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Introduction: The Integration of functional magnetic resonance imaging (fMRI) 
and electroencephalography (EEG) has allowed for a novel exploration of the 
brain’s spatial–temporal resolution. While functional brain networks show 
variations in both spatial and temporal dimensions, most studies focus on fixed 
spatial networks that change together over time.

Methods: In this study, for the first time, we link spatially dynamic brain 
networks with EEG spectral properties recorded simultaneously, which allows 
us to concurrently capture high spatial and temporal resolutions offered by 
these complementary imaging modalities. We estimated time-resolved brain 
networks using sliding window-based spatially constrained independent 
component analysis (scICA), producing resting brain networks that evolved over 
time at the voxel level. Next, we assessed their coupling with four time-varying 
EEG spectral power (delta, theta, alpha, and beta).

Results: Our analysis demonstrated how the networks’ volumes and their voxel-
level activities vary over time and revealed significant correlations with time-
varying EEG spectral power. For instance, we found a strong association between 
increasing volume of the primary visual network and alpha band power, consistent 
with our hypothesis for eyes open resting state scan. Similarly, the alpha, theta, and 
delta power of the Pz electrode were localized to voxel-level activities of primary 
visual, cerebellum, and temporal networks, respectively. We also identified a strong 
correlation between the primary motor network and alpha (mu rhythm) and beta 
activity. This is consistent with motor tasks during rest, though this remains to be 
tested directly.

Discussion: These association between space and frequency observed during 
rest offer insights into the brain’s spatial–temporal characteristics and enhance 
our understanding of both spatially varying fMRI networks and EEG band power.
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1 Introduction

Integrating two or more brain imaging techniques is rapidly advancing the analysis of 
functional connectivity, revealing a deeper understanding of the brain at a large scale (Allen 
et  al., 2018; Bridwell and Calhoun, 2019; Calhoun et  al., 2007). Different brain imaging 
techniques capture unique features of brain function and complement each other’s limitations, 
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providing a comprehensive view of the brain. For instance, functional 
magnetic resonance imaging (fMRI) indirectly measures spontaneous 
neural activity via the blood oxygenation level-dependent (BOLD) 
signal, offering good spatial resolution (1–3 mm) but relatively poor 
temporal resolution (1–3 s) (Glover, 2011). Another widely used 
approach, electroencephalography (EEG), records the electrical 
activity of groups of neurons, providing high temporal resolution 
(1–10 ms), yet its spatial resolution limits precise anatomical 
understanding of underlying neural sources (Yu et  al., 2016). 
Therefore, fMRI and EEG offer complementary imaging signals, and 
merging data collected simultaneously offers a particularly beneficial 
method for studying brain dynamics across a wide range of spatial and 
temporal scales (Chang and Chen, 2021; Jorge et al., 2014; Mulert, 
2013; Philiastides et al., 2021). However, the challenges remain on how 
to link the electrical (EEG) and hemodynamic response (fMRI) to 

each other during different states of brain dynamics. EEG has high 
temporal resolution and low spatial resolution, whereas fMRI has high 
spatial resolution and low temporal resolution (a comparative example 
is shown in Figure  1). Challenges remain in fusing these two 
modalities in real time.

Multimodal data fusion, a powerful approach for combining 
different modalities of brain imaging (as well as other body imaging 
modalities), refers to a broad range of data-driven approaches to 
explore the insights gained from two or more modalities. It is widely 
used in simultaneous EEG/fMRI studies, and can be implemented via 
a variety of approaches, e.g., independent component analysis (ICA), 
linear regression, and hybrid methods (Akhonda et al., 2018; Allen 
et al., 2018; Bridwell and Calhoun, 2019; Calhoun and Sui, 2016; 
Heugel et al., 2022; Mangalathu-Arumana et al., 2018; Mosayebi and 
Hossein-Zadeh, 2020; Stephen et al., 2014; Wirsich et al., 2020). Such 

FIGURE 1

A comparative example is presented, showcasing the analysis of fMRI (top) and EEG (bottom). The fMRI analysis includes voxel time courses, spatial 
dynamics and functional connectivity, while the EEG analysis features topographic maps, various EEG rhythms, and source localization. These are 
typical analyses (though not limited to these) performed on both modalities, which are then integrated to conduct a joint analysis. (N.B. Few elements 
of this figure such as EEG, Source localization, etc were collected from google image search).
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approaches allow us to merge EEG and fMRI into a common feature 
space. For example, we can generate spatial–temporal independent 
components, which can serve as biomarkers for distinguishing 
schizophrenia from healthy controls (Calhoun et  al., 2007). 
Alternatively, some techniques (Muraskin et al., 2018) use encoding 
models to link EEG and fMRI by learning the optimal mapping 
between feature representations of the two modalities.

In many fMRI studies, a common assumption is that brain 
networks remain fixed in their spatial configuration during a typical 
scan. This assumption overlooks the highly spatial dynamic nature of 
brain networks which can undergo spatial changes via expansion or 
shrinking over time, in addition to the dynamical changes in functional 
connectivity (Iraji et al., 2024; Phadikar et al., 2024; Pusuluri et al., 
2024). A recent study explored how these spatial dynamic subspaces 
capture unique disruption in brain networks associated with 
schizophrenia, which vary by sex (Iraji et al., 2024). These disruptions 
involve transient overlaps in networks and are potentially linked to 
genetic risk factors for the disorder. However, the temporal resolution 
of these spatially varying brain networks was not studied well. Here for 
the first time, we analyzed the temporal resolution of these spatially 
varying brain networks by integrating fMRI with EEG. Spectral power 
of EEG is widely used to understand electrical activity produced by the 
brain and can provide insights into various brain states and functions. 
The frequency bands of EEG are generally grouped as delta (0.5–4 Hz), 
theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma 
(30–100 Hz) waves. Each band is associated with different states of 
brain function and cognitive processes (Talebi et al., 2022; Zhang et al., 
2023). In many EEG studies, band powers are analyzed over a range of 
fixed time-period and ignored the time-resolved band power. They also 
undergo temporal changes over time. In this study, we consider time-
varying EEG band power and link them with spatially varying resting 
state fMRI networks.

While prior studies (Allen et al., 2018; Bridwell and Calhoun, 
2019; Chang et al., 2013) have found EEG coupling to spatially fixed 
brain networks. Here we study, for the first time, the relationship of 
voxel wise and volume wise changes of different brain networks in 
resting fMRI data to time-varying band power in concurrently 
collected EEG data. We computed the spatial dynamics of the fMRI 
brain networks using sliding window-based spatially constrained ICA 
(scICA) (Iraji et  al., 2021, 2024; Phadikar et  al., 2024) and then 
evaluated the coupling between these spatial dynamic networks with 
time varying EEG band power during the resting state. To reduce the 
number of statistical comparisons, we first characterized the spatial 
dynamics of fMRI networks by measuring the volume of each network 
(whether shrinking or expanding) and how it is related to the various 
frequency bands of EEG during the brain at rest. Further, we analyzed 
these networks at the voxel-level and evaluated the coupling of each 
voxel with time-varying EEG band power. However, to our knowledge, 
no work has yet combined time-varying EEG band power with fMRI 
spatial dynamic networks. The objective of this study is to (1) develop 
a multimodal data fusion technique to link EEG with fMRI, (2) 
volumetric analysis of spatial dynamic fMRI networks, and (3) 
Analyzing temporal and spatial resolution of resting state brain 
networks. Our work thus focuses on the relationship of the spatial 
dynamics of brain networks in fMRI to time variation in four well 
studied EEG frequency bands. The space-frequency connectivity 
observed in the resting state may reveal information about how brain 
networks interact and process information during rest.

2 Methods

This section describes the proposed multi-modal approach for the 
fusion of EEG and fMRI with the model pipeline presented in 
Figure 2. The proposed technique is described in following steps: (1) 
spatial dynamics of rs-fMRI—we estimated spatial maps (SMs) using 
a sliding window based scICA from rs-fMRI data; (2) power spectrum 
of EEG—time varying four band powers (delta, theta, alpha, and beta) 
were obtained using sliding window approach; (3) fusion analysis and 
Interpretation—we computed the volume of each spatial map as the 
number of voxels with activity level greater than statistically evaluated 
threshold (VTH = 0.5, 1.0, 1.5,…, 3.5), and subsequently we measured 
the correlation between time-varying EEG band power and time-
varying volume of the fMRI network as well as time-varying voxel 
activity. Further, we evaluated the correlation at voxel level. Detailed 
explanations are presented in the following subsections.

2.1 Spatial dynamics of rs-fMRI

The spatial dynamic analysis was performed on rs-fMRI data, 
using the following steps (see Figure 3). We utilized the GIFT toolbox1 
(Calhoun et al., 2001; Iraji et al., 2021) to extract large-scale brain 
networks (or group ICNs) from the resting-state functional images, 
following the procedure described in Iraji et  al. (2019). Next, 
we employed a sliding-window approach to each subject and applied 
a spatially constrained ICA approach called multivariate-objective 
optimization ICA with reference (MOO-ICAR) (Du and Fan, 2013) 
to estimate the time-resolved networks corresponding to the 
previously identified gr-ICNs. We used a model order of 20 to identify 
large-scale networks in the MOO-ICAR model, as suggested by Iraji 
et al. (2016, 2024). MOO-ICAR has proven to be highly effective in 
large-scale brain network estimation for varying data lengths and is 
noise-resistant (Iraji et  al., 2023). A tapered window made by 
convolving a rectangle (width = 30 × TR seconds) with a Gaussian 
(s = 6 s) and sliding step size of 2 s was used to implement the 
commonly used sliding-window technique (Allen et  al., 2014). 
Subject-specific spatial maps (SMs) and timecourses (TCs) were 
obtained for each window. These resulting spatial maps carry the 
spatial information (e.g., Spatial distribution) of any functional  
network.

2.2 Power spectrum of EEG

A sliding window of the same size (30 × TR seconds) as in 
rs-fMRI analysis was applied to the EEG data, and Welch’s method 
was utilized to estimate the power spectral density (PSD). 
Subsequently, band power ( ( )M

electBP w ) from three midline electrodes 
(elect = Cz, Fz, Pz) in four EEG bands (M = delta, theta, alpha, beta) 
were derived from the PSD for each time-window (w). Band powers 
were computed from three midline electrodes (Fz, Cz, PZ), centrally 
placed over the head from inion to nasion using the 10–20 electrode 
placement system. This setup captures a broad power spectrum from 

1 http://trendscenter.org/software/gift
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both the left and right hemispheres (Calhoun et  al., 2007). 
We selected band power over other EEG measures because different 
EEG frequency bands are associated with various brain states and 
function (Talebi et al., 2022), play a key role in diagnosing various 
neurological and psychiatric conditions (Bradley et al., 2024), and are 
essential for understanding the neural underpinnings of various 
cognitive process.

2.3 Fusion analysis

Our goal is to link EEG and fMRI and investigate whether 
variations in neural activity patterns (from EEG) synchronize with the 
spatially varying resting-state fMRI networks. We  conducted the 
following experiments to evaluate this, as described below.

2.3.1 Voxel-wise fusion
The size of the voxels in each spatial map is significantly larger 

compared to the size of the band power. For example, in our 
experiment, the number of voxels in the primary visual network is 
(68,235 × w), whereas the number of alpha band power values is 1 × w. 
Correlating these across the time-window (w) could lead to inaccurate 
information due to this unequal dimensionality. To address this, 
we first applied principal component analysis (PCA) on the (voxels × 
w) data of each network and obtained the first principal component 
and subsequently, computed the correlation (X) with time-varying 

band powers ( ( )M
electBP w ) across the time-window (w), as described 

in Equation 1.

 
( )( ) ( )( ), ,M M

NnetsNnets elect electX correlation PCA SM t BP t=
 

(1)

Where, 1,2, ,14Nnets = …  refers to the number of resting state 
fMRI networks (it is 14  in our study, described in result section), 
electrode and M  indexes three midline electrodes (Cz, Fz, Pz) and the 
four EEG bands (delta, theta, alpha, and beta) respectively.

2.3.2 Volume-based fusion
We computed the volume of the network and its variation across 

time-window ( ( )NnetsVol w ) and correlated with the spectral power in 
four EEG bands across w. The volume was calculated by counting the 
number of voxels above statistically evaluated threshold 

( )0.5,1.0,1.5, ,3.5THV Z= = …  as described in Equations 2, 3. The 
statistical t-test was performed to select appropriate threshold for each 
network is described in result section.

 
( ) ( )( )

1

N
Nnets i TH

i
Vol t v w Vδ

=
= >∑

 
(2)

 
( ) ( )( ), ,M M

NnetsNnets elec elecY correlation Vol w BP w=
 

(3)

FIGURE 2

Basic pipeline of the proposed multi-modal fusion model. The volume of rs-fMRI networks is computed over sliding windows as the number of voxel 
activity above a statistically evaluated threshold (the threshold for individual networks were obtained through a separate statistical analysis—explained 
below). On the other hand, four band powers are computed from the EEG over a sliding window. Finally, volume-based correlation and voxel-wise 
correlation with four time-varying EEG band powers are computed and the correlation maps are interpreted.
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Where, ( )NnetsVol w  is the volume of active voxels in ( )NnetsSM w  
at time-window t , N  is the total number of voxels in ( )NnetsSM w , 
( )iv w  represents the activity level of voxel i at time-window w. ( ).δ  is 

the indicator function, which equals 1 if the condition inside is true, 
and 0 otherwise.

The subject-specific correlation was calculated for both the fusion. 
For an example, there are 14 networks and four bands, resulting the 
correlation matrix (X) of size (14 × 4) per electrode. If we consider Z 
number of subjects in our dataset, and compute the correlation 
analysis for each of them, the resulting correlation matrix would have 
size of (14 × 4 × Z). PCA was then applied across Z to further reduce 
the data. The first principal component of dimension (14 × 4) was 
obtained and interpreted for our analysis.

2.4 Dataset description

The proposed multi-modal approach was performed on 
simultaneously collected EEG and fMRI data of 90 subjects selected 
from two publicly available datasets (Gu et al., 2023; Telesford et al., 
2023), a third dataset previously collected at the Mind Research 

Network (Wu et al., 2010), and a fourth dataset collected from an 
ongoing project at the Center for Advanced Brain Imaging (CABI). 
The details of datasets are presented in Table 1. For more details of 
these publicly available datasets can be found in their respective 
manuscripts (Gu et al., 2023; Telesford et al., 2023; Wu et al., 2010), 
to which readers may refer. Here, we present the specifics of our 
ongoing experimental dataset. The ongoing experiment comprised 
simultaneous EEG-fMRI recording sessions, during which 
participants were instructed to remain still, awake, and relaxed 
inside a dimly lit scanner room. Each scanning session included a 
7-min structural MRI scan followed by two 7-min rs-fMRI scans. 
Three task functional MRI scans lasting 6 min each were conducted 
while subjects performed a reading task. Functional images were 
acquired using a whole-body 3 T Siemens PRISMA Fit MR system 
at the CABI. Simultaneous EEG was recorded using a 32-channel 
BrainAmp MR-compatible system. A Brain Products R-Net MR cap 
was applied to the scalp with electrodes positioned according to the 
international 10–20 system, and an electrocardiogram (ECG) was 
recorded from an electrode applied to the participant’s back. The 
EEG was synchronized to the scanner clock using a Brain Products 
SyncBox, and scanner triggers were recorded with the use of a Brain 

FIGURE 3

Basic pipeline of computing spatial maps (SMs) and time courses (TCs) from rs-fMRI data. Step 1 applies group-level spatial ICA on resting state fMRI 
data and produces group-level intrinsic connectivity networks (gr-ICNs). Step 2 applies the MOO-ICAR over sliding windows to rsfMRI of each subject 
using previously generated gr-ICNs as a reference.
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Products TriggerBox. The analysis for the current study was 
conducted on resting state data.

2.5 Pre-processing simultaneous EEG/fMRI 
data

The resting state continuous EEG data was pre-processed via 
EEGLAB2 toolbox in MATLAB.3 The scanner artifacts were removed 
using FASTR algorithm within FMRIB toolbox.4 Next, the EEG data 
were down sampled to 1 kHz and bandpass filtered within the range 
of 1 to 30 Hz. The cardiac artifacts were identified and removed with 
the FMRIB toolbox, and the data were re-referenced to the common 
average. Next, the EEG data was decomposed into independent 
components (ICs) using temporal ICA to identify and eliminate 
residual pulse, muscle, and eye movement artifacts. Three midline 
electrodes (Fz, Cz, Pz) were selected for further investigation because 
served as the best channels to detect both left and right sources. 
However, we had to exclude the channel “Oz” as it is not available in 
Brain products MR compatible R-Net cap. The resting state fMRI data 
were pre-processed in SPM12,5 and the preprocessing steps encompass 
despiking, realignment, spatial normalization into MNI space, and 
blurring with adaptive kernel to a desired smoothness with a full 
width at half maximum (FWHM) of 6 mm as described in Allen 
et al. (2018).

3 Results

3.1 Spatial dynamics fMRI networks

Twenty components were generated after applying group-level 
spatial ICA on rs-fMRI data. Out of the 20, 14 were identified as 
intrinsic connectivity networks (ICNs), while others were excluded as 
they were deemed noise-related brain networks based on their 

2 http://sccn.ucsd.edu/eeglab

3 www.mathworks.com

4 https://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/

5 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

spatial–temporal characteristics and insights from previous studies 
(Iraji et  al., 2019). The activity maps of these 14 relevant brain 
networks are shown in Figure 4. These networks are labeled as VIS-P/S 
(visual primary/secondary), MTR-P/S (Somatomotor primary/
secondary), DMN-A/P (default mode anterior and posterior), 
FPN-L/R (frontoparietal left/right), SUB (subcortical), CER 
(cerebellar), ATN (attention-dorsal), FRNT (frontal), SN (salience), 
TEMP (temporal). Next, time-resolved subject-specific SMs and TCs 
were computed using MOO-ICAR applied through a sliding-window 
approach corresponding to the previously identified 14 ICNs 
(gr-ICNs) (Iraji et  al., 2024). The subject-specific SMs (voxels per 
network per time-window) were z-scored and used for the 
further analysis.

3.2 Selection of thresholds (VTH) for volume 
of fMRI networks

The volume of a network measures the relevant regions of the 
network and is determined by the total number of voxels with activity 
greater than or equal to the threshold (VTH), as described in Equation 2. 
To precisely capture the relevant regions of the network and avoid 
including other activities, we  computed the volume using a set of 
thresholds ranging from 0.5 to 3.5 with a step size of 0.5 (since the SMs 
were converted into z-scores). A lower threshold may include noise, 
while a higher threshold could reduce the relevant regions of the 
networks. For example, Figure 5 shows the frontal network at three 
different thresholds. If we compare the original frontal network shown 
in Figure 4, it’s clear that, the lower threshold includes irrelevant regions 
(noise), and as the threshold increases, the network volume shrinks. 
Therefore, selecting an appropriate threshold is crucial. Additionally, the 
same threshold may not be optimal for all brain networks.

This is in line with the analysis performed in Pusuluri et al. (2024) 
which found that multiple thresholds can be  employed to study 
complex dynamics of fMRI networks including their altered spatial 
focus of activity, altered spatial dynamism, and how altered focus of 
activity is associated with various cognitive, symptom, and drug scores 
of subjects. Pusuluri et  al. (2024) found that networks showed 
disparate dynamics and significance at varying thresholds and 
therefore, we  performed our analysis across all these thresholds 
as well.

TABLE 1 Simultaneous EEG/fMRI dataset description.

Parameters Dataset (Gu et al., 
2023)

Dataset (Telesford 
et al., 2023)

Dataset (Wu et al., 
2010)

Inhouse dataset

Number of participants 22 33 25 10

Resting state duration (s) 600 600 420 420

fMRI

TR (ms) 2,100 2,100 2000 2000

TE (ms) 24.6 25 39 30

Matrix size 64 × 64 NA 64 × 64 64 × 64

Voxel size (mm) 3.4 × 3.4 × 3.3 3 × 3 × 3 3.5 × 3.5 × 3.5 3.4 × 3.4 × 4

Slices 38 35 27 32

EEG

Number of channels 64 32 32 32

Impedances (kOhm) < 20 <20 <5 <5

Sampling rate (KHz) 5 5 5 5
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The goal here is to select a standardized and automated 
thresholding approach that is also subject specific (similar to a 
Z-score). We  then interpret the group level results, including 
evaluating their biological plausibility. To determine the appropriate 
threshold, we followed these steps: (1) Computed spatial maps using 
the method described in Figure 3; (2) Calculated the volume for each 
threshold (VTH = 0.5, 1.0, 1.5, …, 3.5); (3) Averaged the four band 
powers (delta, theta, alpha, and beta) for each electrode; (4) Computed 
the correlation between the volumes calculated for each threshold and 
the average band power of each electrode; (5) Generated a correlation 
matrix for all subjects in our dataset; (6) Performed a one sample t-test 
on the correlation matrix across subjects; (7) Conducted a multiple 
comparison test to select the appropriate threshold using a 5% 
significance level. The one-sample t-test was conducted on the 
correlation matrix for three electrodes separately to observe 
performance variance across electrodes. The p-values for each 
threshold are presented in Tables 2–4. The threshold was selected at 
p < 0.05 from the multiple comparison test. From Tables 2–4, it can 
be observed that the p-values of VIS-P/S, SUB, MTR-P/S, CER, ATN, 
FPN-R, and DMN-A networks are less than 0.05 at VTH = 2.5, 2.0, 3.0, 
2.5, 2.0, 2.0, 1.5, respectively, (indicated in bold red). Additionally, the 
p-values are mostly consistent across the three electrodes. However, 
other brain networks do not show a significant correlation between 
network volume and average band power, as their p-values are greater 
than 0.05. We selected specific thresholds for the respective networks 
and continued with further analysis.

3.3 Spatially varying brain networks vs. 
temporally varying EEG band power

We measured the spatial dynamic characteristics by computing 
the volume (using VTH from Tables 2–4) at each window to examine 

if the network is shrinking or expanding. For example, the activity 
maps of the primary visual and cerebellar networks at three different 
time windows are shown in Figure 6. It is evident from the figure that 
the volume of the primary visual network is 542, 707, and 1,131 voxels 
at time-window w = 15–75 s, 65–125 s, and 120–180 s, respectively. 
This may indicate that the primary visual network expanded over time 
during rest. Similarly, the cerebellar network initially expanded in 
volume (from 1,415 voxels to 3,159 voxels) and then shrunk over time 
(from 3,159 voxels to 2,555 voxels). Activity maps are displayed with 
Z ≥ 2.5 for all three time-windows for both the networks.

Additionally, it is observed that the voxel-level activity is not 
uniform across the entire network. In the primary visual network, 
voxel activities are initially higher (the color bar on the right shows the 
magnitude of the voxel’s activity, with cyan indicating negative activity, 
yellow indicating the highest positive activity, and at the middle, black 
representing no activity) throughout the entire network region. 
However, as the volume increases (at w = 65–125 s), this highest 
positive activity (yellow) shrinks to the top of the network and 
eventually shifts to the left side. This observation clearly indicates that 
voxel activity is not uniform across the network’s region, instead they 
vary over time. This phenomenon motivated us to link this time-
varying voxel activity with time-varying EEG band power. The 
topographical plot at three different time-windows is shown in 
Figure 6 (third row) to provide an approximate (large-scale) spatial 
distribution of neuronal activity using channel locations. We assume 
the midline electrode Pz is close to the VIS-P and CER networks, and 
it is evident from the figure that the neural activity level decreases 
initially and then increase over time around Pz (observed by the color 
contrast of the topographical map representing the power of the 
frequency). The observed spatial variation in fMRI networks and 
temporal variation in EEG band power encourage us to investigate 
association between them, which may help in gaining a deeper 
understanding of brain dynamics.

FIGURE 4

Three planar cross-section (sagittal, coronal, and transverse) image representations of 14 relevant intrinsic connectivity networks (ICNs) sliced at their 
highest voxel activity. These maps are z-scored and only display regions with ≥z 2.5 , with anatomical images overlaid in the background. Networks 
are named as VIS-P/S (visual primary/secondary), MTR–P/S (Somatomotor primary/secondary), DMN-A/P (default mode anterior and posterior), FPN-
L/R (frontoparietal left/right), SUB (subcortical), CER (cerebellar), ATN (attention—dorsal), FRNT (frontal), SN (salience), and TEMP (temporal).
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TABLE 2 One sample t-test results to determine if the mean correlation coefficient is significantly different from zero across all the subjects.

VTH = 0.5 VTH = 1.0 VTH = 1.5 VTH = 2.0 VTH = 2.5 VTH = 3.0 VTH = 3.5

VIS-P 0.2208 0.2141 0.1668 0.0583 0.0280 0.0355 0.1156

SUB 0.0469 0.0569 0.1199 0.6299 0.0575 0.0329 0.0442

MTR-P 0.0887 0.0415 0.2315 0.5806 0.1091 0.0714 0.0763

CER 0.0021 0.0028 0.0074 0.6421 0.0015 0.0392 0.0812

ATN 0.0670 0.0572 0.6262 0.0048 0.0633 0.1049 0.1288

FRNT 0.4280 0.2870 0.9353 0.4010 0.4037 0.5809 0.6663

MTR-S 0.3395 0.2597 0.1712 0.8221 0.2567 0.1531 0.1250

FPN-R 0.3690 0.5121 0.4079 0.3805 0.3545 0.5616 0.6115

VIS-S 0.2465 0.1765 0.1448 0.0450 0.3744 0.1368 0.0720

DMN-P 0.2238 0.2425 0.1702 0.4166 0.1856 0.1587 0.1640

FPN-L 0.6328 0.7625 0.8635 0.7486 0.7346 0.7475 0.7271

SN 0.1743 0.1268 0.0760 0.6218 0.0825 0.0869 0.1291

TEMP 0.6491 0.6231 0.0961 0.2348 0.6157 0.4816 0.4456

DMN-A 0.0569 0.0651 0.0009 0.0094 0.0741 0.0060 0.0028

p-values are shown here for all 14 networks and 7 thresholds for Cz electrode. The VTH for the respective network is selected which scored the lowest of p < 0.05 (bold in red). For example, 
VTH = 1.5, and VTH = 2.5 showed the highest significance for DMN-A and CER, respectively.

FIGURE 5

The frontal network is displayed in few slices, at three different thresholds, with the color bar representing activity levels ranging from −3.0 to +3.0. The 
figure illustrates how varying thresholds impact the regions of the network, highlighting the importance of selecting an appropriate threshold.
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3.4 Volume based fusion

In the volume-based fusion analysis, the resultant correlation 
matrix shows a pattern where networks are found to be correlated 
with band power and presented in Figure 6. Three correlation maps 
were computed separately for all three midline electrodes (Cz—
left, Fz—center, Pz—further right), describing a sweet spot where 
space and frequency are found to be synchronized. A correlation 
> absolute |0.4| was selected as a significant correlation and 
identified with an asterisk in the correlation map shown in 
Figure  7. We  selected a correlation threshold of abs |0.4| as 
significant because, with our sample size of 90, it corresponds to 

an uncorrected p-value of 0.0001 which passes Bonferroni 
correction for multiple comparisons. In Figure  7, electrode Pz 
reveals distinct frequency localizations across networks: alpha 
power strongly correlates with the primary visual network (VIS-P), 
beta power with the primary somatomotor network (MTR-P), 
delta power with both CER and DMN-A, and theta power with 
MTR-P and CER. Conversely, Fz and Cz exhibit limited 
localizations of the four EEG bands across networks. At both Fz 
and Cz, alpha, beta, and theta show high correlations with CER, 
while beta and delta correlate with MTR-P. Additionally, at Cz, 
alpha is highly linked to the VIS-P network, while delta is 
prominent in the DMN-A network at Fz.

TABLE 3 One sample t-test results to determine if the mean correlation coefficient is significantly different from zero across all the subjects.

VTH = 0.5 VTH = 1.0 VTH = 1.5 VTH = 2.0 VTH = 2.5 VTH = 3.0 VTH = 3.5

VIS-P 0.1969 0.1984 0.1306 0.6323 0.4129 0.0925 0.0843

SUB 0.0099 0.0057 0.1116 0.3251 0.0043 0.0043 0.0056

MTR-P 0.0326 0.0141 0.1061 0.9848 0.0433 0.0262 0.0275

CER 0.0109 0.0238 0.0027 0.4215 0.0016 0.0020 0.0038

ATN 0.0164 0.0179 0.0504 0.0034 0.0143 0.0203 0.0237

FRNT 0.6894 0.4508 0.6485 0.5626 0.5424 0.7708 0.8865

MTR-S 0.0825 0.0597 0.0419 0.9426 0.0975 0.0233 0.0115

FPN-R 0.7279 0.8751 0.6312 0.4486 0.7555 0.9544 0.9974

VIS-S 0.1355 0.1006 0.0688 0.0183 0.2887 0.0623 0.0277

DMN-P 0.4993 0.5161 0.4376 0.4242 0.4941 0.4262 0.4171

FPN-L 0.3935 0.5275 0.4969 0.8496 0.4692 0.5617 0.5968

SN 0.4287 0.3080 0.2455 0.6286 0.2343 0.2111 0.2483

TEMP 0.9487 0.9463 0.4289 0.0758 0.9273 0.6893 0.6145

DMN-A 0.0003 0.0005 0.0001 0.0076 0.0010 0.0020 0.0010

p-values are shown here for all 14 networks and 7 thresholds for Fz electrode. The VTH for the respective network is selected which scored the lowest of p < 0.05 (bold in red). For example, 
VTH = 3.0, and VTH = 1.0 showed significance for SUB and MTR-P, respectively.

TABLE 4 One sample t-test results to determine if the mean correlation coefficient is significantly different from zero across all the subjects.

VTH = 0.5 VTH = 1.0 VTH = 1.5 VTH = 2.0 VTH = 2.5 VTH = 3.0 VTH = 3.5

VIS-P 0.0596 0.0545 0.0741 0.1753 0.2628 0.5763 0.5518

SUB 0.2490 0.2397 0.2692 0.4890 0.1824 0.1661 0.1667

MTR-P 0.1931 0.1175 0.3130 0.8705 0.1813 0.1031 0.1097

CER 0.0049 0.0039 0.0158 0.9805 0.0130 0.0103 0.0099

ATN 0.0046 0.0055 0.3087 0.0011 0.0051 0.0093 0.0122

FRNT 0.8583 0.5921 0.4864 0.8654 0.8580 0.9987 0.9313

MTR-S 0.3532 0.2413 0.1375 0.5447 0.2818 0.0813 0.0470

FPN-R 0.5122 0.5823 0.8379 0.0391 0.5701 0.8595 0.9087

VIS-S 0.4207 0.2772 0.2508 0.1673 0.2424 0.2558 0.1666

DMN-P 0.2852 0.2810 0.3672 0.8804 0.2759 0.3108 0.3404

FPN-L 0.5924 0.6919 0.9550 0.3765 0.5501 0.9092 0.9980

SN 0.9654 0.7877 0.8713 0.4280 0.6812 0.7764 0.8351

TEMP 0.8265 0.8520 0.2687 0.1340 0.9449 0.8618 0.7873

DMN-A 0.0410 0.0411 0.0013 0.0068 0.0489 0.0034 0.0013

p-values are shown here for all 14 networks and 7 thresholds for Pz electrode. The VTH for the respective network is selected which scored the lowest of p < 0.05 (bold in red). For example, 
VTH = 1.0, and VTH = 2.0 showed significance for CER and ATN, respectively.
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3.5 Voxel-wise fusion

In addition to the volume-based coupling, we  measured the 
correlation between EEG spectral power and the first principal 
component of the voxel activity across time window. As evident from 
Figure 8, the temporal network is found to be correlated with Fz (fronto-
central) with a wide range of frequencies (4–30 Hz). Theta, alpha, and 
beta (4 to 30 Hz) bands are prominently linked to the voxel activity of 
the temporal network, while the lower frequency (delta—0.5 to 4 Hz) 
was found to be less correlated (< abs|0.4|) across the time-window. The 
temporal network also shows high activity with the alpha band with Cz 
and Pz (central to parietal area). FPN-R is found to be highly correlated 
with the theta power (4 to 8 Hz) of Fz. In the ATN, the lower frequency 
(0.5 to 8 Hz) characteristics are observed at Fz, where delta (0.5 to 4 Hz) 
found to be active for Cz, and theta (4 to 8 Hz) found to be active for Pz. 
This can tell us that, the lower frequency of EEG is observed during 
spatial changes in the ATN network. CER is found to be correlated with 

low frequency (delta) of Pz, which summarizes that, CER is only 
connected to the parietal region. The high-frequency power (beta) was 
found to be highly correlated with MTR-P with Cz, which indirectly 
indicates that MTR-P is active during rest and connected to the 
frequency observed in motor imagination. The spatial changes in 
MTR-P are found to connected with theta and alpha spectral power at 
the parietal region (Pz).

4 Discussion

In this investigation, we developed a method to link fMRI (spatial 
resolution) with EEG (temporal resolution). As a result, the spatial 
dynamics of fMRI brain networks are found to be linked to power in 
EEG spectral bands which are also well-known features of mental state 
(Allen et al., 2018; Phadikar et al., 2024). The linking between fMRI 
spatial dynamic networks and EEG characteristics provides additional 

FIGURE 6

Spatial differences in VIS-P and CER networks are shown here in axial view for three different time windows = − − −w 15 75, 65 125,120 180 . Activity 
maps are displayed with ≥z 2.5  using GIFT toolbox (http://trendscenter.org/software/gift). Color bar for spatial maps represent the activity level 
ranging from −3.5 to +3.5. Similarly, the topo maps (describing the spatial distribution of electrical activity on the scalp) of rs-EEG are displayed for 
three time-windows. Color bar of the topo map represents the power of the frequency ranging from −25 to +25.
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insights into the spatial–temporal dynamics of intrinsic connectivity 
networks. Rather than a static analysis, here we computed the spatial 
dynamics of the fMRI networks and explained how they vary in space, 
and this varying nature is synchronized with varying temporal activity 
of EEG. For this feasibility study, we used a model order of 20 to identify 
large-scale networks in the MOO-ICAR model. While the focus of the 
current study was on large scale networks, future work can use a high 
model order to extract more granular networks. Furthermore, future 
work can use multi-scale ICN template obtained in recent work to 
provide more comprehensive picture of changes in brain networks.

Alpha waves in EEG (8 to 13 Hz) are typically associated with a 
relaxed but awake state (Tuladhar et al., 2007). High alpha activity at 
the VIS-P and TEMP networks indicates strong evidence of calm, 
relaxed states. Previous studies showed that alpha (mu-rhythm) and 
beta activity in resting state may indicate the performance of motor 
imagery tasks (Lee et al., 2020; Wang et al., 2022; Zhang et al., 2015). 

Seeing significant alpha and beta activity at the MTR-P and CER 
network may be indirectly associated with states of relaxation with 
motor planning. The ATN network is crucial for maintaining focus, 
alertness, and selective attention. The association of delta and theta 
power with the ATN typically suggests reduced levels of attention and 
arousal. Increased delta activity at both Fz and Pz electrodes, 
correlated with the DMN-A network, suggests that the brain is in a 
state of reduced external engagement, focusing more on internal 
processes (Raman and Filho, 2024). Theta power at Cz and Pz shows 
strong association with both MTR-P and CER networks, it might 
indicate that theta oscillations play a role in coordinating motor and 
cognitive processes, however further studies are required to validate 
these findings. This could suggest a functional link between sensory 
processing, motor control, and executive functions. Theta power 
activity at Fz electrode, when correlated with the FPN-R and TEMP 
networks, suggests that frontal theta rhythms are involved in 

FIGURE 7

The group-level correlation map between four time-varying band power and time-varying volume of 14 networks from all the subjects are displayed 
here (correlation > abs|0.4| are identified with an asterisk). The principal component of all the subject-specific correlation maps is shown as group-level 
correlation map. Three different correlation maps are presented for three different electrodes (Cz, Fz, Pz). The color bar indicates the correlation value 
ranging from −0.6 to +0.6.

FIGURE 8

The group-level correlation map between time-varying spectral power in four bands and voxels of 14 networks are displayed here (correlation > 
abs|0.4| are identified with an asterisk). The principal component of all the subject specific correlation maps is shown as group-level correlation map. 
Three different correlation maps are presented for three different electrodes (Cz, Fz, Pz). The color bar indicates the correlation value ranging from 
−0.6 to +0.6.
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high-level cognitive processes like executive functioning, cognitive 
flexibility, and integration of information (Cao et al., 2022). We did 
not include gamma as resting-state EEG is often dominated by alpha 
(8–13 Hz) and theta (4–8 Hz) rhythms, especially in relaxed states, 
potentially overshadowing gamma activity (Allen et al., 2018).

This study focuses on investigating spatial changes in resting-state 
networks in relation to the EEG power spectrum. To reduce 
computational load, and minimize multiple comparisons, 
we prioritized midline electrodes, which approximately represent both 
hemispheres. Further, our results showed consistency across the 
electrodes likely since we considered small number of electrodes (Fz, 
Cz, Pz) at a specific location (midline). In future studies with larger 
sample sizes, we plan to focus on all the 32/64 electrodes and may 
observe the variation in the threshold.

While the spatial dynamic features of the above-mentioned networks 
are observed to be correlated with the spectral properties of EEG, the 
other networks that did not show such association, perhaps because they 
are not active during rest with eyes open. The analysis tells us about 
various frequency localization while resting state networks are evolving. 
We inferred an indirect link between mental states and fMRI networks 
based on observed correlations and previous studies. However, direct 
evidence requires further investigation. Future research should examine 
both the temporal and spatial dynamics of fMRI networks with eyes 
open and closed, as well as during behavioral tasks, to provide deeper 
insights. The identified links to the (eyes open) resting state reveal 
information about how brain networks interact and process information 
during rest. Future studies might leverage this approach to investigate 
whether disruptions in these interactions are associated with neurological 
and psychiatric disorders.
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