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Tackling the possibility of
extracting a brain digital
fingerprint based on personal
hobbies predilection

Cristina Andronache1*, Dan Curǎvale1, Irina E. Nicolae1,
Ana A. Neacşu1, Georgian Nicolae1 and Mihai Ivanovici2

1Sigma Laboratory, CAMPUS Institute, National University of Science and Technology Politehnica
Bucharest, Bucharest, Romania, 2Faculty of Electrical Engineering and Computer Science, Electronics
and Computers Department, Transilvania University, Brasov, Romania

In an attempt to create a more familiar brain-machine interaction for biometric
authentication applications, we investigated the e�ciency of using the users’
personal hobbies, interests, and memory collections. This approach creates a
unique and pleasant experience that can be later utilizedwithin an authentication
protocol. This paper presents a new EEG dataset recorded while subjects
watch images of popular hobbies, pictures with no point of interest and
images with great personal significance. In addition, we propose several
applications that can be tackled with our newly collected dataset. Namely, our
study showcases 4 types of applications and we obtain state-of-the-art level
results for all of them. The tackled tasks are: emotion classification, category
classification, authorization process, and person identification. Our experiments
show great potential for using EEG response to hobby visualization for people
authentication. In our study, we show preliminary results for using predilection
for personal hobbies, as measured by EEG, for identifying people. Also, we
propose a novel authorization process paradigm using electroencephalograms.
Code and dataset are available here.
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1 Introduction

Electroencephalography (EEG) analysis has significantly advanced contemporary

comprehension of the intrinsic mechanisms governing the human psyche (Cohen, 2017;

Thompson, 2023; Brenninkmeijer, 2015). Regrettably, EEG data is characterized by

inherent non-stationarity (Gramfort et al., 2013; Shen and Lin, 2019; Hine et al., 2017),

presenting a significant challenge in the analysis and processing of this intricately variable

signal. This challenge impedes the development of robust EEG applications (Saha and

Baumert, 2020). However, recent research employing artificial intelligence (AI) (Hosseini

et al., 2020; Wang et al., 2014; Gemein et al., 2020) lead to favorable outcomes in various

applications. This suggests a potential direction for addressing the intricacies associated

with detecting patterns in EEG data, that may otherwise elude human observation.

Consequently, such AI-driven approaches hold promise in providing satisfactory results,

irrespective of the paradigm employed in data collection.
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Using EEG analysis in biometric applications represents a

novel approach in the field of electroencephalogram classification,

having only a few examples in the literature. In Wilaiprasitporn

et al. (2020), the authors propose a new direction for person

identification using EEGs. They use affective EEG classification,

which is collected from subjects who passed through multiple

mental states during acquisition. Namely, they train a combination

of CNN and RNN on DEAP dataset (Chaudhary, 2023). In

another work, Das et al. (2019) lay the foundation for EEG

based identification by creating a state-of-the art neural network

architecture based on CNN-LSTM combinations. They identify

people in 2 scenarios: data collected with eyes closed and data

collected while subjects kept their eyes open. Article Alyasseri et al.

(2020) has a different approach, they use the flower pollination

algorithm (FPA) and B-hill climbing (dubbed FPA B-hc by its

authors) techniques to select the most relevant EEG channels

for user identification. In another work, Thomas and Vinod

(2018) prove the superior performance of power spectral density

features of gamma band (30–50 Hz) in biometric authentication

using EEGs. A challenge in the field is identifying individuals

from acquisitions taken in different sessions and determining

whether EEG permanence exists (Maiorana et al., 2015). In this

regard, Maiorana (2020) explores the identification problem with

a database recorded over a period of more than 1 year. Maiorana

and Campisi (2017) take this type of analysis one step further by

examining the effects of aging in EEG-based person identification.

Using Hidden Markov Models, the authors demonstrate that

they can successfully identify individuals in datasets recorded

up to three years apart. Another common limitation in person

identification is the dependence on the specific task performed

during EEG acquisition. In order to overcome this challenge

(Kumar et al., 2021) attempt to model biometric signatures

independent of task/condition.

The main advantage of electroencephalogram approach in

person identification lies in its unique combination of security

and biometric specificity. EEG signals are highly individualized

and extremely difficult to replicate or forge. This makes EEG an

exceptionally secure method for identifying individuals (Bidgoly

et al., 2020). Despite the promising premise, EEG analysis proves

to be a strenuous task due to the signal’s very low amplitude,

difficult acquisition and non-stationary nature (Pinegger et al.,

2016). However, with adequate acquisition quality, it provides

several benefits. Firstly, it improves signal quality; which in turn

enhances the ability to extract specific features which can be used in

Brain Computer Interface (BCI) applications. Secondly, it presents

detailed brain activity interpretation as it unfolds in real time.

Person authentication is highly correlated with

person identification. This approach, in comparison to

identification which assigns a unique identifier, considers

people grouped by privilege access levels (e.g., using a

badge in a corporation). Whereas identification focuses to

answer the question “Who are you?,” authentication sets

to answer “Are you who you pretend to be?” Thus, such

applications can play a critical role in securing sensitive

premises. In our work, we further develop this concept

by incorporating results from both open-set and closed-set

training scenarios.

New approaches in emotion classification tend to focus on

the emerging field of neuromarketing (Duque-Hurtado et al.,

2020). The fundamental aim of neuromarketing is to merge

theories and methodologies from neuroscience with those from

marketing and correlated fields like economics and psychology.

This integration seeks to create neuroscientific valid interpretations

of howmarketing influences the behavior of target consumers (Lim,

2018). In Golnar-Nik et al. (2019), they study EEG spectral power

potential in consumer preference prediction. The data was collected

while participants watched mobile phones advertisements and they

could choose to press a button meaning either like/dislike/buy

or to press no button at all. Another interesting analysis was

conducted by Aldayel et al. (2020). This study aims at bridging

the gap between traditional market research, centered on explicit

consumer feedback, with neuromarketing research, which focuses

on implicit consumer responses. Nonetheless, classical emotion

datasets are still used as benchmarks. Wan et al. (2023) develop

an architecture, EEGformer, that can tackle several tasks including

emotion classification, as tested on SEED dataset. As our work

also focuses on preference degree classification, we hope that

the results presented in this paper may be extended for future

neuromarketing applications.

Given the current context of both machine learning and EEG

analysis progress, recent work has focused on neural networks

architectures tailored for BCI applications. Lawhern et al. (2018)

propose an end-to-end neural network architecture. EEGNet is a

compact CNN, which has the windowed preprocessed EEG time

signal as input. The first layer is a 2D convolution layer where

frequency filters are learned. It is followed by a 2D depth-wise

convolution block with frequency-specific spatial filters. The third

block consists of a separable convolution which mixes depth-

wise convolution and point-wise convolution obtaining an optimal

fusion between spatial and temporal features. Outputs of the third

block are then fed to a dense layer which does the classification.

Considering the compact architecture, end-to-end characteristic

and good performance of the EEGNet, we considered it is fit for

our classification purposes.

Thus, the neural network models proposed in this work were

trained on EEGNet variations, with adjustments to filter sizes

(to match sampling frequency), filter number (to obtain highest

performance), and output layers (to fit class requirements).

At the same time, we make sure the user interest is in the

center of the design. We set to detect an invariant digital brain

signature, in the form of a response to a tailored stimulation, which

is based on a mix of hobbies and reference categories. Also, the

newly created dataset is publicly available. To validate the newly

acquired dataset, we develop a fourfold experimentation paradigm.

First, we aim to classify emotional responses corresponding to

the following 3 labels: like, neutral, and dislike. Second, we set

to classify the categories shown to each participant. The third

and fourth direction are allocated to person authentication and

identification respectively. For the former we propose a novel

paradigm for security authorization. The above directions are

implemented with convolutional neural network models, namely

with variants of EEGNet (Lawhern et al., 2018). In summary,

we use the newly created dataset on 4 different paradigms:

emotion classification, macro-category classification (some similar
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categories were combined in order to increase training data),

person authentication and person identification.

2 Experiment paradigm

2.1 Data acquisition

The experimental design was planned to maximize the brain

response while maintaining subjects’ engagement. In order to

elicit a powerful EEG pattern, we used images of general hobbies,

personal images (each participant was asked to bring a number

of images with personal significance), as well as some reference

categories. We considered that personal affinities and predilections

tend to elicit more intense reactions and, thus, unique brain

patterns. Further details regarding the selection of visual stimuli

for our experiments can be found in Appendix I, and information

about image authors is available in Appendix II.

Starting from current advancements in Event Related Potential

(ERP) studies (Polich, 2007; Daliri et al., 2013), we developed

an experimental paradigm that captures both visual (as measured

at the occipital level) and cognitive activity. In order to obtain

an intense cerebral activation, we chose stimuli to represent

engaging images (hobbies, familiar landscapes or faces). These

were intertwined with pictures without specific points of interest

(stimuli with one single color, synthetic fractals, and repetitive

patterns). The advantages of such an approach are the following:

(i) the personalized experimental design is more likely to appeal

to the participant and improve the chances of engaging in an

eventual future similar application; (ii) the EEG response is

expected to be emphasized due to the nature of the stimuli; (iii)

the generality of the database categories opens the path for various

EEG future applications.

The acquisition of EEG data was performed under the

guidelines of National University of Science and Technology

Politehnica Bucharest ethical committee. Each participant was

thoroughly informed of the nature of the experiment and how it

will proceed. Also, all volunteers gave their written consent before

participating in the study. The EEG experiment consisted in an

ERP study with visual stimuli (Figure 1). The brain signals were

recorded from 25 healthy participants (11 females and 14 males),

in laboratory conditions. The age group was 21–42 years old, with

a median of 24 years old. The data was acquired with 33 gel

electrodes, in monopolar montage, with mastoid references. The

EEG sensors were distributed according to the extended 10–20

system. The maximum acceptable impedance for the EEG sensors

was 15 k�. In addition, eye movement activity was collected with

2 bipolar electrooculogram (EOG) electrodes corresponding to

vertical and horizontal eye movement. The sampling frequency of

the recording was 1 kHz. No hardware filters were used. More

details on hardware and software can be found in Appendix III.

Volunteers were requested to look straight and avoid additional

eye movements during stimulus presentation. They were also

asked to concentrate on the meaning of the picture shown—as to

maximize the elicited reaction. The visual stimuli consisted in 32

image categories: 26 hobbies (Figure 2), 5 reference categories—

images with no clear focus point (Figure 3), and one category

containing personal images (brought by each participant). The

personal category comprised pictures representing anything the

volunteer found truly enjoyable e.g., family photos, images with

friends, pets, art, etc. Those pictures were deleted as soon as

the experiment was over in order to follow ethical guidelines

regarding personal confidentiality. Each category comprised 32

images with 1,680 × 1,050 resolution, landscape oriented. All

stimuli were presented in fullscreen mode and the subject sat at

around 100 cm away from the screen. The images were carefully

selected and mainly originated from free online platforms, such

as Unsplash, Freepik, Motivector or MBT Database—details on

image authors can be found in Appendix II. Stimuli categories

only contained decent content and did not show any visible

human faces (to avoid additional bias caused by preference

or attraction). The only exception was the personal images

category, which by nature is already biased and no constrain

is needed. The experiment session was split equally in 32

blocks, with small breaks in between, each containing a hobby

category. The 26 hobby categories were selected in concordance

with a previous survey, which aimed to find out the most

common hobbies and interests among people. A number of 96

respondents aged between 18 and 45 took part in the survey

(see Supplementary material I).

Each one of the 1.024 images (32 categories × 32 images)

are shown to the participant for 1.5 seconds. Pictures of the same

category are shown one after another. To better differentiate the

electrical brain response, we put a blank image lasting 1 second

between pictures of the same category. Between categories the

blank image is shown for 2.5 seconds (Figure 1). Blank images

are used because they produce a standard brain response which

is very attenuated compared to that of a non-blank image.

The categories and the images in each category were always

presented in the same order. Also, it should be noted that breaks

were taken whenever the subjects wanted. The total duration of

the whole experiment is averaged at 2 h, but the total visual

stimulation lasted for: (1.5 s image visualization + 1 s resting

state) × 32 images × 32 categories = 2,560 s = 42 min and

40 s. During acquisition, after each stimulus block, they were

asked of their preference degree (like, dislike, or neutral), in

response to the presented hobby. During this process, data was

completely anonymized. After each category, participants were

asked how much they liked it, as their hobbies. The distribution

of these preference degree responses is presented in Table 1 for

each category.

It can be noticed the categories “Food,” “Hiking,” and “Trips”

were the most liked with over two thirds of participants giving

them the label “like.” The most disliked categories are “Multi-band

fractals,” “Brownian fractals,” and “Uni,” most likely due to their

lack of meaning.

2.2 Data preprocessing

In order to improve the quality of the raw signal,

we designed a pipeline that removes noise and artifacts.

These steps are precursory to data classification. The data

processing pipeline depicted in Figure 4, consisted in the

following steps.
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FIGURE 1

General diagram of the experimental design.

FIGURE 2

Hobby categories.

2.2.1 Signal filtering
The electrode-tissue interface introduces a significant DC

offset (approx. 20–50 mV), which is 1,000 times higher than the

usual EEG amplitude. Moreover, the signal tends to be altered

by channel noise and high frequency artifacts. Consequently,

a high-pass and a low-pass filter were applied to the newly

collected EEG data. The high-pass filter is a FIR (finite impulse

response) type filter. This filter has been set up with a cut-off

frequency of 3 Hz, a transition band of [2.55, 3] Hz, and 0-

phase shift to avoid any unwanted delays. The lowpass filter is

an IIR (Infinite Impulse Response) Chebyshev Type II digital

filter, which was used with a 49 Hz cut-off frequency. This

setup helps to avoid the 50 Hz spike, which is caused by power

line interference.

2.2.2 Corrupted channel removal
Some channels are inherently noisier than others. This is

caused by different electrode impedances, participant head shape,

hair density and other factors. Thus, it is important to remove

channels (here, we refer to entire channels) whose EEG signal

is unrecoverable. In order to identify the corrupted sensors, we

calculated the mean power of every channel and the median of

those means. Outliers, with respect to the median, were to be

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2025.1487175
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Andronache et al. 10.3389/fnins.2025.1487175

FIGURE 3

Reference categories.

removed from the data. After doing this type of verification, no

channels needed to be eliminated from the dataset. This step was a

preliminary one as the main noise removal was done with the help

of Independent Component Analysis (ICA).

2.2.3 Independent component analysis
The next processing step was artifact removal with ICA

(Winkler et al., 2015). Artifacts in EEG data can come from

the subject (e.g., eye movements, blinks, heartbeats, and muscle

activity) as well as from the recording device (e.g., line noise,

channel noise, etc.). To mathematically describe ICA algorithm,

consider M signal vectors S = (S1, S2, . . . , SM)⊤, where each

Si = (si1, si2, . . . , siN) is a vector of N samples of the i-th signal,

and each sij ∈ R. The mixed signals can be represented by X =

(X1,X2, . . . ,XM)⊤, where each Xi = (xi1, xi2, . . . , xiN). The mixing

process for M signals involves a mixing matrix A ∈ R
M×M with

coefficients aij ∈ R. The mixing process in matrix form is:

X = AS (1)

where A is the mixing matrix, S is the original signal matrix,

and X is the matrix of mixed signals. The goal of ICA is to find the

unmixing matrixW such that:

W = A
−1 (2)

The demixing process is:

Y = WX (3)

.

where Y = (Y1,Y2, . . . ,YM)⊤ is the matrix of estimated

independent components.

Each estimated component vector Yi is given by:

Yi = W
⊤
i X (4)

where Wi is the i-th row of the unmixing matrix W, and

Yi = (yi1, yi2, . . . , yiN) represents the i-th demixed signal vector.

In our use case, we chose M = 33 as the maximum possible

number of components, i.e., the number of channels used for

acquisition. After applying ICA, we classified the resulting 33

components as follows: brain,muscle, eye, heart, line noise, channel

noise, and other using ICLabel (Pion-Tonachini et al., 2019),

an automated electroencephalographic independent component

classifier. ICLabel has undergone training through an Artificial

Neural Network (ANN) on spatio-temporal characteristics of more

than 200,000 independent components (ICs) derived from over

6,000 EEG recordings. This process also included the annotation

of matching component labels for more than 6,000 of these ICs.

The non-brain components were then subtracted from each EEG

channel using a weight matrix (as each component has varying

contribution on the overall signal). For example, electrodes located

on the frontal lobe are prone to artifacts from eye blinks, thus eye

components weigh more in the signals from frontal electrodes than

in those coming from the central lobe. The signal’s noise and artifact

caused variation is diminished after filtering and preprocessing.

The signal jitter is reduced, as exemplified in Figure 5, and the PSD

slope acquires its 1/f shape with dB variations no higher than 15

Hz (Figure 6).

2.2.4 Data epoching
After ICA, the next step was segmenting the EEG data

corresponding to the visualized image. Also, during this phase

we applied baseline correction for each epoch, where the baseline

represents the 500 ms of blank image shown before each stimuli.

After epoching, we refined the dataset further by using two

criteria: peak to peak amplitude and variance (details in the

following subsection).

2.2.5 Epoch removal
Despite extended data processing, some EEG segments remain

irretrievable. Also, ICA and IClabel have their limitations and

we decided to double check the quality of the epochs. Thus, the

epochs, which were obtained in the previous step, were verified and

removed (if necessary) by amin-max and a variance criterion.More

precisely, we removed epochs which had peak-to-peak amplitude

spikes bigger than 150 µ V and a variance bigger than the average

of all epochs. The later was done by computing the variance of

each epoch in every acquisition. For every acquisition, we selected

a threshold defined as the sum between the variance considering

the 90th percentile and 3 times the difference between the 90th

and 10th percentiles. Epochs falling out of this range (i.e., have

variance bigger than the defined threshold) were eliminated. Thus,

16 out of the 24 subjects needed to have some epochs removed.

In general, we eliminated between 1 to 2 epochs for about 2

image categories per subject. After these preprocessing steps, we

remain with 24 subjects out of the initial 25. The reason was
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TABLE 1 Distribution of preference degree labels per category .

Animals: 1 – 9 – 15 Water

sports:

0 – 9 – 16 Fashion: 8 – 10 – 7 Multi-band fractals: 18 – 6 – 1 Cultural

activities:

4 – 8 – 13

Team sports: 7 – 10 – 8 Gardening: 9 – 10 – 6 Body building: 13 – 4 – 8 Brownian fractals: 17 – 6 – 2 Technology: 2 – 7 – 16

Food: 0 – 4 – 21 Cars: 13 – 8 – 4 Dance: 11 – 3 – 11 Uni: 17 – 8 – 0 Winter

sports:

2 – 10 – 13

Video games: 10 – 5 – 10 Hiking: 4 – 2 – 19 Extreme sports: 5 – 9 – 11 Reading: 2 – 9 – 14

Board games: 5 – 7 – 13 Yoga: 7 – 10 – 8 Romanian patterns: 16 – 6 – 3 Sports on wheels: 6 – 10 – 9

DIY: 8 – 13 – 4 Musical

instruments:

8 – 9 – 8 Colored patters: 12 – 11 – 2 Movies: 5 – 8 – 12

Photography: 6 – 13 – 6 Art: 3 – 10 – 12 Travel: 2 – 4 – 19 Cardio: 6 – 9 – 10

Each entry indicates the number of labels (dislike, neutral, like) a category received from all participants during the experiment. The table also shows the order the categories were presented:

from top to bottom and from left to right. Category name: number of dislike labels – number of neutral labels – number of like labels

FIGURE 4

Pipeline of preprocessing steps.

FIGURE 5

The impact of EEG signal preprocessing pipeline. From top to bottom: the raw signal; the signal after 3 Hz high pass and 49 Hz low pass filtering; and
the signal after ICA filtering. The signal is extracted from the “animals” category (subject 10 and channel P7).

that participant 25’s recordings were significantly noisier than

the others.

3 Experimental scenarios and results

Depending on each particular task, we used a slightly

modified version of the EEGNet neural network architecture.

Tuned hyper-parameters include output layer dimension,

batch size, normalization rate, dropout and dropout type.

In addition, the dimension of the first convolutional

layer has been set according to our sampling rate of

1 kHz (length changed to 256). All presented results

correspond to the mean performance over a 5 fold cross

validation. The proportion between train and test has

been 80%–20%.

The paradigm for the 4 employed scenarios is depicted

in Figure 7.
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FIGURE 6

Power spectral density (PSD). Subject 10, category: animals. (A) Original. (B) Preprocessed.

FIGURE 7

Experimental scenarios diagram.

3.1 Emotion classification

The first task consisted in classifying the preference degree

of each user in response to the 32 categories. In this case,

their respective labels are: like, dislike, and neutral. As images

depict the same subject (hobby, reference category, or personal

category), we premised that each image in a certain category

has the same label as the entire category. Thus, for each

subject there are up to 1,024 labeled signals (some subjects

have less due to epoch removal in the preprocessing stage).

Considering that labels are not homogeneous, as seen in

Table 1, we used a balanced accuracy metric to measure

the performance.

For the emotion classification task, 3 methods were employed.

SVM, pyRiemann (Congedo et al., 2017), and EEGNet results are

presented in Table 2. The second method, pyRiemann is an EEG

classification approach based on Riemannian geometry. It implies

projecting data onto a manifold space and calculating Riemannian

distances between points in order to assign their class by proximity.

It can be noted that EEGNet vastly outperforms the other 2

methods. Also, EEGNet and in some regard pyRiemann (Congedo

et al., 2017) offer relative consistent results across the 24 subjects. In
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TABLE 2 Mean emotion classification accuracy between the 5 folds.

SVM pyRiemann EEGNet

U1 33.79± 2.45 47.76± 2.27 70.61± 3.66

U2 44.22± 4.23 56.47± 4.30 80.88± 2.32

U3 51.52± 2.71 60.36± 7.52 81.36± 2.34

U4 44.05± 3.30 54.34± 1.64 76.50± 3.86

U5 44.82± 3.51 54.88± 3.41 83.01± 2.78

U6 42.67± 3.44 51.37± 2.60 87.27± 3.61

U7 46.33± 2.08 57.00± 2.67 89.33± 2.10

U8 45.07± 1.85 62.76± 4.45 87.38± 1.27

U9 36.33± 1.95 46.92± 2.70 64.44± 6.97

U10 37.60± 1.95 55.86± 4.14 91.40± 3.64

U11 44.92± 2.89 50.88± 2.63 85.46± 3.84

U12 32.65± 4.76 47.51± 3.36 83.48± 2.52

U13 54.39± 1.92 57.11± 6.04 92.33± 3.15

U14 46.67± 4.54 65.31± 4.28 89.37± 2.88

U15 41.47± 1.82 51.08± 2.55 81.86± 3.21

U16 30.24± 3.20 38.81± 1.78 70.47± 2.65

U17 45.51± 3.19 45.90± 2.72 83.89± 5.03

U18 32.75± 3.19 55.81± 3.51 84.46± 3.19

U19 37.89± 1.99 42.87± 3.08 80.58± 6.89

U20 39.69± 1.45 48.85± 2.27 67.92± 1.79

U21 42.99± 3.51 55.34± 6.04 86.29± 2.50

U22 39.71± 3.41 43.36± 6.16 91.93± 3.12

U23 46.10± 3.91 47.36± 3.86 80.47± 4.64

U24 40.72± 1.91 52.35± 3.42 87.41± 3.68

Overall 41.74± 0.25 52.07± 0.68 82.44± 1.27

The experiment was done with 3 classes: dislike, neutral, and like. Results are presented for

each user separately. Three classifiers were tested: SVM, pyRiemann (Congedo et al., 2017)

and EEGNet (Lawhern et al., 2018).

comparison, when applying SVM, there are users whose EEG data

cannot be classified above random level (e.g., U1, U12, U18, etc.).

Tables with additional results are offered in supplementary material

(Appendix IV). These include extended performances on each class

for the 3 methods and results obtained when training a model for

each user.

3.2 Macro-category classification

This task proved to be especially difficult as it implied

generalizing between a significant number of classes (i.e., 32) as

well as a significant number of different persons (i.e., 24). EEG

data is notoriously difficult to classify even if it is recorded from

the same subject and during the same type of task. Nonetheless,

we tried to classify the 32 categories with both SVM and EEGNet

but results were less than satisfactory, barely surpassing chance

level . Because data was not sufficient for such a complex task, we

TABLE 3 Label classification (macro-category classification).

Aggregate
category

Composing
categories

Accuracy Overall
performance

Physical

movement

Water sports 79.34± 4.21% 83.77± 1.50%

Hiking

Body building

Reference Fractals 86.38± 1.75%

Brownian fractals

Mono-color

Serenity/calm Animals 85.25± 2.05%

Personal images

Musical

instruments

Games Video games 84.26± 2.39%

Team sports

Board games

increased the number of training examples by aggregating some

categories intomacro-categories. For example, we consideredwater

sports, hiking, and body-building as part of an overarching aggregate

category called physical activity. By employing this approach we

increased the level of abstraction, which in turn encourages the

model to generalize across both subjects and ideas. The proportion

of 80% train and 20% test was kept across both individual labels and

subjects. Thus, all subjects had samples in training and testing. All

macro-categories have uniform representation in train data. Results

are promising, as we reached 83.77% accuracy with relative low

deviation between folds, see Table 3. In Supplementary material IV,

the aggregate category type of classification is also reported for 3

and 5 macro-labels.

3.3 Binary authentication (authorization
process)

For this task, we considered the following scenario. Imagine

that there are special premises where only a certain group of

people should be allowed entry. We name this group the “allow”

group. Any other person should have the entry request refused.

We name this complementary group the “deny” group. Thus, each

person will go through an authorization process that outputs a

binary response: either “allow” or “deny.” This approach can be

implemented in two variants. One supposes that all subjects are

known and, therefore, samples from all subjects are fed to the

neural network. We will call this authentication paradigm “closed

set.” For this task we considered part of users in the “allow”

group and the rest in the “deny” group (as shown in Table 4). In

order to validate the performance, we experimented with 3 group

partitions. The first is an equal distribution between the 2 classes,

second more users in the “deny” group and lastly more users in the

“allow” group. In concordance with the previous tasks, we reported
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TABLE 4 EEG based authentication performance [%] (2 classes representing “Allow” or “Deny”); “Closed Set”— training and testing is done with EEG

epochs from all users; “Open Set”—testing on users whose EEG data was not present during training, thus, they can only be part of “Deny” category.

Closed set Open set

Allow Deny Validation Test

Allow Deny Deny (exclusive)

12 Users 12 Users 11 Users 11 Users 2 Users

Accuracy: 99.76± 2.90e-3 87.02± 6.55e-2 93.31± 5.67e-2

Precision: 99.73± 2.80e-3 88.94± 3.69e-2 –

Recall: 99.67± 2.90e-3 87.02± 6.54e-2 –

F1 score: 99.76± 0.20e-2 86.67± 7.17e-2 –

6 Users 18 Users 9 Users 9 Users 6 Users

Accuracy: 89.12± 4.29e-2 87.91± 4.49e-2 87.25± 0.13

Precision: 92.25± 1.53e-2 88.82± 3.92e-2 –

Recall: 79.36± 9.30e-3 87.90± 4.49e-2 –

F1 score: 82.17± 9.23e-2 87.81± 4.58e-2 –

18 Users 6 Users 10 Users 10 Users 4 Users

Accuracy: 81.67± 2.89e-2 86.17± 4.10e-2 88.44± 9.22e-2

Precision: 77.12± 1.90e-2 87.05± 3.44e-2 –

Recall: 82.06± 1.77e-2 86.17± 4.10e-2 –

F1 score: 78.08± 2.23e-2 86.06± 4.22e-2 –

results from 5-fold cross validation testing. All reported metrics:

accuracy, precision, recall, and F1 score offer good results. It is

worth mentioning that a balanced training set, as it is presented

in the first case of the closed set scenario, gives the best results with

respect to all considered metrics.

The other scenario variant assumes that the EEG from people in

the “allow” group should be recognized even if the model is tested

with EEG from new subjects (i.e., the neural network did not get

the chance to train on them). We name this authentication variant

“open set.” This way we emulate an open world environment

where impostors are likely to appear. Therefore, the impostors will

present an EEG signature that never appeared during the training

process. Thus, in order to validate the model, we used a couple of

users exclusively for testing. Ideally, the test users should always

be labeled as “deny.” As there is no false “deny” or true “allow;”

precision, recall and F1 score are not reported for the test set. In

order to assess the model’s capacity to perform an authentication

task, we explored 3 ways of splitting the data in “allow,” “deny,” and

“deny” for test only. To ensure consistency between the train and

validation datasets, we split in an 80%–20% ratio for each subject

(except for the ones kept exclusively for testing). This approach

guarantees that no “allow” EEG signals are exclusively present

in the test data. The configurations and results are presented in

Table 4. Unlike the “closed set,” this variant seems to offer consistent

results irrespective of allow-deny ratio. In the validation column,

accuracy metrics reaches the lowest value of 86% (performance

obtained for 10 Users “Allow” and 10 Users “Deny”), while the test

column always surpasses it. It can be noticed that, performance

on the test “deny” exclusive data can reach up to 93% accuracy.

All categories were used to train the models in both scenarios.

The subjects in the training group had an identical distribution

of category instances, ensuring that each subject contained the

same number of instances per category. These results are promising

considering that current state of the art approaches tend to deal

with simpler tasks. For example, in Bidgoly et al. (2022), their

“allow” group consists of just one subject and impostors are always

compared against that single person. This way they achieve around

98% accuracy.

3.4 User identification

For the last task we aimed to identify all 24 users. Similar

to the previous scenario, all categories were used and we made

sure that data from all participants is present in both train

and test set. Data from each participant was split in 80% for

training and the rest for testing. For this task we used our data

to train EEGNet (with modifications as described in the first

paragraph of Section 3) and to train a model as described in

Maiorana (2020). As seen in Table 5, the personal EEG signature

is consistently detected by EEGNet. From the pool of 24 people,

the system can identify 11 with an accuracy of over 97% and

18 with an accuracy of at least 95%. The worst result, 87.08%,

is obtained for U11 although the performance still maintains a

high threshold. Therefore, for this task we obtained an overall

mean accuracy of 96.28%. The second method, Maiorana (2020),

yields relatively similar results, with a slightly lower mean accuracy

of 94.78%.

It is worth noting that achieving accuracies as high as

100% for some users is a notable achievement, reflecting
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TABLE 5 Accuracies [%] for EEG based user identification (24 Users).

User EEGNet Maiorana (2020) User EEGNet Maiorana (2020) User EEGNet Maiorana (2020)

U1 99.41± 7.84e-3 98.83± 0.66e-2 U9 97.84± 3.14e-2 94.58± 4.24e-2 U17 98.64± 1.56e-2 97.45± 1.42e-2

U2 100± 0 98.03± 1.24e-2 U10 94.96± 6.24e-2 97.62± 2.04e-2 U18 87.91± 6.21e-2 84.08± 6.43e-2

U3 96.07± 2.32e-2 99.81± 0.23e-2 U11 87.08± 2.20e-1 92.26± 7.66e-2 U19 98.14± 2.41e-2 91.59± 0.33e-1

U4 97.98± 2.45e-2 92.42± 5.32e-2 U12 96.68± 3.68e-2 91.29± 3.75e-2 U20 96.35± 5.65e-2 97.12± 1.97e-2

U5 99.71± 3.92e-3 97.35± 2.34e-2 U13 89.81± 6.68e-2 95.28± 2.45e-2 U21 94.51± 6.97e-2 94.56± 5.43e-2

U6 99.51± 7.59e-3 93.20± 2.88e-2 U14 95.00± 5.81e-2 96.04± 2.62e-2 U22 94.06± 7.53e-2 99.38± 0.60e-2

U7 98.53± 1.07e-2 95.33± 1.28e-2 U15 95.49± 5.28e-2 95.63± 2.75e-2 U23 99.90± 1.96e-3 94.83± 3.43e-2

U8 96.87± 3.26e-2 86.27± 4.29e-2 U16 99.50± 7.75e-3 94.07± 3.42e-2 U24 96.86± 4.65e-2 98.08± 1.37e-2

the classifier’s ability to perform exceptionally well when

provided with clean, high-quality neural signals. For users with

lower accuracies, factors such as residual noise from subtle

movement artifacts and variations in electrode impedance may

still affect the data, even after preprocessing. These results

highlight the inherent challenges of EEG classification while

demonstrating the strength of the system in handling high-quality

data effectively.

Nonetheless, the impersonal categories, can result in EEG

patterns that are similar up to a degree. For example, “hiking”

category was liked by over two-thirds of participants. Thus,

this category holds less value in discriminating between subjects

(the model might be more inclined to learn characteristics

of general liking, rather than specific EEG pattern that are

participant specific). Additionally, due to inherent differences in

EEG response, some users might exhibit more subtle variations

when exposed to different stimuli. Therefore, users whose EEG

activity is relatively constant might pose a higher challenge to

the classifier.

This experiment shows the great potential of developing

highly sophisticated human authentication systems based on the

sole unique human marker: neural electrical activity. Also, the

necessary stimulus to elicit such a signature is minimal and easy

to replicate: visualizing an image on a screen. In addition, the

reported performance is congruent with current state of the art

results in EEG identification problems. For example, the worked

described in (Mao et al., 2017) reports 97% accuracy, with the

note that they used data from a driving fatigue experiment. Their

acquisition paradigm implies that subjects were highly engaged,

thus the elicited EEG response was more prominent. When (Mao

et al., 2017) tried to identify subjects when no specific stimuli

are present (using the same database), their accuracy dropped

at 90%.

It is worth emphasizing that these results are obtained with

data coming from many users. Namely, data comes from 24

different people. None of the subjects had any condition that

would imply easily differentiable EEG patterns (e.g., epilepsy,

encephalopathy, etc.). In addition, the extensive artifact removal

assures that the classifier does not learn the overlapping noise

that may present discriminant characteristics. These 2 points

accentuate the network capabilities to reliably discern between

different EEG signatures.

4 Discussion

The above presented experiments showcase the dataset

versatility in being part in various types of BCI related applications.

In addition, the obtained results serve as benchmark for future

improvements and enhancements. Even though the obtained

accuracies are comparable with state-of-the art ones, it should be

noted that there are still problems with inter-user generalization.

This is most prominent in hobby classification. For this task

we created some macro-categories in order to augment training

data and increase classification capabilities. We employed such

an approach because user invariant traits were still extremely

difficult to find. In future works we intent to overcome this

current limitation.

During the experiment, the images and categories were shown

in the same order for all participants. As the first step in detecting

neural predilection to hobby-related stimuli, we opted for a fixed

presentation order rather than randomizing categories or images.

Given the complexity of disentangling brain responses across 32

categories (each containing 32 images) and our goal of evoking a

deeper, more sustained emotional response, this approach aimed to

minimize data variability and enhance reliability and comparability

across participants by leveraging the temporal dynamics of ERP

responses. Thus, order effects or anticipation effects are present

in this approach and further, the brain may still be processing a

strong emotional stimulus when the next category appears. These

effects have been partially covered by the baseline correction for

removing lingering activity and the cross-validation approach that

helpmitigate order effects to some extent and helping to prevent the

model from picking up spurious correlations. However, this is not

solved entirely, since the model may still capture neural responses

like fatigue, anticipation, or habituation, significantly different at

the beginning vs. the end of the session. The next step toward a

biometric application would be to randomize trials and categories

(maybe choose, e.g., 3–5 images from a category in a block, instead

of a single one for a stronger effect of a continuous emotion), to

change the sequence across sessions (e.g., Day 1 vs. Day 2) for

a more robust authentication, to help ensure the model learns

biometric features rather than order-specific effects.

Nonetheless, it is worth mentioning that these are preliminary

results which we think are valuable in the current EEG research

field. EEG data is notoriously hard to classify in inter-subject
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applications (usually, models that work on one dataset will not

work on another) so new experiments help to better shape this

ever-improving domain. Furthermore, our work is also offering

free access to the newly acquired hobby EEG dataset. As new

EEG datasets are highly difficult to acquire and often access is

being restricted by a paywall, we consider that this addition holds

considerable value in the current research space.

Our primary aim in this study was to showcase the

versatility and potential of the newly acquired database.

To achieve this, we demonstrated its utility across four

distinct applications: preference degree classification, category

classification, person authentication, and person identification.

We acknowledge that a deeper analysis of task-specific

features would provide valuable insights; however, such an

in-depth exploration falls beyond the scope of this paper.

Therefore, we plan to explore task-specific feature analyses in a

future study.

Due to the nature of the experiment, which involved low

engagement and a relatively long acquisition time, there was a

risk that the EEG data could be affected by drowsiness (Gu et al.,

2022; Han et al., 2019). To address this, we analyzed the power

spectral density (PSD) in the delta and theta bands. Even though

we observed some sporadic occurrences of fatigue with influences

in the theta range of 4–5 Hz, they are not consistent throughout the

entire acquisition period and across all epochs. The details of this

analysis are provided in Supplementary material V. Consequently,

we are confident that the presented results reflect higher-level

cognitive processes rather than drowsiness. A detailed frequency

analysis of the influences of excitement, fear, and stress will be

presented in a follow-up paper.

Also, our dataset was recorded in one session per user.

This could predispose the recordings to contain session specific

cues, and to encourage the classifier to identify sessions rather

than users (problematic especially for person identification). In

order to mitigate such an effect we took regular breaks and

also took breaks when the subject requested. Not only did

we stop the stimuli, but we also allowed the subject to walk

around and stretch, while ensuring minimal movement of the

EEG cap. After each break, the electrode impedances were

re-checked and adjusted with conductive gel where necessary.

These breaks taken during intra-session recordings, even mild,

can alter brain activity and physiological states. For instance,

they can increase alertness and change the participant’s mental

state; which would be reflected in the EEG data after the

break. Thus, even though the recordings were not conducted

in technically separate sessions, the breaks could allow session–

specific cues—such as mood influences—to change or dissipate.

In addition, this current work is preliminary and we have

planned to complement the study with additional sessions for

higher reliability.

Moreover, our EEG dataset was acquired after extensive

research on common hobby predilections. The categories where

chosen after we compiled results from of a survey we conducted

(details in Supplementary material I). This way, the shown stimuli

are relevant and can be integrated in other applications. In addition,

the high number of subjects is conducive for inter-subject EEG

analysis paradigms.

5 Conclusion

EEG analysis is a dynamic field that holds tremendous

promise for advancing both medical and artificial intelligence

based applications which are aimed at evolving the overall

understanding of the human psyche. This paper introduces a

new EEG database containing neurological responses to popular

hobbies, reference categories and images with significant personal

importance. To the best of our knowledge, the paradigm of

focusing on personal hobbies in order to tackle the possibility

of extracting a digital biometric signature has never been

explored before.

In this paper we offer 4 possible applications that can

be developed starting from our proposed database. We report

results for: emotion and category classification as well as binary

authentication and user identification. Beside presented results,

exhaustive testing is described in Appendix IV.
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