
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Neurosci.
Sec. Neurogenomics
Volume 19 - 2025 | doi: 10.3389/fnins.2025.1479616
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Some studies indicated that histone modification may be involved in depression disorder (DD). The maintenance of the histone acetylation state is the work of histone acetyltransferase (HAT) and histone deacetylase (HDAC), which is thought to be a potential diagnostic biomarker of depression. However, it is still unknown how histone acetylation-related genes (HAC-RGs) contribute to the onset and progression of DD.Methods: GSE76826 and GSE98793were obtained from the Gene Expression Omnibus (GEO) database, HAC-RGs were acquired from the GeneCards database. Initially, the differentially expressed genes (DEGs) in GSE76826 were investigated. We used weighted gene co-expression network analysis (WGCNA) to screen key module genes. Candidate genes were selected by intersecting DEGs, key module genes, and HAC-RGs, followed by functional analysis. Two machine learning algorithms were used to identify hub genes, which were used for drug prediction, immunological infiltration studies, nomogram construction, and regulatory network building. The expression levels were verified using the GSE76826 and GSE98793 datasets. Hub gene expression levels in the clinical samples were verified using reverse transcription quantitative PCR (RT-qPCR).Results: The 23 candidate genes were obtained by intersecting 2,316 DEGs, 1010 HAC-RGs and 2,617 key module genes. Three hub genes (JDP2, ALOX5 and KPNB1) were gained by two machine learning algorithms. The nomogram constructed based on these three hub genes showed high predictive accuracy. Additionally, the three hub genes were enriched in the kegg_ribosome. The 9 different immune cells were identified in GSE76826, which were associated with three hub genes. A hub gene-drug network (98 nodes, 106 edges) and an lncRNA-miRNA-mRNA network (56 nodes, 87 edges), were built using the database. The expression level verification indicated that, with the exception of the KPNB1 gene, the DD group had higher levels of JDP2 and ALOX5 and that the expression patterns in GSE76826 and GSE98793 were consistent, with RT-qPCR confirming higher ALOX5 and JDP2 expression in DD samples.Conclusion: This study identified three hub genes (JDP2, ALOX5, and KPNB1) associated with histone acetylation, offering new insight into the diagnosis and treatment of DD.
Keywords: Depression disorder, histone acetylation, Hub genes, Immune infiltration, bioinformatics
Received: 12 Aug 2024; Accepted: 07 Apr 2025.
Copyright: © 2025 Lv, Lei, Man, Chen, Xing, Ma, Lv and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Lu Zhang, Department of Neurology,Anhui No.2 Provincial People’s Hospital, Hefei, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.