Sex 3 male, 7 female

Age 25.67 ± 4.27 years

Time span before night shift 6.22 ± 1.72 days

Time span after night shift 5.56 ± 1.01 days

Time span of recovery 4.11 ± 1.36 days
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however, no significant difference was shown in the follow-up 
post hoc tests with Bonferroni correction. In beta diversity, the 
principal coordinate analysis (PCoA) based on variance adjusted 
with weighted UniFrac index (Figure 3B) exhibited no significant 
difference in gut bacterial composition across repeated measures, 
and the relative abundance of the top 200 in both Phylum and 
Family levels also exhibited insignificant difference across 
sessions (Supplementary Figure S3). We subsequently estimated 
bacterial phyla abundances across three time points, but still no 
significant time effects were observed in all tested bacterial phyla, 
including Actinobacteriota, Bacteroidota, Campilobacterota, 
Desulfobacterota, Firmicutes, Fusobacteriota, Patescibacteria, 
Proteobacteria, Synergistota, and Verrucomicrobiota 
(Supplementary Figure S2). Notably, the Firmicutes/Bacteroidota 
ratio (F/B ratio) also demonstrated non-significant time effect 
(F2,27 = 1.58, p = 0.23, and ηp

2 = 0.03). Across the 56 families, only 
the Gemellaceae showed significant time effect (F2,27 = 4.40, 
p = 0.028) with significant post-hoc comparison (pre-shift vs. 
recovery: p = 0.023, Figure 3C). In SCFA, Supplementary Figure S4 
shows the boxplots of SCFAs across the 3 repeated measures, and 

no significant changes was found for all 3 types of SCFA 
(F2,24 < 1.92, p > 0.18).

Gut-brain relations after night shifts and 
recovery

The correlation between the FC and gut bacteriome composition 
were utilized to represent the gut-brain associations across the 3 
measures over the shift-work period. No significant difference was 
found between brain FC and alpha diversity indices in the correlation 
analysis with FDR correction (Z < 1.96, p > 0.05). In assessing the 
bacterial phyla abundance, we  noticed that the original positive 
relationship between FCPCC-thalamus and Bacteroidota (r = 0.43) turned 
into a negative correlation during the post-shift (r = −0.62), and 
returned back to a positive correlation (r = 0.22) in the recovery 
session (Figure 4A). Similarly, the relationship between the FCPCC-

thalamus and Proteobacteria also exhibited the positive–negative–positive 
associations across the 3 time points (rpre-shift: rpost-shift: rpost-rest = 0.17: 
−0.68: 0.22) (Figure 4B).

FIGURE 1

Sleep metrics over the consecutive night shifts (before, after and recovery) in medical staff (n = 10). (A) total sleep time; (B) sleep efficiency; (C) wake 
after sleep onset (WASO). One-way repeated-measure ANOVA and post-hoc tests with Bonferroni correction are used for cross-session comparisons 
(*p < 0.05 in post-hoc tests).

FIGURE 2

Brain functionality over the consecutive night shifts (before, after and recovery) in medical staff. (A) ALFF; (B) FC of default-mode network (DMN, 
seeding at posterior cingulate cortex) connecting to bilateral thalamus; (C) FC of dorsal attention network (DAN, seeding at left intra-parietal sulcus) 
connecting to the precentral gyrus. One-way repeated-measure ANOVA and post-hoc tests with Bonferroni correction are used for cross-session 
comparisons. (*p < 0.05, **p < 0.01, and ***p < 0.001 in post-hoc tests).
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Discussion

We investigated whether the night-shift workstyle impacts the 
cognition, brain function, and gut bacteriome among Taiwanese 
medical professionals along the 3 repeated measures (pre-shift, post-
shift, and recovery). Partial sleep deprivation was noticed after the 
5-day night shifts (Figure 1). The fMRI results disclosed that the brain 
functionality (ALFF, DAN and DMN) was changed after the 

night-shift work. However, the assessments in the gut bacteriome 
(alpha/beta diversity, phyla abundance and SCFA) did not show 
significant changes along the 3 time points, so as most the cognition 
domains (except executive function, Supplementary Figure S1). These 
observations imply that the circadian misalignments due to night 
shifts showed profound and immediate impacts on the brain 
functionality, but the majority of cognition and gut bacteriome were 
not swiftly affected among the medical professionals. At last, after 

FIGURE 3

Diversity of gut bacteriome over the consecutive night shifts (before, after and recovery) in medical staff. (A) Alpha diversity; (B) Beta diversity based on 
weighted UniFrac PCoA plots; (C) Concentration of Gemellaceae in the Family level. One-way repeated-measure ANOVA and post-hoc tests with 
Bonferroni correction are used for cross-session comparisons. (NS: none significance, and *p < 0.05 in post-hoc tests).
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recovery from the night-shift works, the ALFF indeed recovered back 
to the pre-shift state in the recovery session (Figure 2A), and so as the 
gut-brain relationships (Figure 4). The only index remained impaired 
in the recovery session was the FCPCC-thalamus of DMN (Figure  2B), 
implying that more than 4 days of circadian realignment was 
insufficient to provide a full recovery on specific brain functionality.

Brain functional alterations after night shift

ALFF is one frequency-specific index to represent the amplitude 
of spontaneous brain activity (Yang et al., 2007), through which a 
recent study disclosed a frontal ALFF reduction among nurses 
working long-term shifts (Dong et al., 2024). Previous studies also 
disclosed that ALFF or fractional ALFF (fALFF) in the frontal lobe 
could change with the sleep deprivation or insomnia. For example, 
Wang et al. demonstrated reduced ALFF in the middle frontal gyrus 
under a 24-h total sleep deprivation in healthy young adults (Wang 
et al., 2016), but Nechifor et al. exhibited an elevated fALFF in the SFG 
after a partial sleep deprivation (Nechifor et al., 2020). In the previous 
work of paradoxical insomnia, we reported an elevated ALFF in the 
SFG for those who had sleep-state misperception (Hsiao et al., 2018), 
denoting a hyperarousal in SFG. In the current study, we detected 
another scenario of enhanced ALFF under the night-shift workstyle, 
which may link to the frontal hyperarousal under the involuntary 
sustenance of wakefulness during night shifts. However, different from 
Wang’s observation of reduced ALFF, we speculated that the ALFF 
changes in the partial sleep deprivation (e.g., after night shifts in this 
study) was distinctive to those in the total sleep deprivation. An 
additional correlation analysis (Supplementary Figure S5) illustrated 
that the ALFFSFG exhibited positive correlations with PSQI total scores 
(r > 0.31) across the 3 measures, especially significant in the recovery 
session (r = 0.66, p = 0.038). Further investigations are warranted to 
disclose the ALFF alterations in sleep deprivation and shift work.

FCDMN and FCDAN are associated with the network functions of 
self-referential and sustained attention, respectively. Literature reported 
that the shift workers had dysfunctions of both networks, leading to 
cognitive impairments, especially in the sustained attention (Chellappa 
et  al., 2018; Zhao et  al., 2023; Dong et  al., 2024). The rationale of 

network selection leads us to the current findings that the inter-
network connections of DMN and DAN were indeed impacted after 
the consecutive night shifts and they did not return to the baseline even 
after 4 recovery days to their normal circadian rhythms. Compared 
with the quick response of ALFF, the FCIPS-PreCG of DAN in the recovery 
session might be  half way returning to the baseline, leading to 
insignificant results compared to the other two sessions (Figure 2C). 
Relatively, the recovery speed of FCPCC-thalamus (DMN) was even more 
sluggish where the aversive impact by the night-shift work sustained 
after multiple recovery days (Figure 2B). Specifically, the functionality 
of FCPCC-thalamus was referred to the self-awareness. Boveroux et  al. 
conducted the propofol-induced anesthesia associated with the 
reduction of FCPCC-thalamus (Boveroux et al., 2010), and our previous 
work also illustrated the relation between the reduced FCPCC-thalamus and 
the pre-sleep fatigue (Tsai et al., 2014). Meanwhile, the elevated FCIPS-

PreCG could be associated with a higher anxiety level (Huang et al., 2021) 
or with a sleep deprivation condition (Kong et al., 2018), where it could 
be  intuitively linked to a higher vigilance on their motor function 
during night shifts. Altogether, the dynamic pattern of DAN/DMN 
connectivity in medical professionals could imply an enhanced anxiety 
condition, ready to handle plausible medical emergencies, while the 
consciousness is dissipating during the night-shift work, and such 
intense mental process did not return even after 4 days of rest.

One concern is raised that the changes of brain functional indices 
may originate from the instability over the three consecutive MRI 
measures. To evaluate the stability of the three functional indices 
without the circadian misalignment, we applied the same imaging 
protocol to additional seven young participants with regular sleep–
wake schedule over 10-day time span. Based on repeated-measure 
ANOVA, the three functional indices of the control group exhibited 
stability over the observable time window. Please see 
Supplementary Figure S6 for statistical details.

Unaffected cognition and gut bacteriome 
after night shift

Most of the cognitive tasks tested remained unaffected across the 
three time points, in contrast to reports in the literature (Rajaratnam 

FIGURE 4

Relationship between brain FC and gut bacteriome over the consecutive night shifts in medical staff. (A) Association between FCPCC-thalamus and 
Bacteroidota; (B) Association between FCPCC-thalamus and Proteobacteria. The three repeated measures are marked in different colors—pre-shift (green), 
post-shift (red), and recovery (yellow). Pearson correlation analysis is conducted across the 3 sessions with false discovery rate correction (*FDR-
corrected p < 0.05).
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et al., 2013; Kecklund and Axelsson, 2016). The unusual observations 
imply that the Taiwanese medical professionals adapted to bear burden 
to prevent from medical error, even under consecutive night shifts. One 
study with a similar design of consecutive 4-night shifts disclosed that 
the cognitive impairments occurred on the first night of the night shifts, 
but the nurses gradually regained their cognitive performances in the 
nocturnal worktime (Chang et al., 2017). This performance adaptation 
could be one reason for the resilience to the circadian misalignment 
among the medical personnel. On the other hand, the other possible 
reason would be the chronic effect of shift work on cognition, especially 
for the medical personnel working in a repetitive shift schedule. Marquié 
et al. (2015) reported that the recovery of cognitive function occurs 
around 5 years after the cessation of any form of shift work, which 
implies that the medical shift workers may experience consistent and 
sustained cognitive decline due to their workstyle. Of course, the last 
influencing factor in the current study would be the limited sample size; 
therefore, further studies are warranted to prove whether the cognitive 
functions are affected by shift works.

Additional issue beyond our expectation would be the unchanged 
gut bacteriome composition across repeated measures. Literature has 
shown that circadian dysrhythmia, such as the night shift, negatively 
influences microbiota communities in the gastrointestinal tract, 
potentially disrupting energy homeostasis, activating pro-inflammatory 
pathways, and inducing systemic metabolic syndrome in high-risk 
populations (Bishehsari et al., 2020). Nevertheless, inconsistent with 
the speculation, the unaffected gut bacteriome in the current work 
could be due to insufficient time duration to induce the biological 
dysbiosis of gut bacteriome. Previously, Liu et al. (2020) conducted 
similar repeated-measure design on healthy adults and found that 
acute sleep–wake cycle shift did not cause influences on the alpha and 
beta diversity of the gut microbiota. The finding of no overt changes in 
gut microbial abundance and diversity following circadian or sleep 
shifts was consistent with previous studies (Benedict et al., 2016; Zhang 
et al., 2017), indicating a resilience of microbial eubiosis in human 
studies. Interestingly, in rodent models, the sleep deprivation could 
cause detrimental effects on the gut microbiota compositions. Altaha 
et al. (2022) conducted a 24-h central clock disruption in mice to 
mimic shift work and found the dysfunctional arrhythmicity of 
microbial functions. We conducted a 72-h total sleep deprivation in 
C57BL/6 J mice and found the dramatic reduction of alpha and beta 
diversity of microbiota, along with the body-weight decline and 
increased anxiety behavior (Yang et  al., 2023). However, while 
we conducted a partial sleep deprivation (10 h per day, 8 am to 6 pm) 
extended to 28 consecutive days, the alpha diversity index of Shannon 
and Simpson did not show much disparities as compared to the control 
group (Tung et al., 2024), indicating different mechanisms affecting 
microbiota between the chronic and acute sleep deprivation.

The Gemellaceae is the only family that showed time effect among 
the 56-family analysis (Figure 3C). Level of Gemellaceae significantly 
decreased after the recovery session compared with the pre-shift session. 
Komanduri et al. (2021) reported that the concentration of Gemellaceae 
positively correlated with speed of memory and power of attention in a 
human aging study, and significant reduction of Gemellaceae were found 
with frailty in neurodegenerative aging (Borrego-Ruiz and Borrego, 
2024). Considering the Gemellaceae is a family member of Firmicutes, a 
dominant phylum in most human gut environment, it may play an 
important role in mediating metabolism through regulating SCFA 

production (Houtman et al., 2022). However, singular family changes 
seemed unable to change the equilibrium status in the phylum level, 
based on the insignificant distinctions in Firmicutes after the night shifts.

Night shift changed the gut-brain axis

This is a pioneer study presenting the dynamic neuroimaging 
changes of gut-brain association. Although we did not find the significant 
associations between microbial diversity and brain connectivity across 
the 3 measures of shift work, the correlation alterations between the 
FCDMN and Bacteroidota and Proteobacteria (Figure 4) demonstrated the 
gut-brain association could change after the circadian realignments 
within the time span of a week. Since FCPCC-thalamus possibly associates 
with the declined consciousness, the negative correlation in post-shift  
(red line in Figure 4A) indicates a higher abundance of Bacteroidota and 
Proteobacteria in response to the progressively decreased FCPCC-thalamus. 
This could be a mechanism originated from the brain malfunction after 
consecutive night shifts, propagating to alter the gut bacteriome as a 
compensatory role in the gut-brain axis. However, this effect is supposed 
to be a one-way direction from brain to gut, because the Bacteroidota 
and Proteobacteria might not accumulate sufficiently over the shift-work 
duration to feedback to the brain in the current design, evidenced by the 
unchanged SCFA (Supplementary Figure S4). In the recovery session, the 
brain-bacteriome association returned back to a positive correlation, 
even though the FCPCC-thalamus remained in a low level.

Limitations

In the current study, the inability to control the food habit was the 
major confounds affecting our results. Literature has shown that 
various dietary choices have significant impacts on the stability and 
functionality of the microbial community (Ross et al., 2024), so the 
control of dietary habit may alleviate the confounding factor. However, 
under the high-stress workload in night shifts, the recruited 
participants declined to comply with the request of maintaining 
consistent dietary habit. Considering an enormous between-subject 
variability in food habits, it is suggested to further record the food 
diary as the covariates for further investigations.

This study contained several limitations. First, the insignificant 
findings of cognition and gut bacteria may come from the small sample 
size in statistics, because the arduous procedures in fMRI, fecal-sample 
collection and neuropsychological assessments refrained the participating 
willingness of medical shift workers. We plan to enlarge the sample size 
in the near future to further illustrate the relationship between gut and 
brain. Second, from a perspective of clinical practices, it is essential to 
consider the length of shift work experience, given the diversity of shift 
work schedules and individual experiences. During our data collection, 
we observed large variability in shift patterns across different hospitals and 
departments around Taipei area. Distinctive combination of day shifts, 
night shifts, and days off can present varying levels of fatigue and recovery. 
This variability may contribute to discrepancies between our results and 
those of previous rodent trials conducted under strict control. Third, the 
senior medical staff members are not required to undertake numerous 
overnight shifts in Taiwan, stemming from a collegial understanding of 
their family responsibilities. Therefore, most late-night shifts are typically 
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assigned to less experienced, junior, unmarried medical personnel, 
preserving more daytime working hours for senior team members. Such 
medical culture led to a potential difficulty for recruiting senior medical 
staff as the participant in the repeated-measure design over a night-
shift workstyle.

Conclusion

Medical professionals in Taiwan medical fields commonly 
experience a regular night-shift rotations, where such regular 
circadian misalignment may deteriorate cognitive performances but 
their biological mechanism remained elusive. Hence, 
we hypothesized that the night shift work may perturb the medical 
shift workers’ brain function, gut bacteriome composition and the 
gut-brain association. The three repeated measures disclosed that 
the brain DAN/DMN connectivity changed dynamically, implying 
the enhanced anxiety at the consciousness dissipation during the 
night-shift work periods in medical staff. However, the evaluations 
of the gut bacteriome composition and majority of cognitive 
functions did not change significantly before and after the night 
shifts, even after couple days with normal sleep–wake pattern. The 
unaffected cognition may indicate a good resilience in medical 
personnel to the night-shift workstyle, and the unchanged gut 
bacteriome composition may indicate that the five-day night shifts 
with partial sleep deprivation was insufficient to induce 
microbial dysbiosis.
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