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Toward autonomous
event-based sensorimotor
control with supervised gait
learning and obstacle avoidance
for robot navigation
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Samarth Chopra and Rajkumar Kubendran

Department of Electrical and Computer Engineering (ECE), Swanson School of Engineering, University

of Pittsburgh, Pittsburgh, PA, United States

Miniature robots are useful during disaster response and accessing remote

or unsafe areas. They need to navigate uneven terrains without supervision

and under severe resource constraints such as limited compute, storage

and power budget. Event-based sensorimotor control in edge robotics has

potential to enable fully autonomous and adaptive robot navigation systems

capable of responding to environmental fluctuations by learning new types

of motion and real-time decision making to avoid obstacles. This work

presents a novel bio-inspired framework with a hierarchical control system to

address these limitations, utilizing a tunable multi-layer neural network with a

hardware-friendly Central Pattern Generator (CPG) as the core coordinator to

govern the precise timing of periodicmotion. Autonomous operation ismanaged

by a Dynamic State Machine (DSM) at the top of the hierarchy, providing the

necessary adaptability to handle environmental challenges such as obstacles or

uneven terrain. The multi-layer neural network uses a nonlinear neuron model

which employs mixed feedback at multiple timescales to produce rhythmic

patterns of bursting events to control the motors. A comprehensive study of

the architecture’s building blocks is presented along with a detailed analysis of

network equations. Finally, we demonstrate the proposed framework on the

Petoi robot, which can autonomously learn walk and crawl gaits using supervised

Spike-Time Dependent Plasticity (STDP) learning algorithm, transition between

the learned gaits stored as new states, through the DSM for real-time obstacle

avoidance. Measured results of the system performance are summarized and

compared with other works to highlight our unique contributions.

KEYWORDS

sensorimotor control, central pattern generator, dynamic state machine, multi-

timescale feedback, spike-time dependent plasticity, coupled neural networks

1 Introduction

Biomimetic locomotion techniques draw inspiration from movement mechanisms

exhibited by biological beings. The promised increase in robustness, adaptability, and

efficiency of these techniques has led to considerable interest in robotics research

with an increased focus on huge potential applications like rescue missions, hazardous

environment exploration, assistance in domestic tasks, and healthcare (Wang et al., 2021).
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By emulating and utilizing strategies seen in nature, this approach

inspires the design of robots to navigate various terrains and

environments. A significant challenge that remains when working

with this stratagem is achieving efficient and adaptive gait control

through the integration of complex sensory inputs along with the

generation of coordinated motor outputs.

One promising solution to this challenge is utilizing Central

Pattern Generators (CPGs) as described in Guertin (2009). CPGs

are neural networks present in biological organisms that generate

rhythmic patterns, crucial for controlling and coordinating

locomotion. They gather sensory feedback from the environment

to adjust locomotion patterns as needed. In animals, sensory

inputs from systems like vision are processed by various brain

regions, including the motor cortex, cerebellum, and brainstem

nuclei, which then produce motor commands to activate the

musculoskeletal system. The inherent capability of biological

neurons to process discrete sensory events, rather than continuous

data streams, enhances reaction time while maintaining the energy

efficiency of the CPG. This efficiency has inspired many researchers

to develop similar CPG networks to improve robot locomotion

control, particularly in pedal-based robots, which mimic the

structure of living organisms (Nakada et al., 2003, 2005; Simoni

et al., 2004; Arena et al., 2005; Kier et al., 2006; Tenore et al.,

2004; Song and Xu, 2022, 2023, 2024; Song et al., 2022). However,

a significant challenge for such architectures is the dependence of

the neural network on the choice of neuron model. CPGs leverage

the diverse behaviors of biological neurons to create and adjust

different rhythmic patterns (Izhikevich, 2006). In contrast, current

Artificial Neural Networks (ANNs) typically overlook the nuanced

behavior of neurons, using simplified activation functions that are

generally adequate for most ANN applications (Buchanan, 2005;

Szandała, 2021). This lack of attention is due to the complexity

FIGURE 1

(Left) Schematic of biological information processing in a dog, from observation to actuation. The visual input received by the eye is processed in the

brain, which then triggers the CPG located in the spinal cord to actuate the limbs for locomotion. (Middle) The flowchart of the hierarchical process

in our implementation. (Right) A complete representation of our tunable multi-layer neural network, which includes a camera, a DSM, a bursting

CPG as layer 1, and layer 2 for controlling motor neuron activations autonomosly. Image credits for the stock photo footage used in the preparation

of this figure (Eye: ©reineg/Adobe Stock, Brain and Dog: ©Sebastian Kaulitzki/Adobe Stock, Spinal cord: ©RFBSIP/Adobe Stock, Camera: ©Janusz

Lukaszewski/Istockphoto).

of implementing a Hodgkin–Huxley model (Hodgkin and Huxley,

1952), the most comprehensive neuron abstraction, in hardware,

where the benefits are outweighed by the constraints of limited

resources in robots. This paper explores the implementation

of a CPG network to control the gaits of a quadruped robot,

showcasing how this biologically inspired approach can enhance

a robot’s locomotion capabilities. The quadruped robot employs

a hierarchical control system where high-level decision-making

modules define the overall locomotion strategy. The mid-level CPG

network generates rhythmic signals that control limb movements,

while low-level controllers ensure precise joint actions. Sensors

such as cameras provide real-time feedback, enabling the robot

to adapt its gait to the terrain and maintain stability as shown in

Figure 1.

A fully stand-alone autonomous (battery powered and no

external inputs/wires) robot navigation system is realized in this

work using three major novel contributions, (1) a tunable multi-

layer neural network with a bursting CPG to generate different

overlapping rhythmic gait patterns using a hardware-friendly

numerical solver for nonlinear ODEs, (2) a dynamic state machine

(DSM) that can adaptively grow as it learns new states and use

the state transitions for real-time decision making in obstacle

avoidance for robot navigation, and (3) a programmable synaptic

weight matrix that can be trained using STDP to learn new gaits

on command. Obstacle avoidance, in this context, refers to the

robot’s capability to detect an obstacle and adjust its path to prevent

any collision.

The structure of the paper is as follows: Section 2 reviews

the background of robotic gaits using CPG networks built with

oscillators from related published articles and delves into the

rationale behind the neuron selection for this work. Section

3 highlights the system design and novelty of this work by
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examining the CPG network architecture and analyses its behavior

comprehensively. This section also discusses the DSM architecture

in detail. Section 4 describes the hierarchical control system and the

final neural network architecture and training. Section 5 presents

the experimental results, and finally, Section 6 offers the conclusion.

2 Methods

2.1 Robot gaits

In biology, animals exhibit a variety of gaits such as walking,

running, crawling, jumping, trotting etc. These gaits are achieved

through precise control of the motor neurons in each limb with

overlapping phases to ensure stability. The motor neurons at the

knees and shoulders of each limb are activated multiple times

in a single phase ensuring granular control of muscle flexion or

extension that results in smooth locomotion.

To enable the Petoi robot to learn and use different gaits for

obstacle avoidance, it is necessary to study a few gaits such as

the walk and crawl gaits. The quadruped robot consists of eight

distinct joints that can be controlled independently, categorized

into four shoulder and four knee joints. The walk and crawl gaits

are illustrated in Figure 2. Each vertical line separates a frame,

representing a collection of angles for one complete cycle of the gait.

Figure 2 shows five frames for each condition, created by repeating

the shaded area of each gait. The study of origin of the angles and

ensuring stable locomotion for each gait is beyond the scope of this

article; here, we focus on the choice of network architecture.

Within the walk/crawl, the angle profiles are almost identical

but with a relative phase shift with respect to the reference joint

(back left leg). For simplification, our qualitative observations

categorize each frame into two regions: stance and swing phases,

based on the rate of angle changes. The swing phase involves high

changes, while the stance phase involves lower rate changes, as

shown in Figure 3B. Figure 3A is showing the reference coordinate

that is used to measure the angles. the detection of phases is

qualitative approach and depends on the gait profile and should be

calibrated separately. Further study of the gait reveals that swing

phases either overlap by a certain percentage or do not overlap at

all. Figures 3C, D highlights this behavior.

2.2 Spiking pattern generators

CPG networks have been implemented using spiking neurons

such as the Leaky Integrate and Fire (LIF) neuron model.

Previous works have demonstrated spiking CPGs to control robot

locomotion (Lele et al., 2020, 2021; Vivekanand et al., 2023a). In

these works, a network of LIF neurons that are bidirectionally

coupled with synapses are tuned manually to generate different

rhythmic patterns. However, the limitation of spiking CPGs is that

a sequence of actions or motor commands must be generated with

each spike. In other words, a single spike “event” has to correspond

to a sequence of multiple motor command “events,” demanding

the need for an external time-keeping signal, the digital clock. The

granular control of the muscle movement found in animals is not

achievable. This also defeats the purpose of an “event-based” system

where the time to act has to be solely dictated by events, without the

need for a timer clock.

Our previous work in Vivekanand et al. (2023b) addressed this

issue by designing and implementing a bursting central pattern

generator to control quadruped robots. Bursting CPGs allow for

more granular control over the motion and speed of operation

while retaining the ultra-low power and latency capabilities of

spiking CPGs. However, the synaptic weights were manually tuned

to produce different gaits.

In this work, a tunable bursting CPG network that can be

trained using a supervised STDP algorithm is realized. The neuron

chosen for this implementation is inspired by the model presented

in Ribar and Sepulchre (2019) but highly optimized to run real-time

on standard or specialized hardware, such as Raspberry Pi, with

minimum resources while still retaining its bio-mimetic properties.

2.3 Nonlinear neuron model

The ability of CPGs to generate various patterns stems from

the intricate temporal behavior of biological neurons. A key feature

of biological neural networks is their remarkable ability to adapt

and modulate their behavior across multiple scales, from ion

channels controlling the spiking dynamics of individual neurons to

larger brain regions governing higher-level cognitive functions like

attention and learning. At the single neuron level, neuromodulators

can precisely shape the firing patterns by modulating the collective

conductance of different ion channels (Marder, 2012). This

neuromodulation enables qualitatively different spiking regimes,

such as the transition between tonic spiking and bursting

oscillations, which is an essential mechanism for encoding sensory

information in certain neural systems (Krahe and Gabbiani,

2004). Neuron abstraction such as the Hodgkin–Huxley model

(Hodgkin and Huxley, 1952) or simplified models like FitzHugh-

Nagumo (FitzHugh, 1961) and Izhikevich neurons (Izhikevich,

2003) for hardware implementation is restricted due to many

factors. These approaches often involve fine parameter tuning

and lack the robust neuromodulation properties observed in

biological neurons (Indiveri et al., 2011; Van Pottelbergh et al.,

2018). Maintaining the balance between biophysical realism and

circuit complexity has been a major challenge (Indiveri et al.,

2011).

One promising alternative, introduced by Ribar and Sepulchre

(2017), Ribar and Sepulchre (2019), and Liu et al. (2023),

offers ease of hardware implementation and an intuitive analysis

method, bypassing the need for complex bifurcation analysis.

This approach features a simple neuron architecture inspired

by biological neurons, as depicted in Figure 4, which includes

multiple conductance channels operating on different time scales

to naturally capture neuromodulation. This neuronmodel, referred

to as the multi-timescale Feedback (MTF) neuron, leverages the

input-output current-voltage (I–V) characteristics to provide a

straightforward way to map neuron dynamics to the underlying

ionic conductances.

CV̇m = −(I+p (Vm)+ I−
f
(Vf )+ I+s (Vs)+ I−s (Vs)

+I+us(Vus)− Iapp)
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FIGURE 2

Waveforms represent the walk (A) and crawl (B) gaits for both knee and shoulder joints, as provided by the Petoi platform. The y-axis shows the

angles, and each vertical line separates the frames. The labels BL, FL, BR, and FR stand for the back-left, front-left, back-right, and front-right legs of

the Petoi Robot.

FIGURE 3

Detailed analysis of the overlapping gait patterns. (A) Shows reference coordinates for angle measurement (Petoi, 2024). (B) Illustrates the swing and

stance phases. (C) Shows a non-overlapping swing phase, and (D) represents overlapping swing phases.
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FIGURE 4

Circuit structure of the multi-timescale feedback, MTF, neuron

which includes multiple conductance channels with varying time

scales, similar to biological neurons. Transient simulation of the MTF

neurons displaying Tonic Spiking and Tonic Bursting (Izhikevich,

2006), according to di�erent Iapp. [a.u stands for arbitrary unit].

τf V̇f = Vm − Vf

τsV̇s = Vm − Vs

τusV̇us = Vm − Vus (1)

(τf ≪ τs ≪ τus)

The model illustrates the creation of spiking neurons by

forming an excitable system (Sepulchre et al., 2019, 2018), which is

achieved by interconnecting a passive membrane with fast negative

and slow positive conductance elements. To replicate bursting

behavior, the model requires an additional excitable system

incorporating slow negative and ultra-slow positive conductance

elements, thereby mimicking the conductance structures found in

biological bursting neurons. Consequently, the MTF neuron can

exhibit both tonic spiking and bursting behaviors, including the

transition between these states (Izhikevich, 2006). The system’s

dynamic behavior can be described using a set of autonomous

differential equations, as shown in Equation 1. In this context, I+p
represents a monotonic passive element with a positive slope, and

I±x = α±
x tanh(Vx − δ±x ) describes the conductance channel (I–

V) relationship. Here, the subscript x indicates the time scale, with

(x = f ) for fast, (x = s) for slow, and (x = us) for ultra-

slow, while the superscript denotes the sign of the gain. Finally,

Iapp is an external current applied to the system to determine its

operating regime.

In this context, the parameters α, δ are referred to as

the neuromodulatory parameters (NP). Once the NP and time

constants are established, the operating regime of the system is

controlled by Iapp. Figure 4 shows two possible outcomes and

their transitions. It is important to note that spiking and bursting

behaviors occur only within a specific range of Iapp; values outside

this range will produce a constant stable output. This range can

be determined using the input-output method described earlier.

Determining the (NP), time constants, and the spiking/bursting

range is beyond the scope of this article. For further details,

interested readers should consult (Ribar and Sepulchre, 2019; Liu

et al., 2023).

2.4 Half center oscillator network

The first step toward realizing CPG based on the MTF neuron

involves understanding the behavior of the simplest structure,

known as the Half-Center Oscillator (HCO) circuit. This circuit

is formed by connecting two neurons via a synaptic connection,

producing rhythmic, oscillatory signals similar to those of a CPG.

Typically, a synaptic connection features a sigmoid activation

function that can depend on any of the system’s state variables, Vx,

where x denotes the time scale. The synaptic connection generates

a current that is added to Iapp, resulting in a specific phase-

locking behavior reminiscent of biological neurons. The ability of

neurons to exhibit bursting behavior is a prerequisite for phase-

locking behavior, underscoring the advantage of MTF neurons. The

system of equations governing the HCO expands into an eight-

dimensional system, with all state variables evolving together. It is

important to note that the synaptic connection also depends on the

state variableVx. Equation 2 provides the mathematical description

of this system.

C ˙Vm1 = −(I+p (Vm1 )+
∑

I±x + (−Iapp + Isyn21 ))

C ˙Vm2 = −(I+p (Vm2 )+
∑

I±x + (−Iapp + Isyn12 ))

τf1 V̇f1 = Vm1 − Vf1

τf2 V̇f2 = Vm2 − Vf2

τs1 V̇s1 = Vm1 − Vs2

τs2 V̇s2 = Vm2 − Vs2

τus1
˙Vus1 = Vm1 − Vus1

τus2
˙Vus2 = Vm2 − Vus2

(2)

Both neurons in HCO have identical NP and time constants

and are preset in the Bursting mode by applying proper Iapp. In this

context, subscript 1 refers to Neuron 1, and subscript 2 refers to

Neuron 2 within an HCO. Equation 3

I±x = α±
x tanh(Vm − δ±x ) (3)

denotes the general form of the conductance channel current for all

time constant. The Equation 4 shows the synaptic current function

where the Vx is state variable where the subscript x indicates the

time scale, with (x = f ) for fast, (x = s) for slow, and x = us

for ultra-slow, while the superscript denotes the sign of the gain.

The B is steepness factor, δs is Threshold andWij is the Strength of

the connection.

Isynij =
Wij

1+ e−B(Vx−δs)
(4)
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FIGURE 5

Simulation of two coupled neurons with excitatory or inhibitory

connections showing two distinct modes of operation:

out-of-phase (top) where W < 0. [|w12| = |w21| = 0.3] and in-phase

(bottom) where W > 0.

Figure 5 depicts two potential behaviors of the HCO depending

on the type of connection. An excitatory connection, whereW12 =

W21 > 0, results in an in-phase outcome, while an inhibitory

connection, whereW12 = W21 < 0, eventually produces an out-of-

phase rhythm. Out-of-phase describes a state where the outputs of

neurons are mutually exclusive, ensuring that no two neurons can

produce bursts simultaneously. The primary difference between

these modes is the transition phase required to achieve phase-

locking when the connection is inhibitory. Our observations

indicate that the strength of the connection influences the duration

of the transition phase to some extent. If the connection is weak,

the in-phase behavior of the HCO remains unaffected, while the

inhibitory connection experiences a prolonged transition phase

and eventually loses phase-locking entirely. Conversely, a strong

connection can reduce the transition phase without negatively

impacting the outcome, but as the connection strength increases,

the spike profile begins to degrade, ultimately causing the HCO to

lose phase-locking and enter a resting state. In summary, the in-

phase mode is independent of the connection strength as long as

(Iapp+ Isynij ) stays within the valid range needed for bursting mode.

In contrast, the out-of-phase dynamic is directly influenced by the

connection strength, as previously described. It is also important

to note that the frequency for each neuron depend on Isynij (Wij)

where the synaptic current is a function of the connection strength.

Therefore, fluctuations of frequency is expected in the output. For

more information on the dependency of the frequency on Isyn,

please refer to Ribar and Sepulchre (2019). The i denotes the pre-

neuron while the j indicates the post-neuron. To facilitate the

following analysis, it is useful to construct a weight matrix for the

HCO. This approach simplifies and enhances the study of higher-

order networks. Equation 5 presents such a matrix for the HCO.

G =

[

a11 a12
a21 a22

]

=

[

0 w12

w21 0

]

(5)

In all of our studies, the connection strengths Wij, whether

inhibitory or excitatory, are equal unless stated otherwise.

Therefore, for a network of size 2, W12 = W21 = W. The absence

of self-connections for neurons means that the main diagonal of

the weight matrix will always be zeros. Given these assumptions,

the weight matrix for alternating and synchronous behavior is

symmetrical. When Wij < 0 it results in alternating oscillation,

whileWij > 0 leads to synchronous oscillation.

The origin of alternating and synchronous behavior in HCO

has been extensively studied here (Wang and Rinzel, 1992).

Wang et al. introduced two underlying mechanisms, “release” and

“escape,” to explain out-of-phase oscillation. Although the neuron

model used in Wang et al. original calculations is simplified, their

findings can be extended to the MTF neuron since the underlying

principles are based on neurons with multiple conductance

channels and different time constants. For all practical purposes,

qualitative observation of the temporal behavior of coupled

neurons is sufficient to understand and evaluate the potential for

forming a higher-order network suitable for robotic applications.

2.5 Central pattern generator network

To leverage the CPG as a controlling agent, forming a higher-

order network is essential. Higher-order networks with similar

synaptic connections are analyzed to assess their ability to exhibit

behavior similar to that of the HCO. The results of our tests for

different network sizes N are shown in Figure 6. Our observations

confirmed that a fully interconnected network with N < 6

can generate in-phase and out-of-phase behavior similar to the

HCO. However, as the network size increases, the ability to

form alternating oscillations is lost, while synchronous oscillation

remains unaffected. This behavior is due to the limited range of

Itot = (Iapp + Isynij ) that can generate bursting. As the number

of connections for each neuron increases, Itot reaches its limit,

preventing the network from sustaining the expected behavior.

Figure 6 displays only the alternating oscillation, as the in-phase

oscillation is evident. Forming the weight matrix for a given

network size is straightforward and can be achieved by following

the previously described rules. Equation 6 shows a generic weight

matrix of size N:

GN =

















0 w12 w13 · · · w1N

w21 0 w23 · · · w2N

w31 w32 0 · · · w3N

...
...

...
. . .

...

wN1 wN2 wN3 · · · 0

















(6)

To complete our analysis, the possibility of the generation of

all the different patterns is studied. Assuming an ideal scenario

where nothing limits the dynamical behavior of a network, our

goal is to understand besides the two mentioned behaviors, can

such a network generate all the possible intermediate patterns. For

instance in a network of size N = 4, is a three sync neurons

with one out-of-synch is a viable pattern or not. Following our

hypothesis, for the network to generate such a pattern, it has to have

excitatory connections within the in-phase neuron, while all the

neurons should have inhibitory connections with the last neuron.

To validate our assumption we conducted many simulations and
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FIGURE 6

Out-of-phase dynamics of the CPG network with (A) N = 3, (B) N = 4, (C) N = 5 coupled neurons exhibiting 3, 4, 5 distinct phases, respectively.

were successful in recreating all the possible patterns with a fixed-

sized network of N < 5. Figure 7 shows the all possibilities for the

N = 4 with the weight matrix that is shown in Equation 7.

G4 =











0 w12 w13 w14

w21 0 w23 w24

w31 w32 0 w34

w41 w42 w43 0











(7)

To generate the patterns shown in Figure 7, the weight matrix

should meet the following conditions, withW > 0 in all cases.

(I) wij = wji = W for i, j ≤ 4.

(II) wi4 = w4i = −W while wij = wji = W for i, j ≤ 3.

(III) w12 = w21 = w34 = w43 = W while the rest of the weights

are−W.

(IV) w12 = w21 = W while the rest of the weights are −W, with

w34 = w43 = ρW. where ρ > 1.

(V) wij = wji = −W for i, j ≤ 4.

It is worth noting that in all the patterns, the weights of all

the elements are the same. However, during our tests, it became

clear that to generate pattern (IV), the connection w34 = w43

needs to be stronger to enforce phase locking between neurons

3 and 4. We assume that a stronger connection is required to

push the neuron Itot into the valid range necessary for generating

the desired pattern. In summary, the total number of patterns for

2 ≤ N ≤ 5 is 2, 3, 5, and 7. While this idea can be generalized for N

neurons our tests indicate that once N > 5, the network behavior

no longer meets expectations. This issue stems from limitations

in the MTF model, particularly its restricted range which results

in bursting behavior. Addressing this challenge remains an open

question requiring further investigation and innovative solutions.

Despite these limitations, the bursting CPG remains a promising

candidate and can serve as a control agent, as demonstrated in our

implementation for controlling a pedal-based robot. Details of our

implementation will be discussed in the following section.

FIGURE 7

All five distinct phase patterns generated with a fully interconnected

CPG network with N = 4 neurons.

2.6 Numerical solver for nonlinear ODEs

Precise timing is crucial for creating an appropriate pattern for

robotic applications. The objective of having a suitable numerical

solver is to minimize or mitigate the solver’s impact on the solution

as much as possible. Achieving this level of accuracy relies on

the chosen ODE numerical solver. As previously mentioned, the
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fundamentals of MTF neurons are based on having multiple time

constants of different order. Consequently, accurately modeling

such a system is a challenging task. Mathematically, the MTF

neuron is represented by a stiff differential equation (Iserles, 2009).

Stiff differential equations are a class of differential equations

characterized by the presence of rapidly varying components that

can cause significant numerical instability in standard explicit

solution methods unless extremely small time steps are used. This

rapid variation is often due to large negative real parts in the

eigenvalues of the system’s Jacobian matrix, leading to substantial

disparities in the rates of change within the solution. As a result,

explicit numerical methods like the Euler method can become

impractically slow and computationally expensive. To address

these challenges, implicit methods such as the backward Euler

method, implicit Runge-Kutta methods, and stiffly stable methods

like the backward differentiation formulas (BDF) are employed.

To understand how different methods result in improvements,

examining their differences in solving an ODE utilizing Euler

method is helpful. Equation 8 presents the basic ODE and its

simplification prior to the application of any numerical integration

methods. The tN = t0 + h showing the next time step with

h as increment, y(t0) = y0 is initial condition and next value

is y(t0 + h) = yN .

ẏ = f (t, y(t)) ⇒ dy = f (t, y(t))dt ⇒

∫ t0+h

t0

y(t) dt =

∫ t0+h

t0

f (t, y(t)) dt
(8)

Assuming the simple rectangle method (Leader, 2022) can

result in two outcomes as it is shown in Equation 9a.

yN + y0 = f (t0, y(t0))1t (9a)

yN + y0 = f (tN , y(tN))1t (9b)

Equation 9a (a) illustrates the explicit Euler method, where the

outcome of the next step relies solely on the initial condition. In

contrast, part (b) depicts the implicit Euler method (Backward

Euler method), where the next value cannot be directly determined.

The implicit method requires an additional calculation step to

obtain the value; however, this dependency prevents the next value

from diverging and helps maintain the solution within a stable

region. This is a crucial advantage when handling stiff systems

of ODEs.

An additional improvement is to use multi-step integration

(Iserles, 2009) instead of the simple rectangle method, which relies

on only one previous value. This enhancement allows the solver

to utilize more than one previous value, thereby capturing the

full dynamical behavior of a system more accurately. Furthermore,

fine-tuning the increment h could further enhance precision. The

Backward Differentiation Formula (BDF) method incorporates

both of these improvements and is our chosen approach for solving

the system of stiff differential equations. The number of steps

in a BDF solver is determined by the solver’s order s. Here, we

use the second-order BDF, taking into account the computational

limitations of the platform (Pi) used for benchmarking our

implementation. The s-order BDF formula is shown in the

Equation 10 where s represents the order, h is the step size, and a

and β are coefficients that depend on the order s.

s
∑

k=0

akyn+k = hβf (tn+s, yt+s) (10)

The coefficients can be easily found in numerous mathematical

textbooks (Curtiss and Hirschfelder, 1952; Iserles, 2009). Assuming

s = 2, the numerical relationship for the next unknown values can

be expressed as shown in Equation 11.

2
∑

k=0

akyn+k = hβf (tn+2, yt+2) ⇒

yn+2 −
4

3
yn+1 +

1

3
yn =

2

3
hf (tn+2, yn+2)

(11)

Here the n is the indicator of timestep. The algorithm we used

to implement the BDF solver for an N-dimensional system of

equations is as follows.

• Constructing a system of ODEs based on the size of the

network (N).

• Applying an alternative method to obtain additional initial

conditions. In this case, the 1st-order Backward Euler method

(BDF) is used to enhance the accuracy of the solution. While

random initial conditions could be used, they do not ensure

the convergence of the solution.

• Applying the 2nd-order BDF to the system’s equations and

solving for the unknown values.

Two important remarks are that no linearization is applied to

the system of equations, and to solve the implicit function to obtain

the unknown values, the Newton-Raphson method is used.

In Figures 4, 7 NP are the same as follows. The−|α−
f
| = |α+

s | =

2, −|α−
s | = |α+

us| = 1.5 and |δ−
f
| = |δ+s | = 0, |δ−s | = |δ+us| = 0.

The time constant are (τf = 1, τs = 50, τus = 2500). The synaptic

threshold and steepness coefficient in all of the simulation was fixed

at δs = −1 and B = 2. In Figure 5 the Iapp = −1.5 for both neuron,

Figures 6A, B the Iapp = −1.6, Figure 7C the Iapp = −1.8 and

Figure 5 Iapp = −1.85. The connection strength |W| for Figures 5,

6A, B is 0.3, for Figures 6C, 7 is 0.2 with ρ = 2. the sign is assigned

based on connection type as described in dedicated sections earlier.

2.7 Dynamic state machine

In this work, a dynamic state machine (DSM) serves as the

high-level organizer for our robotics system. The advantage of

a DSM over a conventional finite state machine (FSM) is its

flexibility to adapt to new states during operation without needing

firmware reprogramming. Unlike the DSM, the FSM has a finite

number of states and transitions, requiring a system reboot to

implement changes. This dynamic behavior allows a robot to adapt

to environmental changes by adjusting to new states as needed. The

DSM prioritizes user input above all else when available. User input

can include commands such as assigning next transition state or

learning a new state. Learning new states involves learning a new
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FIGURE 8

Di�erent phases of the DSM where (A) shows the initial DSM when

no gait is learned, (B) shows the situation after learning the walk gait,

(C) shows the state after adding the crawl gait as a stable state, and

finally (D) showcases the full DSM with the possibility to learn a new

gait on demand.

gait pattern, which is defined as the sequence of motor angles that

must be sent in a specific order for the robot to perform smooth

locomotion actions. The initial state of the DSM includes only two

states: idle and learn, as shown in Figure 8A. The robot remains

in the idle state until a user command is issued, at which point

it transitions to the learning state. The user command specifies

the ideal gait matrix of the new gait, which the robot uses as a

reference during the learning phase through the supervised STDP

learning algorithm. Once the training is successful, the new state

becomes a viable transition phase for the DSM. Figure 8B illustrates

this for the walking gait. Although a single state is theoretically

sufficient for autonomous control, our implementation of obstacle

avoidance requires at least two states (walk and crawl) as shown

in Figure 8C before starting its locomotion. Figure 8D shows our

final implementation with the possibility of learning a new state

if needed.

2.8 Hierarchical control system

Our control scheme is organized in hierarchical steps, as

illustrated in the flowgraph in Figure 1. At the top layer, DSM

oversees the entire network behavior, with user commands given

the highest priority. The two-layer network consists of the CPG

and a fully interconnected MTF neuron network without self-

connections as layer one, and an integrate-and-fire (IF) neuron

network as layer two. The layer two neurons are fully connected

to the previous layers, as shown in the network architecture in

Figure 9. The importance of the bi-layer structure will be explained

later in this section in detail. This network is responsible for

generating precise timing and patterns needed to send motor

commands based on the gait. To demonstrate the benefits of

our idea, we examine a simple obstacle avoidance scenario with

FIGURE 9

Multi-layer neural network architecture, implementing the Layer 1

(CPG) with MTF neurons and Layer 2 (motor neurons) with LIF

neurons. There is a unidirectional connection from all the neurons

in the CPG to the motor neurons, which is not shown in the figure

for clarity.

two phases, using a camera event as the main controlling flag.

Once the prerequisite states (walk and crawl) are learned, the

system autonomously avoids horizontal obstacles in its path by

transitioning from walking to crawling. It is worth noting that this

approach can be extended to avoid any type of obstacle by adapting

to a new state. However, as proof of concept, we focus solely on

horizontal obstacles. This can be easily achieved by learning a new

state for each type of avoidance.

2.9 Network architecture

Earlier analysis of the gaits is a key element in understanding

the network structure shown in Figure 9 and optimizing the size

of each layer. As explained earlier, the swing phases for different

walk and crawl gaits have non-overlapping and overlapping

characteristics, respectively. The non-overlapping parts of the

timing sequence can be easily generated with the CPG, but forming

overlapping sequences requires a new approach. The idea behind

generating overlapping regions is simple and intuitive. Instead of

comparing the individual outputs of layer one, a linear combination

of multiple neurons is considered as the outcome when there is at

least one common neuron. For instance, in the case of N = 4, X1

and X2 have 50% overlap.

X1 = N1⊕ N2

X2 = N2⊕ N3
(12)

It’s worth noting that the ⊕ operation means X1 spikes

whenever N1 or N2 spikes. This technique allows for generating

any form of potential permutation of overlapping regions in an

ideal scenario without restrictions. For N = 4, the limitation is that

the overlap can only be either no overlap or 50% overlap. This is

sufficient for our application, as the walk gait has no overlap, while
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the crawl gait has 50% overlap, as shown in Figure 3. Therefore,

N = 4 is an optimal choice since it satisfies both requirements. The

network behavior is not compromised as long as N < 6 and the

combination of the 4 phases guarantees a possibility of 50% overlap.

Furthermore, to generate a sufficiently long timing sequence to

cover the stance phase, more neurons can be combined using the

same ideas explained above.

To implement this technique, the second layer consist of 16

LIF neurons is used to ensure all the joints and distinct phases

within each frame is covered. LIF model is opted to address

the resource limitations of the testing platform (Pi) and to save

energy. Additionally, using analog neurons for the secondary

layer does not provide extra benefits. The IF neuron operates

on a simple principle: the input is integrated until it reaches a

predefined threshold Vth, at which point the output generates a

spike. The choice of threshold in our implementation is crucial and

it is twofold:

• Determining the weight matrix strength.

• affecting the convergence time during the training.

Understanding the effect of the Vth on the weight matrix is

straightforward. To have one-to-one correspondence in the spike

generation between L1 and L2, the connection strength of w11 and

w12 should be greater or equal to Vth and the rest of connection to

layer 2 should be 0. This core idea can be used to set appropriate

weights for the network to be able to generate walk and crawl gait.

Overall, both layers in the network collaborate to create an

accurate timing sequence independent of the implementation

platform clock (Pi in our test) to issue motor commands to

the robot. The first layer, the CPG network, acts as the main

coordinator due to its phase-locking capability and immunity to

external influences, while the second layer shapes the pattern and

fine-tunes the relative phase needed to precisely encode gait data

for motor control as described previously. The CPG generates a

4-phase out-of-phase pattern, as shown in Figure 6B. The CPG

layer is trained once and remains unchanged as long as needed.

The second layer, however, is updated during learning phase. The

general form of the weight matrix between layers 1 and 2 is shown

in Equation 13 and will be updated via supervised STDP.

GNM =

















w11 w12 w13 · · · w1M

w21 w22 w23 · · · w2M

w31 w32 w33 · · · w3M

...
...

...
. . .

...

wN1 wN2 wN3 · · · wNM

















(13)

2.10 Network training

The multi-layer network is trained using a supervised approach

with the STDP algorithm. Training can be carried out offline. The

optimal target synaptic weights are stored in internal memory and

utilized during the training process. Training occurs when the

Learning Flag (LF) is set to true through an operator command.

STDP, a Hebbian learning process, is triggered by precise timing

correlations between the spikes of neurons before and after synaptic

1: Define neuronal parameters and ideal gait matrix

2: Initialize weights randomly Wasyn

3: Define functions for STDP training and activation

(Equation 14)

4: Initialize convergence condition [conv] to False

5: for simulation in max timesteps do

6: for neuron = 1 to Nneurons do

7: Update neuron states using Equations 8–11

8: if Vneuron > Vthreshold then

9: spk = True

10: else

11: spk = False

12: end if

13: end for

14: for neuron = 1 to Nneurons do

15: for connection = 1 to Nsynapses and connection

6= neuron do

16: if spk is True and conv is False then

17: Update Wasyn using STDP function

defined in (Equation 14)

18: if
∣

∣Wasyn − Wideal
∣

∣ < error then

19: conv = True

20: end if

21: else if spk is False then

22: Continue

23: else

24: Finish training

25: end if

26: end for

27: end for

28: end for

Algorithm 1. Learning gait patterns.

connections, showing temporal asymmetry (Caporale and Dan,

2008; Taherkhani et al., 2020). It is believed to be fundamental

to the processes of learning, information storage, as well as the

development and refinement of neuronal circuits in the brain.

STDP modifies the synaptic weights between neurons generally

given by the following biphasic exponentially decaying function:

1Gsyn = λsgn(1t)e
−sgn(1t)(1t)

τlearn (14)

where 1t = tpre − tpost , λ is the learning rate parameter, τlearn is

time constant and sgn is sign function operator. If 1t is >0, the

postsynaptic neuron spikes after the presynaptic neuron, leading

to long-term potentiation (LTP), whereas if the presynaptic neuron

fires earlier than its postsynaptic counterpart, long-term depression

(LTD) takes place. LTP results in an increase in the synaptic weight,

whereas LTD results in a decrease. In this work, the training

algorithm of both layers is summarized in the Algorithm 1. The

learning algorithm works on the principle of achieving a desired

gait pattern by iteratively adjusting synaptic weights, minimizing

the error between the ideal gait pattern and the pattern obtained

by applying the current weight input described in Algorithm 1. The

convergence condition is that the spike times of the pre and post

neurons must be within an error ǫ.
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3 Results

Our proposed tunable multi-layer network is implemented in

real-time on the Petoi Bittle robot, which comprises a Raspberry

Pi to simulate the gait timing using bursting CPG and real-time

decision making using DSM, and an Arduino as a servo controller.

The use of multiple platforms is crucial because the Arduino

resources are insufficient to handle complex simulations such as

our network effectively. Additionally, to manage the complexity of

solving a high-order system of ODEs, a parallel pipeline is used to

distribute the workload across different processes, taking advantage

of the multi-cores in the Pi platform. This is achieved using the

“multiprocessing” Python library, which offers full control of the

multi-process machine. Our implementation is divided into the

following processes: camera, DSM, and our custom BDF solver.

Each process occupies approximately (2.5%) of memory where the

complete pipeline implemented on the Pi, took (6.35%) equivalent

of (260.4 MB), where the average execution time of each time

step was measured as 10 ms. Once the system boots for the first

time, it waits for the learn flag. When the learn flag is received,

it initiates the training of the CPG internal connections. After

this step is completed, the robot is ready and will remain in

the “Idle” state until the learning flag becomes true, as shown in

Figure 8A. After training for all the gaits is completed, the system

is ready to perform autonomous obstacle avoidance. Figure 10

shows the demonstration setup of the Petoi bot infront of an

obstacle made of a bridge with two pillars. The task of the

bot is to start walking and avoid the obstacle by detecting the

bridge using the onboard camera and switching to crawl mode

to cross underneath the bridge. Once the robot initiates walking,

the camera captures footage at a relatively slower frame rate,

calibrated based on the robot’s movement speed. The captured

footage is then processed using the Canny edge detection algorithm

in the OpenCV library, as shown in Figures 10B–E. The result

generates the camera flag event, which triggers the transition

between states in autonomousmode. If the camera detects an object

close to the robot while walking (camera flag CF = True), the

robot will transition to the “Idle” state and then to the “Crawl”

state. The training results of each layer’s training are shown in

Figure 11.

The CPG is always in free-run mode to avoid the initial

settling time needed to enter the phase-locking mode. Layer 2 then

combines the bursting spikes of Layer 1 CPG output to generate

the timing needed for each motor control sequence. Finally, the

motor command is sent out according to the generated sequence

of spike events. This method creates a jitter-tolerant sequence,

thanks to the CPG, which is independent of the digital clock of the

system. The stop motion capture of the obstacle avoidance demo

and the raster plot of bursting spike events generated during the

entire duration are presented in Figure 12. The figure highlights

the initial walk phase until Obstacle Detection (OD), followed

by the transition to the crawl phase until passing the obstacle.

A video demonstration of the robot showing all the different

patterns can be accessed via the following link “https://youtu.be/

4E66LwjxBy4.”

FIGURE 10

Obstacle avoidance demo setup. (A) Depict a rear view of the bot

and obstacle setup. (B) Representing when the robot is far away

from the obstacle, (C) showing when the robot approaches the

obstacle, (D) the onset of the detecting object and initiating the

avoidance process, and (E) showing when the robot avoided the

obstacle successfully.

FIGURE 11

Supervised STDP training convergence plots, where (A) depicts the

CPG training and (B) illustrates the result for the motor neurons. In

both plots, EoC denotes End of Convergence.

We compared our work with the most similar literature,

summarized in Table 1. To the best of our knowledge, our work

is the only one utilizing a hardware-friendly bursting CPG with

an adaptive DSM to address different demands arising from

deploying a robot in various environments, unlike the conventional

finite state machine (FSM) used in other works. Additionally, our

custom nonlinear ODE solver can be easily implemented on any

platform. Overall, our proposed framework offers a flexible robot

navigation system that minimizes the usage of the resources of the

implementation platform.
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FIGURE 12

(A) A frame-by-frame capture of the obstacle avoidance process. (B) Illustrates the output of layer 2 (motor neurons) controlling the knee joints

(Shoulder joints have the same identical patterns). O.D. and O.P. denote Obstacle Detection and Obstacle Passed, respectively. A demonstration

video of the process is available at https://youtu.be/4E66LwjxBy4.

TABLE 1 Comparison of CPG based systems for robot navigation.

Robot Features Training
algorithm

Sensory
input

Task Latency per
event (ms)

Memory
(MB)

Energy
(J)

Quadruped (Aljalbout

et al., 2020)

Spiking CPG Remote supervised

method (Ponulak,

2005)

– Single gait – – –

Quadruped

(Gutierrez-Galan et al.,

2020)

Spiking CPG Manual design – Multiple gaits 0.00346 – –

Hexapod (Lele et al.,

2020)

Spiking CPG Stochastic reward Gyro + camera Multiple gaits – – 855.1n*

Hexapod (Lele et al.,

2021)

Spiking CPG Supervised DVS Camera Object

approach

– – 2.5m**

Quadruped (Vivekanand

et al., 2023b)

Bursting CPG Manual design – Multiple gaits 3.54 – –

Quadruped this work Bursting CPG, Adaptive

DSM, MTF neurons,

BDF solver

Supervised STDP Camera

Events

Obstacle

avoidance

10 260.4 68m***

*,** In both cases, energy consumption per event/spike is reported as if the Loihi platform is used, but it appears that it is not actually utilized to control the robot. As a result, the actual energy

consumption is unavailable. Only the CPG network’s energy consumption is provided, while the energy use of the peripheral system is not accounted for.

*** This represents the energy consumption per event, including the peripheral system (Raspberry Pi), for the entire obstacle avoidance test (≈ 50 s).

4 Discussion

This work presents a bio-inspired framework for event-based

sensorimotor control to enable autonomous robot navigation. The

framework consists of a tunable multi-layer neural network with a

CPG to generate and govern timing of motion, a DSM for learning

new gaits, switching gaits based on input stimulus and a training

algorithm based on STDP to determine the synaptic weights of the

multi-layer neural network. The CPG can be trained to generate

different overlapping rhythmic gait patterns using bursting neurons

simulated with a hardware-friendly numerical solver for nonlinear

ODEs. The DSM can adaptively grow as it learns gait patterns

as new states and uses the state transitions triggered by sensory

events (camera input) for switching gaits real-time for obstacle

avoidance. A detailed analysis of bursting CPG networks, built

with MTF neurons and simulated with a hardware-friendly BDF

solver, is presented and limitations discussed. The entire framework

is implemented on the Raspberry Pi hardware platform housed

on a battery powered Petoi robot that uses Arduino platform to

control eight servo motors present in the quadruped knees and

shoulders. Neural network training results for the bursting CPG

(Layer 1) and Motor neurons (Layer 2) using the STDP algorithm

to learn the walk and crawl gaits are shown. A fully autonmous

and standalone demonstration of the Petoi robot navigating and

avoiding an obstacle is presented. Measured results of memory

usage and execution time are summarized. The results demonstrate
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the potential of the proposed event-based framework in enabling

fully autonomous navigation in edge robotics.
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