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Parameter optimization of 3D
convolutional neural network for
dry-EEG motor imagery
brain-machine interface

Nobuaki Kobayashi* and Musashi Ino

Department of Precision Machinery Engineering, College of Science and Technology, Nihon

University, Funabashi, Chiba, Japan

Easing the behavioral restrictions of those in need of care not only improves

their own quality of life (QoL) but also reduces the burden on care workers

and may help reduce the number of care workers in countries with declining

birthrates. The brain-machine interface (BMI), in which appliances and machines

are controlled only by brain activity, can be used in nursing care settings to

alleviate behavioral restrictions and reduce stress for those in need of care. It is

also expected to reduce the workload of care workers. In this study, we focused

on motor imagery (MI) classification by deep-learning to construct a system

that can identify MI obtained by electroencephalography (EEG) measurements

with high accuracy and a low latency response. By completing the system on

the edge, the privacy of personal MI data can be ensured, and the system is

ubiquitous, which improves user convenience. On the other hand, however,

the edge is limited by hardware resources, and the implementation of models

with a huge number of parameters and high computational cost, such as

deep-learning, on the edge is challenging. Therefore, by optimizing the MI

measurement conditions and various parameters of the deep-learning model,

we attempted to reduce the power consumption and improve the response

latency of the system by minimizing the computational cost while maintaining

high classification accuracy. In addition, we investigated the use of a 3-dimension

convolutional neural network (3D CNN), which can retain spatial locality as a

feature to further improve the classification accuracy. We propose a method to

maintain a high classification accuracy while enabling processing on the edge by

optimizing the size and number of kernels and the layer structure. Furthermore,

to develop a practical BMI system, we introduced dry electrodes, which aremore

comfortable for daily use, and optimized the number of parameters andmemory

consumption size of the proposed model to maintain classification accuracy

evenwith fewer electrodes, less recall time, and a lower sampling rate. Compared

to EEGNet, the proposed 3D CNN reduces the number of parameters, the

number ofmultiply-accumulates, andmemory footprint by approximately 75.9%,

16.3%, and 12.5%, respectively, while maintaining the same level of classification

accuracy with the conditions of eight electrodes, 3.5 seconds sample window

size, and 125Hz sampling rate in 4-class dry-EEG MI.

KEYWORDS

nursing care, electroencephalography, motor imagery, brain-machine interface, brain-
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1 Introduction

The brain-machine interface (BMI) and brain-computer interface (BCI) are general

terms for devices and systems that measure brain activity, analyze, and classify it using

signal processing methods, and control devices according to the classification (Kobayashi

and Nakagawa, 2015; Muller-Putz and Pfurtscheller, 2008; Ishizuka et al., 2020).
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Electroencephalography (EEG) (Tudor et al., 2005), intracranial

electroencephalography (iEEG), and electrocorticography

(ECoG) (Palmini, 2006; Komeiji et al., 2022) are commonly

used to measure brain activity. Functional magnetic resonance

imaging (fMRI) (Kamitani and Tong, 2005; Lauterbur, 1973),

magnetoencephalography (MEG) (Hämäläinen et al., 1993), near

infrared spectroscopy (NIRS) (Tsubone et al., 2007), positron

emission tomography (PET) (van Elmpt et al., 2012), and

computed tomography (CT) (Masuda et al., 2009), which use

radioisotopes are also used. In this study, we focused on electrical

measurements that have superior spatial and temporal resolutions.

Electrical measurements of brain activity have been developed

in two major ways: invasive and minimally invasive methods

(Zippi et al., 2023), in which electrodes are implanted directly into

brain neurons via craniotomy (ECoG or iEEG), and non-invasive

methods (EEG), in which electrodes are placed on the scalp. In this

study, we focused on the simple measurement of EEG, considering

its ease of use in society, with the construction of a support system

for nursing care. Although EEG is convenient and does not require

surgery, it is susceptible to noise and has a lower signal-to-noise

ratio (SN) than invasive methods because the electrodes are placed

on the scalp. The SN is lower than that of invasive methods because

it measures the attenuated electrical signals on the scalp after they

pass through spinal fluid, meninges, and skull from the surface

layer of the cerebral cortex. Therefore, the SN ratio is low, and

the analysis of brain activity is much more difficult than with

invasive methods. Therefore, non-invasive EEG contains various

noises, and it is common to improve the SN by attenuating the

noise using preprocessing, such as frequency filters. However,

endogenous noise such as electrooculography (EOG) (Sugie and

Jones, 1971) from eye movements and electromyography (EMG)

(Fink and Scheiner, 1959) from body movements (these have larger

amplitudes than EEG) and exogenous environmental noise such

as commercial power supply and electromagnetic waves (these

signals also have larger amplitudes than EEG) make it difficult to

analyze the EEG. If the signal frequency, such as that of commercial

power or electromagnetic waves, is known in advance, the SN can

be improved by attenuating the components using a frequency

filter (Meisler et al., 2019; Engin et al., 2007), as described above.

Signal processing methods such as principal component analysis

(PCA) (Xie and Krishnan, 2019), independent component analysis

(ICA) (Katsumata et al., 2019), and empirical mode decomposition

(EMD) (Samal and Hashmi, 2023) have been proposed to separate

noise and EEG signals. Although these methods are effective

in removing noise components to some extent, they are yet to

completely identify and extract EEG components in advance.

Therefore, as a countermeasure against noise, machine learning

techniques have been used for EEG classification to map EEG

signals onto the feature space and classify them to reduce the

influence of noise and improve the accuracy.

Various types of EEG have been proposed for BMI, which can

be classified into three main categories from the user’s perspective:

active, reactive, and passive. Active BMI is a type of EEG in which

the user intentionally controls brain activity to operate a device,

and is typically used when recalling a specific task. For example,

motor imagery (MI) (Schloegl et al., 1997) is used to recall body

movements and speech imagery is used to recall sound utterances.

Reactive BMI is a method of presenting external stimuli such as

visual stimuli to a user and extracting EEG features based on the

user’s responses. Typical examples of visual stimuli include the VEP

system [CVEP (Riechmann et al., 2016) and SSVEP (Qin and Mei,

2018)] and event-related potentials (P300) (Chaurasiya et al., 2015)

using an oddball task. The BCI speller uses this feature. Passive BMI

reads the natural activity of the brain and aims to decode the user’s

intention, even if the user does not intend to. It would be ideal if this

could be realized; however, at present, the information processing

mechanism of the brain is not yet clear.

In this study, with the development of a BMI system for

use in nursing care, we targeted active BMI, which is a simple

measurement that can be used for a long time, to minimize the

burden on the user and exclude stimulators from the system.

Among active BMIs, we focused on MI, which has been gaining

popularity in recent years because of its relatively easy recall

and high classification accuracy. However, compared with reactive

BMIs, active BMIs vary more than reactive BMIs in terms of

recall and EEG features because the recall content and EEG

features that emerge vary from person to person. Therefore,

many attempts have been made to improve the accuracy of

classification by training the recall in advance to reveal individual

characteristics and by preparing materials (e.g., still or moving

images) in advance to guide the user’s recall, thereby making

the EEG more versatile. Many attempts have been made to

improve the classification accuracy by making EEG appear more

versatile. In addition, MI has been attracting attention as a method

of neurorehabilitation that improves the motor skills of stroke

victims, and has a high affinity for this study as a BMI for use

in nursing care. As mentioned above, machine learning is an

essential technique for improving classification accuracy in noisy

EEG measurements. Although various types of features such as

event-related desynchronization and synchronization (ERD/ERS)

(Rimbert et al., 2023) and common spatial pattern (CSP) (Belhadj

et al., 2015) have been proposed for MI classification using

conventional machine learning, it is difficult to select the features

according to the task at hand. In recent years, deep-learning

technology, which has made remarkable progress in image and

natural language processing, has attracted attention, and its

effectiveness has been demonstrated in many EEG classifications.

Recurrent neural networks, such as long short-term memory

(LSTM) (Hochreiter and Schmidhuber, 1997) and various MLP-

type neural networks, such as EEGNet (Lawhern et al., 2018),

TSFCNet (Zhi et al., 2023), MTFB-CNN (Li et al., 2023), MSHCNN

(Tang et al., 2023), CMO-CNN (Liu K. et al., 2023), Incep-EEGNet

(Riyad et al., 2020), EEGSym (Pérez-Velasco et al., 2022), EEG-

TCNet (Ingolfsson et al., 2020), ETCNet (Qin et al., 2024), EEG-

ITNet (Salami et al., 2022), TCNet-Fusion (Musallam et al., 2021),

FB-Sinc-CSANet (Chen et al., 2023), SACNN-TFCSP (Zhang et al.,

2023), and EISATC-Fusion (Liang et al., 2024), have enhanced

motor MI classification accuracy through various strategies. These

strategies include temporal convolution (Bai et al., 2018), fusion

layers, residual blocks (He et al., 2016), and attention mechanisms,

such as self-attention (Vaswani et al., 2017), etc.

To construct a BMI that can be easily used by people requiring

care in a residential environment, it is necessary to satisfy the

following three requirements: (1) wearability, (2) ultralow latency

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2025.1469244
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kobayashi and Ino 10.3389/fnins.2025.1469244

response, and (3) low power consumption. (1) is to have a small

number of electrodes, minimize contact with the scalp, and ease

the burden on the user owing to the prolonged use of dry

electrodes that do not use materials such as conductive gels or

pastes to keep contact impedance with the skin low. In addition,

reducing the number of channels (#CHs) also means that the

sensor mechanism of the system can be reduced, which reduces

the number of dimensions of the required deep-learning model.

Therefore, (3) is satisfied simultaneously. (2) can be solved using

technology that provides processing power to the edge. (3) is

related to (2). Although the cloud computing method consumes

most of the power for data transfer (using the cloud, as well as

other devices around us, requires the use of data centers with

high power consumption and may cause network traffic if the

number of devices increases, the edge can use EEG, which has the

advantage of placing the sensor mechanism (analog front-end +

A/D converter) and the processing mechanism (logic circuits) on

the same device to provide high efficiency, comfort for the user,

and confidentiality and privacy of data by completing the process

on the local system. The advantages are that it is comfortable

for the user and ensures data confidentiality and privacy by

completing the process on the local system. However, the deep-

learning model used to improve the identification accuracy of EEG

requires a large amount of processing compared with conventional

machine learning techniques and a large amount of memory

because of the size of the network, making it difficult to achieve

both (2) and (3). Considering the above, this paper makes the

following contributions.

• Optimization of MI measurement conditions and deep-

learning model parameters to reduce user burden and

optimize hardware requirements (assuming that classification

accuracy is maintained).

• Optimize the number of channels (#CHs) and electrode

locations using the standard benchmark datasets: BCI

Competition IV-2a (Tangermann et al., 2012) for 4-Class MI,

and BCI Competition IV-2b (Tangermann et al., 2012) for

2-Class MI as the baseline.

• Optimize the number of input samples (sample windows) for

MI to reduce the response latency of the system.

• Optimize the MI sampling frequency to reduce the power

consumption of the analog-to-digital converter in the EEG

sensor mechanism.

• The classification accuracy was compared between various

deep-learning models and the proposed 3D-CNN (in this

study, with-in subject as the training condition).

1.1 Related work

Both traditional machine learning and deep learning methods

have been employed for EEG-based MI classification. In traditional

machine learning, EEG features are typically extracted and fed into

traditional classifiers, such as support vector machines (SVMs).

Common spatial patterns (CSPs) (Belhadj et al., 2015) and their

variants have also been widely used for feature extraction of MI.

Filterbank CSPs (Ang et al., 2008) further enhance this process by

dividing EEG signals into distinct frequency bands and applying

CSPs to each band.

Most deep-learning approaches utilize raw EEG signals as

input. Several prominent convolutional neural network (CNN)-

basedmethods have demonstrated effectiveness. EEGNet (Lawhern

et al., 2018) is a compact model designed to generalize across

multiple EEG paradigms, while TSFCNet (Zhi et al., 2023) features

a simple structure that minimizes overfitting. MTFB-CNN (Li

et al., 2023) incorporates a multi-scale structure to extract high-

level features across multiple scales, and MSHCNN (Tang et al.,

2023) combines 1D and 2D convolutions for enhanced feature

extraction. CMO-CNN (Liu et al., 2015) uses filters of varying

scales and branch depths to extract diverse, multi-level features,

while Incep-EEGNet (Riyad et al., 2020) employs an Inception

layer with a compact parallel structure to efficiently extract multi-

scale features. EEGSym (Pérez-Velasco et al., 2022) integrates

an Inception module and a residual block, and EEG-TCNet

(Ingolfsson et al., 2020) extracts high-level long-term dependencies

by feeding temporal features generated by EEGNet into a TCN.

ETCNet (Qin et al., 2024) combines efficient channel attention

with TCN, and EEG-ITNet (Salami et al., 2022) incorporates

an Inception layer and TCN for improved temporal modeling.

TCNet-Fusion (Musallam et al., 2021) introduces a fusion layer to

capture complex input data features and enhance the expressive

power of EEG-TCNet. FB-Sinc-CSANet (Chen et al., 2023) employs

channel self-attention to optimize local and global feature selection,

SACNN-TFCSP (Zhang et al., 2023) integrates self-attention

mechanisms, and EISATC-Fusion (Liang et al., 2024) combines

self-attention with temporal depthwise separable convolution and

a fusion layer. Lastly, Filterbank Multi-scale CNN (FBMSNet) (Liu

X. et al., 2023) extends the concept of filterbanks from traditional

machine learning to deep learning, enabling improved multi-scale

feature extraction. Recently developed STMambaNet (Yang and Jia,

2024) captures long-range dependencies across both space and time

while extracting detailed spatiotemporal dynamics of MI through

selective state-space and quadratic self-attention mechanisms. As

mentioned earlier, significant improvements in MI classification

accuracy are often achieved by incorporating features that expand

the feature values to higher dimensions and capture long-

term dependencies. However, this typically requires additional

layers and increases computational demands. Consequently, when

considering deployment on edge devices, the key challenge lies

in designing a hardware-efficient model that balances feature

expansion to higher dimensions with the effective capture of long-

term dependencies. To address this, MI-BMINet (Wang et al.,

2024) has recently been introduced, offering reduced hardware

resource requirements for edge implementation by optimizing

parameters while maintaining high classification accuracy.

This study employs three-dimensional convolutional neural

networks (3D-CNNs) to account for the spatial locality of

EEG electrode mapping while scaling feature values to higher

dimensions. In 2019, Zhao et al. introduced a multi-branch 3D-

CNN (Zhao et al., 2019). A key advantage of 3D-CNNs lies in their

ability to process input data with a three-dimensional structure,

enabling feature extraction while preserving spatial information.

In Zhao et al. (2019), three 3D-CNNs with varying receptive field

sizes were implemented: the small receptive field network (SRF),

medium receptive field network (MRF), and large receptive field
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network (LRF). These networks were arranged in a sequential

chain, with outputs from each receptive field layer summed and

passed to a softmax layer for final classification. Although this

approach achieved exceptionally high classification accuracy, it

involved a significant increase in parameters. Specifically, the 3D-

CNNs improved classification accuracy by 2.20% to 3.71% on

average but required 12.67 k to 326.42 k times more parameters and

2.81 to 67.11 times more #MACCs compared to EEGNet (Lawhern

et al., 2018). Beyond MI, the application of 3D features has also

proven effective in other domains. For example, MetaEmotionNet

(Ning et al., 2024) leverages 3D spatial-spectral information in

a spatial-spectral-temporal-based attention 3D dense layer (3D

attention mechanism) to accurately classify four emotional states—

neutral, fear, sadness, and happiness.

Increasing the number of layers and adding functionalities

to deep neural networks inevitably increase computational

complexity, limiting their applicability on edge devices. This study

explored the use of a 3D-CNN that preserves spatial locality

to enhance classification accuracy. However, the introduction of

3D convolutional layers also expands feature dimensions, leading

to a significant increase in parameters and computational costs.

To address this, the computational burden was minimized by

optimizing various parameters, enabling efficient edge processing

while maintaining high classification accuracy. Section 3 details

a proposed method for mitigating the increase in the number

of parameters (#parameters) and multiply-accumulates (#MACCs)

using the Conv. 3D layer, improving classification accuracy and

optimizing the network structure.

2 Establishment of optimal conditions
for 4-Class and 2-Class motor imagery
measurement to reduce user burden
and minimize hardware requirements

To estimate the minimum system performance requirements

to maintain classification accuracy in a BMI system using 4-

Class and 2-Class motor imagery (MI), this section uses the

BCI Competition IV-2a Dataset (BCI-IV2a) (Tangermann et al.,

2012), BCI Competition IV-2b Dataset (BCI-IV2b), and deep-

learning models, including EEGNet (Lawhern et al., 2018), EEG-

TCNet (Ingolfsson et al., 2020), TCNet-Fusion (Musallam et al.,

2021), and EISATC-Fusion (Liang et al., 2024), to optimize

various parameters for 4-Class and 2-Class MI measurement. The

primary objective of this study is to develop a compact model

with high classification accuracy. Therefore, four models were

selected—those capable of achieving high classification accuracy

with a relatively small number of parameters (#parameters) and

those incorporating schemes to improve classification accuracy.

The impact of parameter changes in MI measurement on

the classification accuracy of each model was then observed.

Specifically, we estimated the optimal values for the channel (CH)

selection, sample window size, and sampling rate. Sections 2.1.1

to 2.1.3 outline the significance and purpose of optimizing each

parameter, and Sections 2.2.1 to 2.2.6 describe the experimental

conditions necessary for each optimization.

2.1 4-Class and 2-Class motor imagery
measurement condition parameter
optimization based on classification
accuracy

2.1.1 Manual channel selection
Reducing the number of channels (#CHs) is effective in

simplifying the BMI system, and reducing the number of electrodes

placed on the scalp when measuring MI can reduce the burden

on the user when wearing the system and the cost of the system.

In a typical EEG-based BMI system (Liu et al., 2015), voltage

signals measured by electrodes on the scalp are amplified by an

amplifier (amp), converted to digital values by an analog-to-digital

converter (A/D converter), and then classified by a processor.

Therefore, reducing the number of electrodes reduces the cost of

the electrodes, amp, and A/D converter circuits, which means that

the size and power consumption of the analog front-end circuit

can be reduced. In addition, the number of input dimensions

in the machine-learning model is reduced, which reduces the

computational cost of the processor so that the power consumption

of the digital processor can be reduced as well. However, the

optimal #CHs and scalp locations for MI classification may differ

from one user to another. Therefore, useful algorithms have been

proposed to select these automatically for each user (Wang et al.,

2024). However, to narrow down the optimal #CHs and electrode

locations for each user, it is necessary to conduct motor imagery

acquisition experiments with a large number of electrodes prepared

in advance, and to determine the optimal #CHs and electrode

locations based on the analysis results of the acquiredMI according

to an algorithm, or so-called calibration. To promote the use of

BMI, it is important to design a user interface that is calibration-

less and less difficult to use. Therefore, we identified the minimum

#CHs and electrode locations that could maintain the average

classification accuracy for all nine subjects using BCI-IV2a and

BCI-IV2b. The BCI-IV2a is the MI of nine subjects obtained with

22 electrode CHs (red circles) installed in the configuration shown

in Figure 1, and BCI-IV2b is the MI of nine subjects obtained with

3 electrode CHs (blue dotted circles), as illustrated in Figure 1.

2.1.2 Sample window size
An electroencephalography (EEG) is a time-series voltage

signal. In MI, the user is asked to recall a target body movement for

a certain period, and the MI during the recall is used to obtain the

features. However, the longer the recall time, the greater the load

on the user; thus, there is a tradeoff between classification accuracy

and user load in terms of recall time. In the case of deep-learning,

as the recall time decreases, the number of MI data samples

decreases, and the number of MI data dimensions input to the

deep-learning model is also reduced, thus reducing the circuit and

computational costs. Therefore, we optimized the sample window

size in the MI time direction. Specifically, we seek a minimum

sample window size that satisfies the requirement of maintaining

high classification accuracy in the recall time per trial of BCI-IV2a

and BCI-IV2b. The recall time required to maintain classification

accuracy (the time required to obtain salient features) is expected
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FIGURE 1

Electrode locations according to the 10–10 international system

(red circles: electrode locations of 22 channels used in the BCI

Competition IV-2a Dataset, red fill: electrode locations of eight

channels used in this study, blue dotted circles: electrode locations

of 3 channels used in the BCI Competition IV-2b Dataset).

to vary widely among individuals; therefore, the objective here is

to estimate the recall time that can maintain high classification

accuracy on average.

2.1.3 Downsampling
Asmentioned previously, the EEG-based BMI systemmeasures

brain activity as analog voltage values in the sensor section (analog

front-end). The measured analog voltage values were converted

to digital values using an A/D converter and processed using

deep-learning to handle discrete values. Lowering the sampling

rate reduces the charge-discharge rate per unit time of MOSFETs

in CMOS circuits and the oscillation frequency of the oscillator

circuit, such as a phase-locked loop (PLL) for sampling, thus

reducing the power consumption of the analog front-end. In

addition, a decrease in the sampling rate reduces the number of

data samples, which, as previously mentioned, reduces the number

of input dimensions for the deep-learning model. Because the

sample frequency of MI in BCI-IV2a and BCI-IV2b was 250Hz,

we downsampled this data by a factor of 1/n (n = 1, 2, 3, 4, 5) (1:n

subsamples) and observed the effect on the accuracy by classifying

the data using the deep-learning model.

2.2 Experiments aimed at optimizing
measurement conditions

2.2.1 Configuration and experimental procedures
Table 1 lists the experimental environments and conditions

used for the optimization of the channel selection, sample window

size, and sampling rate. First, the following procedure was used to

optimize the manual channel selection.

TABLE 1 Experimental environment.

Parameter Value (version, quantity, type,
etc.)

Python 3.8.18

Pytorch 1.13.1

GPU NVIDIA GeForce RTX 3090

CUDA 11.6

DATASET BCI Competition IV-2a Dataset

(Tangermann et al., 2012): (It includes motor

imagery measured by 9 subjects who placed

22 electrodes on the location indicated as red

circles in Figure 1)

BCI Competition IV-2b Dataset

(Tangermann et al., 2012): (It includes motor

imagery measured by 9 subjects who placed 3

electrodes on the location indicated as blue

dotted circles in Figure 1)

Preprocess Bandpass filter: 0.5–60Hz, Notch filter:

48–52 Hz Normalization using

StandardScaler in Scikit-Learn (Removing

mean and scaling to unit-variance per

channel, based on the statistics of the

training set)

Manual channel selection

(Each location is denoted in

Table 4: The basis for selecting

the electrode location is

shown in Section 2.2.3)

(BCI-IV2a) #channels [CH]: 22, 20, 18, 16,

14, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

(BCI-IV2b) #channels [CH]: 3, 2, 1

Sample window size [s] 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5 (0.5 s increments)

Use only one sample window, with the start

of the sample window at t = 2 (BCI-IV2a,

BCI-IV2b) [s] for each trial (when each cue

is indicated).

Sampling rate (ratio of

down-sampling: 250Hz as

reference 1) [Hz]

250 (1/1), 125 (1/2), 62.5 (1/3), 31.25 (1/4),

15.625 (1/5) (number of subsamples n= 1, 2,

3, 4, 5)

Models EEGNet (Lawhern et al., 2018), EEG-TCNet

(Ingolfsson et al., 2020), TCNet-Fusion

(Musallam et al., 2021), and EISATC-Fusion

(Liang et al., 2024)

Model parameter default settings in Lawhern et al. (2018),

Ingolfsson et al. (2020), Musallam et al.

(2021), and Liang et al. (2024)

Epoch (early stop epoch) 3,000 (300)

Batch size 64

Training Method Within-subject (subject-specific)

(BCI-IV2a) 288 trials of first session is used

for training [80% (230 trials) for training,

20% (58 trials) for validation], 288 trials of

second session is used for testing

(BCI-IV2b) 400 trials are used for training

[80% (320 trials) for training, 20% (80 trials)

for validation] and 320 trials are used for

testing. (Both BCI-IV2a and BCI-IV2b) The

number of samples is assumed to be the same

for training, validation, and testing,

depending on the sample window size. The

random seed for shuffling is the same

throughout the training.

Optimizer Adam

Loss function Cross entropy loss

Verification methodology 5-fold cross validation
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• From the n channels (CHs), r (r = n-2) are extracted and 5-

fold cross validation is performed on each channel (e.g., for n

= 22, the number of combinations is 22C21 = 231).

• The 10 combinations with the highest accuracy and the 10

combinations with the lowest accuracy are extracted from each

average classification accuracy.

• The number of times a channel appears in the extracted

combinations is used to identify the CHs with low usefulness.

• If the extracted counts (frequency counts) are equal, the

selection of CHs is expanded to 15.

• If the number of CHs (#CHs) is also equal, we select the CHs

to be deleted by learning CHs with the highest accuracy.

• This is performed for 22 CHs up to 10 CHs.

• The following procedure is used to determine the minimum

#CHs that can be removed while maintaining accuracy.

• After 10 CHs, select one channel at a time.

• Select nine out of 10 CHs and perform 5-fold cross validation

twice (10C9 × 2= 32).

• The combination with high accuracy is identified based on the

above-average classification accuracy.

• Conduct 5-fold cross validation 10 times under the same

conditions using the identified channel combinations.

• Repeat this process to identify the minimum #CHs for which

accuracy can be maintained.

• For BCI-IV2b, as this dataset was obtained using three CHs,

we performed all combinations of two CHs (3C2 = 6) and each

individual CH among the three (3C1 = 3).

The total recall time, including the cues, was 4 seconds (s)

for BCI-IV2a and BCI-IV2b. Therefore, in this experiment, the

maximum sample window size was 4 s, and the sample window size

was decreased in increments of 0.5 s to a minimum of 0.5 s. In all

cases, the starting point was t = 2 s at the beginning of the cue, and

one sample window was used per trial (to standardize the number

of training, validation, and test samples for all training sessions).

Finally, for downsampling, because the sampling rate of MI data

in BCI-IV2a and BCI-IV2b is 250Hz, we used 250Hz as reference

(1) and applied downsampling (1:n subsampling) to 1/n (n = 1,

2, 3, 4, 5) from this point to obtain five different time samples, T.

The classification accuracy for each of the five types was calculated

and the optimal value was obtained. The results of the experiments

are described in the following sections. To maintain the training

data under the same conditions for the 5-fold cross validation, the

random seeds for shuffling were standardized.

2.2.2 Optimization of measurement condition
parameters among deep-learning models

The optimization of measurement condition parameters was

based on the classification accuracy of EEGNet (Lawhern et al.,

2018), EEG-TCNet (Ingolfsson et al., 2020), TCNet-Fusion

(Musallam et al., 2021), and EISATC-Fusion (Liang et al., 2024),

which served as standard benchmarks for MI classification.

The measurement condition parameters, along with the training

parameters (hyperparameters) for each model, were set to the

default values used in the respective references. In this experiment,

we used a within-subject (subject-specific) model, rather than

a cross-subject (subject-independent) or fine-tuned model. The

classification accuracies of these four models with their default

settings, before optimizing the measurement conditions, are shown

in Table 2 (BCI-IV2a) and Table 3 (BCI-IV2b). Table 2 shows that

the mean classification accuracies of the nine subjects in BCI-IV2a

(22 channels, 4 s, subsample n = 1) were highest for EISATC-

Fusion, followed by EEG-TCNet, TCNet-Fusion, and EEGNet.

The statistical significance is analyzed using the Wilcoxon signed-

rank test between EEGNet and the other models each (p < 0.01).

EISATC-Fusion achieved the best standard deviation (std. dev.)

and kappa score, indicating it is a stable model with low statistical

variability. This suggests that the various schemes incorporated

in EISATC-Fusion, such as Inception, Attention, and Temporal

Convolutional Network (TCN), are effective. In contrast, the

number of parameters (#parameters) is largest for EISATC-Fusion,

followed by TCNet-Fusion, EEG-TCNet, and EEGNet. EISATC-

Fusion has 82.62 times more parameters than EEGNet, the model

with the fewest parameters. The number of multiply-accumulates

(#MACCs) for EISATC-Fusion was 2.494 times larger than that

of EEGNet. EISATC-Fusion’s memory footprint was 4.223 times

larger than EEGNet’s. In contrast, EEG-TCNet’s #MACCs was

about half that of EEGNet, with a slight increase in #parameters

(1.175 times larger than EEGNet). Additionally, memory footprint

of EEG-TCNet remained comparable to that of EEGNet. While

TCNet-Fusion achieved the same classification accuracy as EEG-

TCNet, its #parameters, #MACCs, and memory footprint were

4.743, 1.569, and 2.914 times larger than those of EEGNet,

respectively. Despite having the largest number of parameters,

EISATC-Fusion stands out for its classification accuracy and

stability. In contrast, EEGNet, with the smallest number of

parameters and the third-highest classification accuracy, and EEG-

TCNet, which has the second-highest classification accuracy, the

second-smallest #MACCs, and the smallest memory footprint, offer

high cost-performance, even though their classification accuracies

are lower than that of EISATC-Fusion. In BCI-IV2b (3 CHs, 4 s,

subsample n = 1), shown in Table 3, the number of channels and

classes is smaller than in BCI-IV2a, and there is marginal difference

in classification accuracy between the models (EISATC-Fusion is

up to 1.92% higher than EEGNet). However, in terms of model

size (#parameters, #MACCs, and memory footprint), the trend is

similar to that of BCI-IV2a, though the scales differ. Using these

values as benchmarks, we confirm the effects of optimizing the

measurement and model parameters in the following sections.

2.2.3 Experimental results on manual channel
selection

Table 4 lists the optimal electrode locations corresponding

to the #CHs selected based on the experimental conditions

and procedures described in Section 2.2.1. Figure 2A shows the

relationship between the mean classification accuracy and CHs for

the four deep-learning models trained using the MI of the CHs

listed in this table, and (Figure 2B) four subjects (Sub1 to Sub4) and

(Figure 2C) five subjects (Sub5 to Sub9) show the results for each

subject on EEGNet (the result of EEGNet is only shown to improve

visibility). The graphs show the minimum value (lower limit of

the error bar), maximum value (upper limit of the error bar), and
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TABLE 2 Baseline comparison among four models for the 4-Class BCI-IV2a.

Model EEGNet
(Lawhern et al.,

2018)

EEG-TCNet
(Ingolfsson et al.,

2020)

TCNet-Fusion
(Musallam et al.,

2021)

EISATC-Fusion
(Liang et al., 2024)

#channels [CH] 22 22 22 22

Sample window size [s] 4.0 4.0 4.0 4.0

Subsample, n 1 1 1 1

Accuracy Sub1 0.8556 0.8493 0.8611 0.8951

Sub2 0.6500 0.6645 0.6708 0.7188

Sub3 0.9083 0.9236 0.9271 0.9597

Sub4 0.6069 0.7389 0.6854 0.8020

Sub5 0.7347 0.7903 0.7694 0.7896

Sub6 0.5979 0.6611 0.6611 0.6389

Sub7 0.8938 0.9194 0.9181 0.9306

Sub8 0.8236 0.8361 0.8611 0.8493

Sub9 0.7903 0.8583 0.8229 0.9063

Mean 0.7623 0.8046 0.7975 0.8322

(Difference: EEGNet= 0) (0.000) (+0.0423) (+0.0352) (+0.0699)

Std. dev. 0.02568 0.01790 0.02089 0.01499

p-value - 1.81e–05 1.17e–04 5.01e–08

Kappa score 0.6878 0.7450 0.7222 0.7680

#parameters [k] 3.444 4.048 16.336 284.553

(Ratio: EEGNet= 1) (1.000) (1.175) (4.743) (82.62)

#MACCs [M] 11.75 6.10 18.43 29.30

(Ratio: EEGNet= 1) (1.000) (0.519) (1.569) (2.494)

Memory footprint [MB] 3.27 3.24 9.53 13.81

(Ratio: EEGNet= 1) (1.000) (0.991) (2.914) (4.223)

The best values are highlighted in bold.

mean value (filled circle) of the values obtained in the 5-fold cross

validation. The minimum classification accuracy obtained for a

sample window size of 22 CHs and 4.0 s is indicated by the solid

line. The minimum classification accuracy of the nine subjects for

EEGNet is 0.7299, whereas the accuracies of each subject are 0.8507

(Sub1), 0.5764 (Sub2), 0.8438 (Sub3), 0.5729 (Sub4), 0.7257 (Sub5),

0.5764 (Sub6), 0.8715 (Sub7), 0.7882 (Sub8), and 0.7639 (Sub9).

Additionally, the minimum classification accuracies of the other

models were 0.8002 (EISATC-Fusion), 0.7762 (EEG-TCNet), and

0.7620 (TCNet-Fusion), respectively.

As mentioned above, the objective of this experiment was to

determine the minimum #CHs that could maintain classification

accuracy for all nine subjects. The required #CHs varied depending

on how “maintaining classification accuracy” is defined. Here it

is defined as the maximum classification accuracy obtained by 5-

fold cross validation which exceeds the minimum classification

accuracy obtained by 5-fold cross validation using the largest 22

CHs. On EEGnet, the minimum #CHs for each subject were seven

CHs (Sub1), three CHs (Sub2), three CHs (Sub3), and three CHs

(Sub4) from Figure 2B, six CHs (Sub5), three CHs (Sub6), six

CHs (Sub7), five CHs (Sub8), and five CHs (Sub9), as shown in

Figure 2C. (All values are indicated by colored in the graph). In

other words, the CHs required to maintain classification accuracy

varied from subject to subject, with a median of five and a

mean of approximately 5.667 for all nine subjects on EEGNet.

From the above, we set the minimum CHs required to maintain

classification accuracy at five (only Sub7 deviated significantly from

the median and mean; therefore, it is treated as an outlier here) on

EEGNet. Furthermore, as illustrated in Figure 2A, the #CHs that

could maintain the classification accuracy for all nine subjects was

above five (EEGNet), eight (EISATC-Fusion), seven (EEG-TCNet),

and six (TCNet-Fusion) CHs, respectively. In this study, we used

eight CHs as the optimal values in the demonstration experiments

from Section 4 onward. The optimal electrode locations in this

experiment were C5, C3, CZ, C4, CP1, CP2, CP4, and POZ

(corresponding to the red-filled locations in Figure 1), as shown in

Figure 2 in bold.

2.2.4 Experimental results on sample window size
As mentioned earlier, the objectives of this experiment were

to minimize the recall time and reduce the number of input

dimensions for the deep-learning model. Here, we determined the

minimum recall time that can maintain the classification accuracy
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TABLE 3 Baseline comparison among four models for the 2-Class BCI-IV2b.

Model EEGNet
(Lawhern et al.,

2018)

EEG-TCNet
(Ingolfsson et al.,

2020)

TCNet-Fusion
(Musallam et al.,

2021)

EISATC-Fusion
(Liang et al., 2024)

#channels [CH] 3 3 3 3

Sample window size [s] 4.0 4.0 4.0 4.0

Subsample, n 1 1 1 1

Accuracy Sub1 0.7713 0.7556 0.7656 0.7856

Sub2 0.7250 0.7386 0.7300 0.7436

Sub3 0.8906 0.8806 0.8825 0.8694

Sub4 0.9813 0.9813 0.9769 0.9788

Sub5 0.9544 0.9625 0.9706 0.9769

Sub6 0.8563 0.8413 0.8888 0.8956

Sub7 0.9231 0.9200 0.9206 0.9268

Sub8 0.9544 0.9350 0.9393 0.9462

Sub9 0.7763 0.8600 0.8719 0.8831

Mean 0.8703 0.8750 0.8829 0.8895

(Difference: EEGNet= 0) (0.000) (+0.0047) (+0.0126) (+0.0192)

Std. dev. 0.02561 0.01123 0.00853 0.00841

p-value - 4.35e–02 7.07e–02 2.93e–02

Kappa score 0.7389 0.7516 0.7658 0.7695

#parameters [k] 2.146 3.718 12.182 281.517

(Ratio: EEGNet= 1) (1.000) (1.733) (5.677) (131.2)

#MACCs [M] 1.71 0.93 2.92 8.62

(Ratio: EEGNet= 1) (1.000) (0.544) (1.708) (5.041)

Memory footprint [MB] 0.76 0.73 2.14 4.00

(Ratio: EEGNet= 1) (1.000) (0.961) (2.816) (5.263)

The best values are highlighted in bold.

for all nine subjects. The definition of “maintaining classification

accuracy” is the same as in the previous section. The #CHs

used in the analysis is the eight CHs as in the previous section.

Figure 3A shows the relationship between the mean classification

accuracy and sample window size for the four deep-learning

models, (Figure 3B) four subjects (Sub1 to Sub4), and (Figure 3C)

five subjects (Sub5 to Sub9) show the results for each subject (the

result of EEGNet is only shown to improve visibility). The contents

of these graphs are identical to those described in the previous

section. The comparison targets are the minimum classification

accuracy (solid line) obtained by 5-fold cross validation with the

maximum #CHs (22) at the maximum sample window size (4.0 s).

Figure 3A shows that the sample window size that canmaintain

the classification accuracy is between 2.0 s and 1.5 s among the four

deep-learning models. By subject, Figure 3B shows 2.5 s (Sub1),

1.0 s (Sub2), 1.5 s (Sub3), 0.5 s (Sub4), Figure 4C shows 2.0 s (Sub5),

1.0 s (Sub6), 2.0 s (Sub6), 2.0 s (Sub8), 2.0 s (Sub9) are theminimum

values required tomaintain the classification accuracy (all indicated

by colored circles in the graph). In other words, the sample

window size required to maintain classification accuracy varied

from subject to subject, and the median and mean values for

all eight subjects (excluding Sub7, which is an outlier) were 1.75

and 1.563, respectively. EEGNet, EISATC-Fusion, EEG-TCNet, and

TCNet-Fusion are illustrated in Figure 3A. The sample window size

required to maintain classification accuracy for all nine subjects

was above 1.5 s for EEGNet, and above 2.0 s for EISATC-Fusion,

EEG-TCNet, and TCNet-Fusion. Based on the above, theminimum

sample window size required to maintain classification accuracy

was set to 2.0 s.

2.2.5 Experimental results on downsampling
Finally, the optimal value of the sampling frequency is obtained

by downsampling. As mentioned earlier, the purpose of this

experiment was to reduce the sampling frequency to increase the

power efficiency of the EEG sensor (analog front-end) and reduce

the number of input dimensions for deep-learning models. As

in the previous section, we determined the minimum sampling

frequency that could maintain the classification accuracy for all

nine subjects. Two hundred and fifty Hz is base 1, as BCI-IV2a

is an MI acquired with a sampling frequency of 250Hz (sps) and

n times the sampling interval (one point per n data points, as
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TABLE 4 Electrode locations selected by manual channel selection.

#channels [CH] Optimal electrode location for each
number of channels

22 FZ, FC3, FC1, FCZ, FC2, FC4, C5, C3, C1, CZ, C2, C4,

C6, CP3, CP1, CPZ, CP2, CP4, P1, PZ, P2, POZ

20 FZ, FC3, FC1, FCZ, FC2, FC4, C5, C3, CZ, C2, C4, CP3,

CP1, CPZ, CP2, CP4, P1, PZ, P2, POZ (remove C1, C6

from 22 CHs)

18 FZ, FC3, FC1, FCZ, FC2, C5, C3, CZ, C2, C4, CP3, CP1,

CPZ, CP2, CP4, P1, P2, POZ (remove FC4 and PZ from

20 CHs)

16 FZ, FC3, FC1, FCZ, C5, C3, CZ, C2, C4, CP3, CP1,

CPZ, CP2, CP4, P2, POZ (remove FC2, P1 from 18

CHs)

14 FZ, FC1, FCZ, C5, C3, CZ, C4, CP3, CP1, CPZ, CP2,

CP4, P2, POZ (remove FC3, C2 from 16 CHs)

12 FC1, C5, C3, CZ, C4, CP3, CP1, CPZ, CP2, CP4, P2,

POZ (Remove FZ, FCZ from 14 CHs)

10 FC1, C5, C3, CZ, C4, CP1, CPZ, CP2, CP4, POZ

(Remove CP3 and P2 from 12 CHs)

9 C5, C3, CZ, C4, CP1, CPZ, CP2, CP4, POZ (remove

FC1 from 10 CHs)

8 C5, C3, CZ, C4, CP1, CP2, CP4, POZ (corresponds to

red-filled locations in Figure 1) (remove CPZ from 9

CHs)

7 C5, C3, CZ, C4, CP1, CP2, POZ (Delete CP4 from 8

CHs)

6 C3, CZ, C4, CP1, CP2, POZ (remove C5 from 7 CHs)

5 C3, CZ, C4, CP1, POZ (remove CP2 from 6 CHs)

4 C3, CZ, C4, POZ (remove CP1 from 5 CHs)

3 C3, CZ, C4 (remove POZ from 4 CHs)

2 C3, C4 (CZ removed from 3 CHs)

1 C4 (C3 removed from 2 CHs)

The selected eight channels in this study are highlighted in bold.

we refer to n as the number of sub-samplings). The definition of

“maintenance of classification accuracy” is the same as previous

sections. The CHs and sample window size were eight CHs and

2.0 s, respectively, as described in the previous section. Figure 4A

shows the relationship between the mean classification accuracy

and sample window size for the four deep-learning models,

(Figure 4B) 4 subjects (Sub1 to Sub4), and (Figure 4C) five subjects

(Sub5 to Sub9) show the results for each subject. The contents

of these graphs are identical to those described in the previous

sections. The comparison targets are the minimum classification

accuracy (solid line) obtained by 5-fold cross validation with

the maximum #CHs (22) and maximum sample window size

(4.0 s).

Figure 4A shows that the mean number of subsamples

(#subsamples) that can maintain the classification accuracy is 1

and 2 for the four deep-learning models, and we conclude that

2 is the maximum number (indicated by the colored circles in

the graph). By subject, Figure 4B shows that Sub1 (outlier as

shown in the previous section), 2 (Sub2), 5 (Sub3), and 5 (Sub4),

and Figure 4C shows that 2 (Sub5), 5 (Sub6), Sub7 (outlier as

shown in the previous section), 2 (Sub8), and 1 (Sub9) are the

maximum number (all indicated by the colored circles in the

graph). In other words, the #subsamples required to maintain the

classification accuracy varied from subject to subject; the median

value for all seven subjects (excluding Sub1 and Sub7, which were

outliers) was 2.00, and the mean value was approximately 3.14.

From the above, we set the maximum #subsamples necessary

to maintain classification accuracy to 2. It should be noted

that although a certain degree of degradation of classification

accuracy is unavoidable, if this is tolerated, the sampling frequency

can be reduced in proportion to the number of subsamples,

which is expected to be highly effective from the standpoint

of the circuit, particularly in terms of analog front-end circuit

power efficiency.

2.2.6 2-Class and 3-CHs BCI-IV2b
In the previous sections, we discussed the optimization

of the measurement condition parameters for BCI-IV2a.

However, we also examined the trend for BCI-IV2b, which has

fewer classes and #CHs. Figure 5 illustrates the relationship

between (Figure 5A) #CHs, (Figure 5B) sample window size,

and (Figure 5C) subsample n, each obtained by training

BCI-IV2b with the four deep-learning models, and the

mean classification accuracy for nine subjects. The optimal

condition parameters for #CHs, sample window size, and

subsample n were 2 CHs, 3.0 s, and 1, respectively, when the

same method used for BCI-IV2a was applied to obtain the

optimal parameters.

3 Utilization of 3D convolutional
neural network

3.1 Proposed 3D-CNN model

The purpose of the proposed 3D-CNN is to improve

classification accuracy by including spatial information in the

input data and simultaneously reducing the model size. The

structure of the proposed model is presented in Table 5. The

model structure was inspired by EEGNet by combining the Conv.

2D and Depthwise Conv. 2D, which extracts the first frequency

and channel components of the EEGNet into a single layer of

Conv. 3D to reduce the model size, computational complexity,

and memory 3D into a single layer, thus reducing the size of

the model, amount of computation, and memory footprint. To

reduce the increase in the number of parameters (#parameters),

the proposed model simultaneously incorporates frequency and

location information in the first Conv. 3D layer, and estimates

additional features from this information in the next Separable

Conv. 3D layer. Finally, the features converged in the dense layer

and were classified using a softmax function. The meaning of each

model parameter is listed in Table 5. T is the time sample {sample

window size [s] × 250 [Hz] (sampling frequency of the acquired

MI) × (1/number of subsamples, n)}. In addition, a coefficient Ks

is provided to extend the number of dimensions of the kernel in

Separable Conv3D so that more detailed features can be output by

increasing this value.
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FIGURE 2

The classification accuracy vs. the number of channels (A) 5 deep-learning models, (B) per subject: Sub1–Sub4 for EEGNet, (C) per subject:

Sub5–Sub9 for EEGNet.

3.2 E�ect of input data shape on
classification accuracy of proposed
3D-CNN

As mentioned in Section 3.1, the proposed 3D-CNN provides

the location information of the EEG channels in the input form

to preserve spatial features. The #CHs required to maintain this

classification accuracy was eight (shown in red in Figure 1), as

described in Section 2.2.3. The electrode locations of the eight CHs

(C5, C3, CZ, C2, CP1, CP2, CP4, and POZ) were not necessarily

adjacent to each other vertically, horizontally, and laterally, and

the #CHs required in the line direction from the NASION side in

Figure 1, the first four rows (C5, C3, CZ, C2), the second three

rows (CP1, CP2, CP4), and one row in the third row (POZ) were

counted. The channel arrangement that can cover these elements is

expressed as an array, for example, three rows and four columns

would have 12 elements, resulting in four unnecessary elements

of the required eight elements (eight CHs). To maintain as much

spatial information as possible and improve classification accuracy,

the existence of unnecessary elements must be tolerated; however,

from a computing perspective, unnecessary calculations should

be avoided as much as possible. Therefore, we used the five 3-

dimension input shapes shown in Figures 6A–D and compared

the classification accuracy and #parameters when each shape was

used as input. For comparison, the classification accuracy was also

obtained for the case in which all 22 CHs of data were used with

the channel configuration shown in Figure 6E. Note that zero was

entered as the data point for the elements in the blank columns in

Figure 6.

The classification accuracies were obtained under the same

conditions and training environment as those in Table 1. The

sample window size was set to 2.0 s, the #CHs was eight (22 was also

included for comparison), and n= 2 for the subsample. The model

parameters of the proposed 3D-CNNwere set toKs = 2,K l = 16, F1
= 16,D= 2 (F2 = F1

∗ D= 32), Dropout was 0.5 for nine subjects,

respectively. The same items of EEGNet were listed under these

conditions. The classification accuracy of the proposed 3D-CNN

with eight CHs was 0.7304–0.7360, which is 2.1%−2.7% better

than that of EEGNet (0.7093), based on all eight CHs of EEGNet.

However, because the classification accuracy varies depending on

the combination of the model parameters, we provide details of

the optimization of the model parameters in the next section. It

should be noted that the classification accuracy did not change

significantly with the shape of the input MI in the proposed

3D-CNN. The average classification accuracy was 0.7304 for the

channel configuration (Figure 6A), in which the original electrode

location was preserved as much as possible without removing

unnecessary elements, whereas it was 0.7360, 0.7330, and 0.7321,

for Figures 6B–D, in which the electrode location was changed

from the actual location to compress the number of dimensions

to avoid unnecessary calculations. The standard deviation was

lowest for the proposed 3D-CNN (22 CHs), but there was no
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FIGURE 3

Classification accuracy vs. sample window size (A) 5 deep-learning models, (B) per subject: Sub1–Sub4 for EEGNet, (C) per subject: Sub5–Sub9 for

EEGNet.

significant difference, ranging from 0.0148–0.0264. Additionally,

the kappa score was nearly the same for all models (approximately

0.6133–0.6372), indicating that the stability of the models is almost

identical. The fact that the classification accuracy can bemaintained

even if the dimensions of the input MI data are compressed

by slightly changing the electrode locations is a great advantage

in terms of reducing the number of parameters (#parameters)

and the number of the multiply-accumulates (#MACCs). The

#parameters of the input shapes in Figures 6B–D are 4.132 k,

3.812 k, and 3.812 k, respectively, which are 2.264–2.454 times

smaller than those of EEGNet (eight CHs). #MACCs, Conv2D,

and Depthwise Conv2D using a temporal filter in the first stage

of EEGNet are integrated into one layer of Conv3D. Figures 6B–

D are 0.63M, 0.56M, and 0.56M, respectively, which are 1.730–

1.946 times smaller than EEGNet (eight CHs). This was 48.6%

lower than that of EEGNet (eight CHs) (1.09M) at minimum.

Similarly, the memory footprint was reduced by up to 63.9%. In

contrast, when all 22 CHs of MI data were used in the proposed

3D-CNN and input into the model while maintaining the actual

electrode locations, the classification accuracy was 0.7792, which

was 4.72% better on average than that of EEGNet using all 22 CHs

(0.7320). This suggests that the proposed 3D-CNN can increase

classification accuracy by using a larger #channels and increasing

the number of spatial features. Comparing Figures 6B–D, four out

of nine subjects recorded the highest classification accuracy (bold

in Table 6); therefore, the channel arrangement in Figure 6B was

considered optimal and was used in subsequent analyses.

3.3 Optimization of models’ parameters for
BCI-IV2a and BCI-IV2b

As mentioned in Section 3.2, in general, the various models’

parameters that determine the size of deep-learning models (e.g.,

K l,K l2, F1, D for determining themodel size in EEGNet) depend on

the classification accuracy, computational complexity, andmemory

footprint. The optimal combination is expected to vary depending

on the task performed. In this section, we seek the optimal values

of the models’ parameter combinations for BCI-IV2a and BCI-

IV2b with a fixed #CHs for eight CHs (BCI-IV2a) and two CHs

(BCI-IV2b), and a sample window size of 2.0 s (BCI-IV2a) and 3.0 s

(BCI-IV2b), respectively. The subsample, n is set to 1 and 2 for both

BCI-IV2a and BCI-IV2b. The combinations of model parameters

for the five models [EEGNet (Lawhern et al., 2018), EEG-TCNet

(Ingolfsson et al., 2020), TCNet-Fusion (Musallam et al., 2021),

EISATC-Fusion (Liang et al., 2024), and the proposed-3D CNN]

are as follows (default settings in bold):

EEGNet {Dropout (p) is fixed at 0.5}

• K l {64, 32, 16, 8, 4, 2, 1}, F1 {8, 4, 2, 1}, F2 (F1
∗
D), D{2}, K l2

{16, 8, 4, 2, 1}

EEG-TCNet {Dropout (pe, pt) is fixed at 0.3}

• F1 {8, 4, 2, 1}, F2 {F1
∗
D}, D {2}, KE{32, 16, 8, 4, 2, 1}, KT{4, 2,

1}, L {2}, FT{12, 4, 2, 1}
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Classification accuracy vs. number of subsamples (A) 5 deep-learning models, (B) per subject: Sub1–Sub4 for EEGNet, (C) per subject: Sub5–Sub9

for EEGNet.

TCNet-Fusion {Dropout (pe, pt) is fixed at 0.3}

• F1 {24, 12, 8, 4, 2, 1}, F2 {F1
∗
D}, D {2}, KE{32, 16, 8, 4, 2, 1},

KT{4, 2, 1}, L {2}, FT{12, 4, 2, 1}

EISATC-Fusion{Dropout (pe, pt) is fixed at 0.3}

• F1 {16, 8, 4, 2, 1}, F2 {F1
∗
D},D {2},KE{32, 16, 8, 4, 2, 1},KT{4,

2, 1}, L {2}, FT {32, 16, 8, 4, 2, 1},

Proposed 3D-CNN {Dropout (p) is fixed at 0.5}

• Ks {3, 2, 1}, K l {16, 12, 8, 4, 2, 1}, F1 {16, 8, 4, 2, 1}, D {2}, F2
{F1

∗
D}

Training was performed on BCI-IV2a under the

aforementioned conditions using the measurement conditions of

8CHs, 2 s, and subsampling n = 1, 2, 3, 4, and 5. Figure 7A shows

the Pareto front (average classification accuracy vs. #parameters).

The Pareto front plots the maximum mean classification accuracy

achieved using the #parameters. The relationship between the

maximum classification accuracy that can be achieved under

the given conditions and the #parameters can be visualized by

sorting the #parameters of the target model in ascending order

and plotting only when the maximum classification accuracy is

updated. Therefore, the higher the curve ascends, the greater the

classification accuracy achieved with fewer parameters. Among

the five models considered, the proposed 3D-CNN, EEGNet,

EEG-TCNet, and TCNet-Fusion were nearly positioned the same,

with EISATC-Fusion slightly farther to the right. Additionally,

when the number of parameters are limited to 1 k or fewer, the

proposed 3D-CNN (light blue) is positioned along the top-left

line, indicating that it achieves the highest classification accuracy

with fewer parameters. The solid red line represents 0.7299, the

“minimum classification accuracy of 5-fold cross-validation using

the largest 22 CHs with a 4.0 s sample window” in EEGNet,

as described in Section 2.2.3. For visualization, the error bar

is shown only for the smallest #parameters where the average

classification accuracy exceeds 0.7299. Table 7 lists the values of

each model parameter, classification accuracies for each subject,

#parameters, #MACCs, and memory footprint at this error bar.

As the classification accuracies in this table are similar, they were

not compared. The standard deviation ranges from 0.0154 to

0.0249, indicating no significant variation between the five models.

The kappa scores are also similar, ranging from 0.6389–0.6416.

In contrast, the proposed 3D-CNN has the lowest #parameters

at 1.524 k, approximately 13% lower than EEGNet. The order

of #parameters is EEGNet (1.748 k), TCNet-Fusion (2.03 k),

EEG-TCNet (2.108 k), and EISATC-Fusion (3.985 k). Additionally,

the proposed 3D-CNN has the lowest #MACCs at 0.17M, about
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FIGURE 5

Optimization of measurement condition parameters with BCI-IV2b for 5 deep-learning models (A) number of channels, (B) sample window size, (C)

subsample n.

56% lower than EEGNet. The other values are in the following

order: EEG-TCNet (0.36M), EEGNet (0.39M), TCNet-Fusion

(0.61M), and EISATC-Fusion (0.61M). As shown in the table, the

proposed 3D-CNN has the smallest memory footprint of 0.14MB,

approximately 80% less than EEGNet. The order of memory

footprints is as follows: EEG-TCNet (0.69MB), TCNet-Fusion

(0.69MB), EISATC-Fusion (0.70MB), and EEGNet (0.71MB). The

lines for the proposed 3D-CNN and EEGNet reverse at around 2 k

#parameters; however, #MACCs (plot size) is larger for EEGNet

than for the proposed 3D-CNN. Therefore, the proposed 3D-CNN

improves average classification accuracy while limiting the increase

in #MACCs.

Training was conducted on BCI-IV2b, similar to BCI-IV2a,

using measurement conditions of 2 CHs, 3 s, and subsampling n

= 1, 2, 3, 4, and 5. Figure 7B shows the Pareto front (average

classification accuracy vs. #parameters). Among the five models,

the proposed 3D-CNN, EEGNet, EEG-TCNet, and TCNet-Fusion

were almost at the same position, with EISATC-Fusion slightly

farther to the right. When #parameters is limited to 0.4 k or less,

EEG-TCNet (blue) appears at the top left, indicating it achieves

the highest classification accuracy with smaller #parameters.

Conversely, when #parameters exceed 0.4 k, the proposed 3D-

CNN (light blue) achieves the highest classification accuracy.

The solid red line represents 0.8363, the “minimum classification

accuracy from 5-fold cross-validation using the largest 3 CHs

with a 4.0 s sample window size” in EEGNet, as described in

Section 2.2.6. For visualization, the error bar is shown only for

the smallest #parameters where the average classification accuracy

exceeds the red target line (0.8363). Table 8 lists the values for

each model parameter, classification accuracy for each subject,

#parameters, #MACCs, and memory footprint at this error bar.

As the classification accuracies in this table are similar, they

were not compared. As observed from the table, the standard

deviation ranges from 0.0108 to 0.0220, indicating no significant

variation between the five models. Additionally, the kappa scores

are similar, ranging from 0.6652–0.6823. In contrast, #parameters

is lowest for EEG-TCNet at 0.164 k, approximately 58% lower than

EEGNet. The order of #parameters is as follows: proposed 3D-CNN

(0.206 k), EEGNet (0.394 k), TCNet-Fusion (0.404 k), and EISATC-

Fusion (0.913 k). Moreover, EEG-TCNet had the lowest #MACCs

at 0.02M, approximately 50% lower than EEGNet. The #MACCs

of the proposed 3D-CNN (0.03M) and TCNet-Fusion (0.03M) are

similar to EEG-TCNet.

The order for the other values was EEGNet (0.04M) and

EISATC-Fusion (0.05M). The proposed 3D-CNN had the smallest

memory footprint of 0.02MB, approximately 66% less than that of

EEGNet. The order of memory footprints was EEGNet (0.06MB),

EEG-TCNet (0.06MB), TCNet-Fusion (0.11MB), and EISATC-

Fusion (0.22MB). This aligns with the case of BCI-IV2a, where the

proposed 3D-CNN improved mean classification accuracy while

suppressing increases in #MACCs and memory footprint in the

lower-class dataset (BCI-IV2b).

4 Motor imagery measurement
demonstration

In the previous section, we used the BCI Competition

IV-2a Dataset (BCI-IV2a) and the BCI Competition IV-2b
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TABLE 5 Structure of the proposed 3D-CNN.

Block Layer #Filters Size Output Options

1 Input (C1 , C2 , T) T: Number of time samples

C1 : row direction

C2 : column direction

Reshape (1, C1 , C2 , T)

Conv3D F1 (C1 , C2 , K l) (D ∗ F1 , 1, 1, T) K l : Kernel length

F1 : Number of temporal filters

D: Depth

BatchNorm (D ∗ F1 , 1, 1, T)

Activation (D ∗ F1 , 1, 1, T) ELU

MaxPool3D (1, 1, 4) (D ∗ F1 , 1, 1, T//8)

Dropout (D ∗ F1 , 1, 1, T//8) Dropout rate= 0.5

2 Separable Conv3D F2 (Ks , Ks , C1
∗ C2

∗ Ks) (F2 , 1, 1, T//8) F2 : Number of spatial filters

Ks : Kernel extension coefficients

BatchNorm (F2 , 1, 1, T//8)

Activation (F2 , 1, 1, T//8) ELU

MaxPool3D (1, 1, 8) (F2 , 1, 1, T//64)

Dropout (F2 , 1, 1, T//64) Dropout rate= 0.5

3 Flatten (F2
∗ T//64)

Classifier Dense N Softmax, N (Number of Classes)= 4

T

C
1

C
2

(a) (b) (c) (d) (e)
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POZ
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FIGURE 6

Shapes of input motor imagery data to the proposed 3D-CNN (A) 8 CHs, C1 = 6, C2 = 7, (B) 8 CHs, C1 = 3, C2 = 3, (C) 8 CHs, C1 = 2, C2 = 4, (D) 8

CHs, C1 = 1, C2 = 8, (E) 22 CHs, C1 = 6, C2 = 7.

Dataset (BCI-IV2b), international benchmarks for MI using

EEG measurements, to estimate the optimal values for the

electrode channels (CHs), sample window size, and number

of subsamples (n) based on the classification accuracy in MI

measurements. In this section, in order to demonstrate the

effectiveness of these methods and reduce the burden on users,

we obtained new data for Dry MI (MI with dry electrodes),

following the method on BCI-IV2a. However, because the contact

impedance between the dry electrode and the scalp is higher

than that of the wet electrode using a conductive gel, the

noise component of MI increases, and it is expected to be

more difficult to reveal the feature components. Therefore,

in this study, in addition to the usual instructions to the

subject using still images, we also used moving images to

reveal a larger number of features and obtained Dry-MI data

for comparison.

4.1 Dry electrode to reduce user load,
acquisition of new motor imagery EEG data
using moving image materials for feature
manifestation

Two subjects (both 22-years old, male), SubA and SubB, newly

acquired MI using a g.Nautilus EEG system manufactured by
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TABLE 6 Comparison of input MI shape, classification accuracy, number of parameters, computational complexity, and memory footprint of proposed

3D-CNN (EEGNet is also included for comparison) for BCI-IV2a.

Model EEGNet Proposed 3D-CNN

#channels [CH] 8 22 8 8 8 8 22

Sample window size [s] 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Subsample, n 2 2 2 2 2 2 2

Input data shape (1, 8, T) (1, 22, T) Figure 6A

(1, 6, 7, T)

Figure 6B

(1, 3, 3, T)

Figure 6C

(1, 2, 4, T)

Figure 6D

(1, 1, 8, T)

Figure 6E

(1, 6, 7, T)

Model parameters K l = 64, F1 = 8, D= 2, F2 = 16,

K l2 = 16, Dropout rate= 0.5

Ks = 2, K l = 16, F1 = 16, D= 2 (F2 = F1
∗ D= 32), Dropout rate= 0.5

Accuracy Sub1 0.7819 0.8049 0.8000 0.8042 0.7944 0.7958 0.8194

Sub2 0.5472 0.5743 0.5382 0.5243 0.4979 0.5083 0.5923

Sub3 0.8653 0.8681 0.8833 0.8792 0.8854 0.8938 0.9083

Sub4 0.6257 0.6139 0.6778 0.6763 0.6826 0.6743 0.7285

Sub5 0.6688 0.7507 0.6861 0.7063 0.6819 0.6986 0.7882

Sub6 0.6125 0.5965 0.6340 0.6604 0.6576 0.6493 0.7034

Sub7 0.7667 0.8694 0.8118 0.8181 0.8146 0.8146 0.8132

Sub8 0.7785 0.7778 0.7757 0.7840 0.7917 0.7785 0.8299

Sub9 0.7368 0.7326 0.7667 0.7715 0.7910 0.7757 0.8291

Mean 0.7093 0.7320 0.7304 0.7360 0.7330 0.7321 0.7793

{Difference: EEGNet (8CHs)= 0} (0.000) (0.023) (0.021) (0.027) (0.024) (0.023) (0.070)

Std. dev. 0.0264 0.0232 0.0171 0.0175 0.0148 0.0156 0.0171

Kappa score 0.6133 0.6384 0.6340 0.6394 0.6374 0.6372 0.6747

#parameters [k] 1.684 1.908 14.692 4.132 3.812 3.812 14.692

{Ratio: EEGNet(8CHs)= 1} (1.000) (1.133) (8.724) (2.454) (2.264) (2.264) (8.724)

#MACCs [M] 1.09 2.94 2.87 0.63 0.56 0.56 2.87

{Ratio: EEGNet(8CHs)= 1} (1.000) (2.697) (2.633) (0.578) (0.514) (1.028) (2.633)

Memory footprint [MB] 0.36 0.82 0.21 0.14 0.13 0.13 0.21

{Ratio: EEGNet(8CHs)= 1} (1.000) (2.278) (0.583) (0.389) (0.361) (0.361) (0.583)

The best values (except for 22 CHs) are highlighted in bold.

g.tec and g.SAHARA dry active electrode system manufactured

by g.tec, which is a dry active electrode. Both subjects acquired

new MI using the g.SAHARA dry active electrode system. None

of the participants had any known neurological disorders or

serious health problems. The electrodes were placed at the

red-filled locations in Figure 1 (C5, C3, CZ, C2, CP1, CP2,

CP4, and POZ). The sampling frequency was 250Hz, which

is the same as that of BCI-IV2a. The timing paradigm was

slightly different from that of BCI-IV2a (Figure 2): Fixation

Cross (2 s), Cue (1.25 s), Motor Imagery (4 s), and Break (2 s);

however, the flow was generally the same. During the Cue

segment, the participants were presented with a still image

(Figure 8I) and a moving image (Figure 8II). To ensure that all

experimental conditions were the same, all BCI-IV2a acquisition

conditions (number of sessions, runs, and trials) were the

same, and each session was conducted on a different day.

In two sessions, a still image was presented as a cue. In

the other two sessions, a moving image was presented as

a cue.

4.2 Sample window size dependency

The sample window size dependence of the newly acquired

Dry-MI was confirmed. The results are shown in Figure 9. The

number of channels (#CHs) was 8 CHs and the default model

parameters of EEGNet were used. First, when the cue was a

still image, the classification accuracy was approximately 30% for

both subjects (SubA and SubB) at all sample window sizes, which

is considerably low compared to the chance level of 25% (4-

class). This may be due to the fact that the feature values are

not dependent on the sample window size or subjects, and that

there is no correlation between session 1 (training Dry-MI) and

session 2 (test Dry-MI). On the other hand, when the cue was

changed to a moving picture, the mean classification accuracy was

approximately 60% (sample window size = 4.0 s), although there

was some variation between the two subjects. Compared to the

BCI-IV2a, the Dry-MI showed a larger increase or decrease in

classification accuracy depending on the sample window size. The

maximum sample window size that can maintain the classification
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FIGURE 7

Pareto-front (Classification accuracy vs. #parameters of models) (A) BCI-IV2a (B) BCI-IV2b.

accuracy was determined to be theminimum classification accuracy

of 5-fold cross validation obtained with sample window size= 4.0 s

as in Section 2.2.3 (SubA = 0.5425, SubB = 0. 5277). However, in

Section 2.2.3, the classification accuracy was based on 22 CHs, but

since there is no corresponding data for Dry-MI, 8 CHs is used here.

As a result, the optimal sample window size for the two subjects

was 3.5 s. However, it should be noted that this is the result of two

subjects and not the average of many subjects.

To investigate the difference between wet MI (Wet-MI)

and dry MI (Dry-MI), the event-related desynchronization and

synchronization (ERD/ERS) (Rimbert et al., 2023) topography

for Wet-MI during “left” and “right” recall in Sub9 of BCI-

IV2a is shown as an example in Figure 10A. Desynchronization

occurred around the motor cortex and was stronger on the side

opposite the recall direction. This feature was observed even when

#CHs was reduced from 22 to 8, suggesting it contributed to

the minimal decrease in classification accuracy. Figure 10B shows

the topography for “left” and “right” recall in SubA, representing

Dry-MI. In the case of the Still Image, strong desynchronization

occurred in the same direction for both the “left” and “right”

cases, which is considered a factor in the difficulty of classification

due to the similarity of the features. However, in the case of the

Moving Picture, desynchronization in the opposite direction was

less pronounced than in BCI-IV2a, though a certain difference was

still observed, which is thought to improve classification accuracy.

4.3 Model parameter dependency

In this section, the optimal model parameters for the new Dry-

MI were obtained in the same way as in Section 3.3. Figure 11A

(SubA) and Figure 11B (SubB) shows the Pareto front (average

classification accuracy vs. #parameters). As in Section 4.2, the

minimum number of model parameters (#parameters) that can

maintain the minimum classification accuracy (SubA = 0.5425,

SubB = 0.5277) of the 5-fold cross validation obtained with the

sample window size = 4.0 s is defined as error bar in Figure 11.

Table 9 (SubA) and Table 10 (SubB) show the model conditions in

this experiment.

SubA (Figure 11A) illustrates the same trend observed in

BCI-IV2a (Figure 7A). Among the five models considered, the

proposed 3D-CNN, EEGNet, EEG-TCNet, and TCNet-Fusion
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TABLE 7 Comparison of number of parameters, computational complexity, and memory footprint at the same level of classification accuracy of the five models for BCI-IV2a.

Model EEGNet
(Lawhern et al., 2018)

EEG-TCNet
(Ingolfsson et al., 2020)

TCNet-Fusion
(Musallam et al., 2021)

EISATC-Fusion
(Liang et al., 2024)

Proposed 3D-CNN

#channels [CH] 8 8 8 8 8

Sample window size [s] 2.0 2.0 2.0 2.0 2.0

Subsample, n 1 1 1 1 1

Input data shape (1, 8, T) (1, 8, T) (1, 8, T) (1, 8, T) Figure 6B (1, 3, 3, T)

Model parameters K l = 16, F1 = 8, D= 2, F2 = 16,

K l2 = 8, Dropout rate= 0.5

F1 = 8, D= 2,

FT = 4, F2 = 16,

KE = 8, KT = 4,

Dropout rate

(pe , pt)= 0.3

F1 = 8, D= 2, FT = 16, F2 = 16, KE

= 2, KT = 4, Dropout rate (pe , pt)

= 0.3

F1 = 8, D= 2,

F2 = 16, FT = 16,

KE = 4, KT = 4,

Dropout rate

(pe , pt)= 0.3

Ks = 1, K l = 4, F1 = 8, D= 2, F2
= 16, Dropout rate= 0.5

Accuracy Sub1 0.7785 0.7785 0.7854 0.7979 0.7792

Sub2 0.6188 0.6111 0.5576 0.6028 0.5632

Sub3 0.8944 0.8451 0.8833 0.8819 0.8813

Sub4 0.6694 0.6931 0.6972 0.7035 0.6715

Sub5 0.6972 0.6847 0.7090 0.6757 0.7056

Sub6 0.6451 0.6389 0.6222 0.5674 0.6417

Sub7 0.7924 0.8069 0.8035 0.8076 0.8000

Sub8 0.7951 0.7674 0.8056 0.7674 0.7889

Sub9 0.7389 0.7597 0.7438 0.7951 0.7646

Mean 0.7367 0.7317 0.7342 0.7333 0.7329

(Difference: EEGNet= 0) (0.0000) (−0.0049) (−0.0025) (−0.0034) (−0.0038)

Std. dev. 0.0154 0.0249 0.0196 0.0160 0.0185

Kappa score 0.6416 0.6389 0.6408 0.6401 0.6396

#parameters [k] 1.748 2.108 2.03 3.985 1.524

(Ratio: EEGNet= 1) (1.0000) (1.2059) (1.1613) (2.2797) (0.8719)

#MACCs [M] 0.39 0.36 0.61 0.61 0.17

(Ratio: EEGNet= 1) (1.0000) (0.9231) (1.5641) (1.5641) (0.4359)

Memory footprint [MB] 0.71 0.69 0.69 0.7 0.14

(Ratio: EEGNet= 1) (1.0000) (0.9718) (0.9718) (0.9859) (0.1972)

The best values are highlighted in bold.
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TABLE 8 Comparison of number of parameters, computational complexity, and memory footprint at the same level of classification accuracy of the five models for BCI-IV2b.

Model EEGNet
(Lawhern et al., 2018)

EEG-TCNet
(Ingolfsson et al., 2020)

TCNet-Fusion
(Musallam et al., 2021)

EISATC-Fusion
(Liang et al., 2024)

Proposed 3D-CNN

#channels [CH] 2 2 2 2 2

Sample window size [s] 3.0 3.0 3.0 3.0 3.0

Subsample, n 4 2 1 1 3

Input data shape (1, 2, T) (1, 2, T) (1, 2, T) (1, 2, T) (1, 1, 2, T)

Model parameters K l = 16, F1 = 4, D= 2, F2 = 8, K l2

= 16, Dropout rate= 0.5

F1 = 8, D= 2,

FT = 8, F2 = 16,

KE = 2, KT = 2,

Dropout rate

(pe , pt)= 0.3

F1 = 2, D= 2, FT = 4, F2 = 4, KE =

2, KT = 4, Dropout rate (pe , pt)

= 0.3

F1 = 4, D= 2,

F2 = 8, FT = 4,

KE = 2, KT = 2,

Dropout rate

(pe , pt)= 0.3

Ks = 2, K l = 2, F1 = 16, D= 2, F2
= 32, Dropout rate= 0.5

Accuracy Sub1 0.7050 0.6994 0.7119 0.7044 0.7006

Sub2 0.6671 0.7057 0.7257 0.7193 0.6729

Sub3 0.8744 0.8769 0.8581 0.8819 0.8619

Sub4 0.9613 0.9325 0.9350 0.9431 0.9619

Sub5 0.9494 0.9313 0.9606 0.9581 0.9181

Sub6 0.7400 0.7669 0.7631 0.7756 0.7969

Sub7 0.8919 0.9006 0.9075 0.9188 0.8481

Sub8 0.9481 0.9363 0.9250 0.9250 0.9406

Sub9 0.8163 0.7963 0.7419 0.7688 0.8825

Mean 0.8393 0.8384 0.8365 0.8439 0.8426

(Difference: EEGNet= 0) (0.0000) (-0.0009) (-0.0027) (+0.0046) (+0.0033)

Std. dev. 0.0108 0.0220 0.0195 0.0156 0.0200

Kappa score 0.6813 0.6788 0.6652 0.6823 0.6811

#parameters [k] 0.394 0.164 0.404 0.913 0.206

(Ratio: EEGNet= 1) (1.0000) (0.4162) (1.0254) (2.3173) (0.5228)

#MACCs [M] 0.04 0.02 0.03 0.05 0.03

(Ratio: EEGNet= 1) (1.0000) (0.5000) (0.7500) (1.2500) (0.7500)

Memory footprint [MB] 0.06 0.06 0.11 0.22 0.02

(Ratio: EEGNet= 1) (1.0000) (1.0000) (1.8333) (3.6667) (0.3333)

The best values are highlighted in bold.
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FIGURE 8

Presentation of cue by still image and moving picture [I. still image and II. moving picture (new MI-EEG acquisition) (a) left hand (b) right hand (c)

both legs (d) tongue]. The following is a description of the motion indicated in each video: (a) Left hand: Gripping the ball slowly (b) Right hand: Same

exercise as left hand (c) Legs: Bending and stretching exercises of the knees while sitting on a chair (d) Tongue: Exercise to lick candy.
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FIGURE 9

Classification accuracy vs. sample window size for newly acquired Dry-MI.

were nearly identical, with EISATC-Fusion slightly farther to

the right. For visualization, the error bar is shown only for the

smallest #parameters where the average classification accuracy

exceeds 0.5425. Table 9 shows that while there is no significant

difference in standard deviations and kappa scores among the

models, the proposed 3D-CNN has the smallest model size.

It also achieves the lowest #parameters (approximately 25%

smaller than EEGNet), #MACCs (approximately 83% smaller

than EEGNet), and memory footprint (approximately 87%

smaller than EEGNet). SubB (Table 10) follows a similar trend,

with the proposed 3D-CNN achieving the same classification

accuracy as TCNet-Fusion but with the second smallest

#parameters (0.628k, compared to TCNet-Fusion’s 0.621k).

Its #MACCs (approximately 83% less than EEGNet) and memory

footprint (approximately 78% less than EEGNet) were also

the smallest among the five models. These results suggest that

the proposed 3D-CNN is an effective model for maintaining

MI classification accuracy for both Wet-MI and Dry-MI while

reducing model size.

5 Conclusion

In this study, we focused on motor imagery (MI), which

requires only recall and not a stimulus presentation device, with

the goal of utilizing the BMI in living spaces to address social

challenges in nursing care and aimed to simplify the MI-BMI

system. The MI-BMI system can operate in real-time on a battery-

powered edge device with limited computational resources for

extended periods by reducing the size of the deep-learning model
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FIGURE 10

ERD/ERS topography (A) Sub9, BCI-IV2a (B) SubA, newly acquired Dry-MI.
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Pareto-front (Classification accuracy vs. #parameters of models) (A) SubA (B) SubB.
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TABLE 9 Comparison of number of parameters, computational complexity, and memory footprint at the same level of classification accuracy among 5 deep-learning models for newly measured motor imagery

(SubA).

Model EEGNet
(Lawhern et al., 2018)

EEG-TCNet
(Ingolfsson et al., 2020)

TCNet-Fusion
(Musallam et al., 2021)

EISATC-Fusion
(Liang et al., 2024)

Proposed 3D-CNN

#channels [CH] 8 8 8 8 8

Sample window size [s] 3.5 3.5 3.5 3.5 3.5

Subsample, n 2 1 2 2 2

Input data shape (1, 8, T) (1, 8, T) (1, 8, T) (1, 8, T) Figure 6B (1, 3, 3, T)

Model parameters K l = 32, F1 = 4, D= 2, F2 = 8, K l2

= 4, Dropout rate= 0.5

F1 = 4, D= 2,

FT = 2, F2 = 8,

KE = 4, KT = 4,

Dropout rate

(pe , pt)= 0.3

F1 = 4, D= 2, FT = 8, F2 = 8, KE =

1, KT = 4, Dropout rate (pe , pt)

= 0.3

F1 = 4, D= 2,

F2 = 8, FT = 8,

KE = 4, KT = 2,

Dropout rate

(pe , pt)= 0.3

Ks = 3, K l = 8, F1 = 2, D= 2, F2
= 4, Dropout rate= 0.5

Accuracy SubA 0.5458 0.5431 0.5549 0.5438 0.5493

(Difference: EEGNet= 0) (0.0000) (-0.0028) (+0.0090) (-0.0021) (0.0035)

Std. dev. 0.0606 0.0322 0.0371 0.0286 0.0277

Kappa score 0.4011 0.4003 0.4126 0.4009 0.4063

#parameters [k] 0.748 0.624 0.737 1.649 0.568

(Ratio: EEGNet= 1) (1.0000) (0.8342) (0.9853) (2.2045) (0.7594)

#MACCs [M] 0.49 0.29 0.15 0.16 0.08

(Ratio: EEGNet= 1) (1.0000) (0.5918) (0.3061) (0.3265) (0.1633)

Memory footprint [MB] 0.32 0.62 0.31 0.31 0.04

(Ratio: EEGNet= 1) (1.0000) (1.9375) (0.9688) (0.9688) (0.1250)

The best values are highlighted in bold.
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TABLE 10 Comparison of number of parameters, computational complexity, and memory footprint at the same level of classification accuracy among 5 deep-learning models for newly measured motor imagery

(SubB).

Model EEGNet
(Lawhern et al., 2018)

EEG-TCNet
(Ingolfsson et al., 2020)

TCNet-Fusion
(Musallam et al., 2021)

EISATC-Fusion
(Liang et al., 2024)

Proposed 3D-CNN

#channels [CH] 8 8 8 8 8

Sample window size [s] 3.5 3.5 3.5 3.5 3.5

Subsample, n 2 1 1 2 2

Input data shape (1, 8, T) (1, 8, T) (1, 8, T) (1, 8, T) Figure 6B (1, 3, 3, T)

Model parameters K l = 8, F1 = 4, D= 2, F2 = 8, K l2

= 4, Dropout rate= 0.5

F1 = 8, D= 2,

FT = 8, F2 = 16,

KE = 4, KT = 4,

Dropout rate

(pe , pt)= 0.3

F1 = 2, D= 2, FT = 8, F2 = 4, KE =

1, KT = 4, Dropout rate (pe , pt)

= 0.3

F1 = 4, D= 2,

F2 = 8, FT = 8,

KE = 2, KT = 2,

Dropout rate

(pe , pt)= 0.3

Ks = 1, K l = 4, F1 = 4, D= 2, F2
= 8, Dropout rate= 0.5

Accuracy SubB 0.5285 0.5382 0.5313 0.5326 0.5382

(Difference: EEGNet= 0) (0.0000) (0.0097) (0.0028) (0.0042) (0.0097)

Std. dev. 0.0067 0.0173 0.0182 0.0081 0.0219

Kappa score 0.3713 0.3825 0.3727 0.3795 0.3842

#parameters [k] 0.652 1.072 0.621 1.117 0.628

(Ratio: EEGNet= 1) (1.0000) (1.6442) (0.9525) (1.7132) (0.9632)

#MACCs [M] 0.15 0.21 0.09 0.16 0.04

(Ratio: EEGNet= 1) (1.0000) (1.4000) (0.6000) (1.0667) (0.2667)

Memory footprint [MB] 0.32 1.2 0.32 0.31 0.07

(Ratio: EEGNet= 1) (1.0000) (3.7500) (1.0000) (0.9688) (0.2188)

The best values are highlighted in bold.
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to classify MI, achieving high MI classification accuracy while

minimizing computation and memory usage. By implementing

an edge-based BMI system, privacy is ensured. We optimized

the MI measurement conditions by reducing the number of

channels (#CHs), optimizing channel positions, shortening the

recall time, and lowering the sampling frequency to simplify the

BMI system. Additionally, to maintain classification accuracy, a

3D-CNN was used to minimize the parameter size of the model

by incorporating channel placement information (spatial data) into

the input. We also reduced the burden on the user by using dry

electrodes and compared the effectiveness of the proposed 3D-

CNN with EEGNet, EEG-TCNet, TCNet-Fusion, and EISATC-

Fusion as deep-learning models. We acquired eight-channel dry-

MI data from two subjects. Compared to EEGNet, the proposed

3D-CNN reduces #parameters, #MACCs, and memory footprint

by approximately 75.9%, 16.3%, and 12.5%, respectively, while

maintaining the same level of classification accuracy. However, this

optimization was limited to five deep-learning models and within-

subject MI decoding. In the future, it will be necessary to optimize

other deep-learning models to identify the optimal model for edge

implementation. Additionally, the dry-MI used in this study was

a trial version with only two subjects. A larger number of subjects

is needed, along with optimization of cross-subject MI decoding.

Future research will focus on developing experimental strategies to

obtain clearer MI features when using dry electrodes. This study

lays the foundation for this by demonstrating the use of moving

pictures as a cue in the experiment.

Data availability statement

The datasets presented in this article are not readily available

because the generated datasets are prohibited to share in a publicly

accessible repository yet. Requests to access the datasets should be

directed to Nobuaki Kobayashi, kobayashi.nobuaki@nihon-u.ac.jp.

Ethics statement

The studies involving humans were approved by Ethics

Review Committee on research with human subjects, College

of Industrial Technology, Nihon University. The studies were

conducted in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study. Written informed consent

was obtained from the individual(s) for the publication of any

potentially identifiable images or data included in this article.

Author contributions

NK: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review &

editing. MI: Formal analysis, Funding acquisition, Methodology,

Validation, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Grant from Hagiwara Foundation of Japan

(No. 2023002).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Ang, K. K., Chin, Z. Y., Zhang, H., and Guan, C. (2008). “Filter bank common
spatial pattern (FBCSP) in brain-computer interface,” in 2008 IEEE International Joint
Conference on Neural Networks (IEEE World Congress on Computational Intelligence),
2390–2397. doi: 10.1109/IJCNN.2008.4634130

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. arXiv:1803.01271.

Belhadj, S. A., Benmoussat, N., and Della Krachai, M. (2015). “CSP features
extraction and FLDA classification of EEG-based motor imagery for brain-computer
interaction,” in International Conference on Electrical Engineering (ICEE), 1–6.
doi: 10.1109/INTEE.2015.7416697

Chaurasiya, R. K., Londhe, N. D., and Ghosh, S. (2015). “An efficient P300 speller
system for brain-computer interface,” in International Conference on Signal Processing,
Computing and Control (ISPCC), 57–62. doi: 10.1109/ISPCC.2015.7374998

Chen, J., Wang, D., Yi, W., Xu, M., and Tan, X. (2023). Filter bank sinc-
convolutional network with channel self-attention for high performance motor
imagery decoding. J. Neural Eng. 20:2. doi: 10.1088/1741-2552/acbb2c

Engin, M., Dalbasti, T., Gulduren, M., Davasli, E., and Engin, E. Z. (2007).
APrototype portable system for EEG measurements. Measurement 40, 936–942.
doi: 10.1016/j.measurement.2006.10.018

Fink, B. R., and Scheiner, M. L. (1959). The computation of muscle activity
from the integrated electromyogram. IRE Trans. Med. Electr. 6, 119–120.
doi: 10.1109/IRET-ME.1959.5007936

Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., and Lounasmaa, O.
V. (1993). Magnetoencephalography—theory, instrumentation, and applications to
noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497.
doi: 10.1103/RevModPhys.65.413

Frontiers inNeuroscience 23 frontiersin.org

https://doi.org/10.3389/fnins.2025.1469244
mailto:kobayashi.nobuaki@nihon-u.ac.jp
https://doi.org/10.1109/IJCNN.2008.4634130
https://doi.org/10.1109/INTEE.2015.7416697
https://doi.org/10.1109/ISPCC.2015.7374998
https://doi.org/10.1088/1741-2552/acbb2c
https://doi.org/10.1016/j.measurement.2006.10.018
https://doi.org/10.1109/IRET-ME.1959.5007936
https://doi.org/10.1103/RevModPhys.65.413
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kobayashi and Ino 10.3389/fnins.2025.1469244

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 770–778. doi: 10.1109/CVPR.2016.90

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Ingolfsson, T. M., Hersche, M., Wang, X., Kobayashi, N., Cavigelli, L., Benini, L.,
et al. (2020). “EEG-TCNet: an accurate temporal convolutional network for embedded
motor-imagery brain–machine interfaces,” in 2020 IEEE International Conference on
Systems, Man, Cybernetics (SMC), 2958–2965. doi: 10.1109/SMC42975.2020.9283028

Ishizuka, K., Kobayashi, N., and Saito, K. (2020). High accuracy and short delay
1ch-SSVEP Quadcopter-BMI using deep learning. J. Robot. Mechatron. 32, 738–744.
doi: 10.20965/jrm.2020.p0738

Kamitani, Y., and Tong, F. (2005). Decoding the visual and subjective contents of
the human brain. Nat. Neurosci. 8, 679–685. doi: 10.1038/nn1444

Katsumata, S., Kanemoto, D., and Ohki, M. (2019). “Applying outlier detection
and independent component analysis for compressed sensing EEG measurement
framework,” in 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1–4.
doi: 10.1109/BIOCAS.2019.8919117

Kobayashi, N., and Nakagawa, M. (2015). “BCI-based control of electric
wheelchair,” in IEEE Global Conference on Consumer Electronics (GCCE), 429–430.
doi: 10.1109/GCCE.2015.7398718

Komeiji, S., Shigemi, K., Mitsuhashi, T., Iimura, Y., Suzuki, H., Sugano,
H., et al. (2022). “Transformer-based estimation of spoken sentences using
electrocorticography,” in IEEE International Conference on Acoustics, Speech and Signal
Processing, 22–27. doi: 10.1109/ICASSP43922.2022.9747443

Lauterbur, P. C. (1973). Image formation by induced local interactions: Examples
employing nuclear magnetic resonance. Nature 242, 190–191. doi: 10.1038/242190a0

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., Lance,
B. J., et al. (2018). EEGNet: a compact convolutional neural network for EEG-based
brain–computer interfaces. J. Neural Eng. 15:056013. doi: 10.1088/1741-2552/aace8c

Li, H., Chen, H., Jia, Z., Zhang, R., and Yin, F. (2023). A parallel multi-scale
time-frequency block convolutional neural network based on channel attention
module for motor imagery classification. Biomed. Signal Process. Control 79:104066.
doi: 10.1016/j.bspc.2022.104066

Liang, G., Cao, D., Wang, J., Zhang, Z., and Wu, Y. (2024). EISATC-
fusion: inception self-attention temporal convolutional network fusion for motor
imagery EEG decoding. IEEE Trans. Neural Syst. Rehabilit. Eng. 32, 1535–1545.
doi: 10.1109/TNSRE.2024.3382226

Liu, K., Yang, M., Yu, Z., Wang, G., and Wu, W. (2023). FBMSNet: a filter-bank
multi-scale convolutional neural network for EEG-based motor imagery decoding.
IEEE Trans. Biomed. Eng. 70, 436–445. doi: 10.1109/TBME.2022.3193277

Liu, X., Xiong, S., Wang, X., Liang, T., Wang, H., Liu, X. A., et al.
(2023). A compact multi-branch 1D convolutional neural network for EEG-
based motor imagery classification. Biomed. Signal Process. Control 81:104456.
doi: 10.1016/j.bspc.2022.104456

Liu, X., Zhang, M., Subei, B., Richardson, A. G., Lucas, T. H., Van der Spiegel,
J., et al. (2015). The PennBMBI: design of a general purpose wireless brain-
machine-brain interface system. IEEE Trans. Biomed. Circuits Syst. 9, 248–258.
doi: 10.1109/TBCAS.2015.2392555

Masuda, Y., Kondo, C., Matsuo, Y., Uetani, M., and Kusakabe, K. (2009).
Comparison of imaging protocols for 18F-FDG PET/CT in overweight patients:
optimizing scan duration versus administered dose. J. Nucl. Med. 50, 844–848.
doi: 10.2967/jnumed.108.060590

Meisler, S. L., Ezzyat, Y., and Kahana, M. J. (2019). Does data
cleaning improve brain state classification? J. Neurosci Methods 328:108421.
doi: 10.1016/j.jneumeth.2019.108421

Muller-Putz, G. R., and Pfurtscheller, G. (2008). Control of an electrical
prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55, 361–364.
doi: 10.1109/TBME.2007.897815

Musallam, Y. K., AlFassam, N. I., Muhammad, G., Amin, S. U., Alsulaiman, M.,
Abdul, W., et al. (2021). Electroencephalography-based motor imagery classification
using temporal convolutional network fusion. Biomed. Signal Process. Control
69:102826. doi: 10.1016/j.bspc.2021.102826

Ning, X., Wang, J., Lin, Y., Cai, X., Chen, H., Gou, H., et al. (2024).
MetaEmotionNet: spatial–spectral–temporal-based attention 3-D dense network with
meta-learning for EEG emotion recognition. IEEE Trans. Instrum. Measur. 73, 1–13.
doi: 10.1109/TIM.2023.3338676

Palmini, A. (2006). The concept of the epileptogenic zone: a modern look at
Penfield and Jasper’s views on the role of interictal spikes. Epileptic Disor. 8, S10–S15.
doi: 10.1684/j.1950-6945.2006.tb00205.x

Pérez-Velasco, S., Santamaría-Vázquez, E., Martínez-Cagigal, V., Marcos-Martínez,
D., and Hornero, R. (2022). EEGSym: Overcoming inter-subject variability in motor
imagery based BCIs with deep learning. IEEE Trans. Neural Syst. Rehabil. Eng. 30,
1766–1775. doi: 10.1109/TNSRE.2022.3186442

Qin, N., and Mei, W. (2018). “Wheelchair control method based on
combination of SSVEP and intention,” in 2018 International Symposium on
Computer, Consumer and Control (IS3C), 274–277. doi: 10.1109/IS3C.2018.
00076

Qin, Y., Li, B., Wang, W., Shi, X., Wang, H., Wang, X., et al. (2024).
ETCNet: an EEG-based motor imagery classification model combining efficient
channel attention and temporal convolutional network. Brain Res. 1823:148673.
doi: 10.1016/j.brainres.2023.148673

Riechmann, H., Finke, A., and Ritter, H. (2016). Using a cVEP-based brain-
computer interface to control a virtual agent. IEEE Trans. Neural Syst. Rehab. Eng. 24,
692–699. doi: 10.1109/TNSRE.2015.2490621

Rimbert, S., Trocellier, D., and Lotte, F. (2023). “Impact of the baseline temporal
selection on the ERD/ERS analysis for Motor Imagery-based BCI,” in Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 1–4. doi: 10.1109/EMBC40787.2023.10340748

Riyad, M., Khalil, M., and Adib, A. (2020). “Incep-EEGNet: a convnet for motor
imagery decoding,” in Image and Signal Processing (Cham, Switzerland: Springer),
103–111. doi: 10.1007/978-3-030-51935-3_11

Salami, A., Andreu-Perez, J., and Gillmeister, H. (2022). EEG-ITNet: An explainable
inception temporal convolutional network for motor imagery classification. IEEE
Access 10, 36672–36685. doi: 10.1109/ACCESS.2022.3161489

Samal, P., and Hashmi, M. F. (2023). Ensemble median empirical mode
decomposition for emotion recognition using EEG signal. IEEE Sensors Lett. 7, 1–4.
doi: 10.1109/LSENS.2023.3265682

Schloegl, A., Neuper, C., and Pfurtscheller, G. (1997). “Subject specific EEG patterns
during motor imaginary [sic.: for imaginary read imagery],” in Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, 1530–1532.
doi: 10.1109/IEMBS.1997.757001

Sugie, N., and Jones, G. M. (1971). A model of eye movements
induced by head rotation. IEEE Trans. Syst. Man Cyber. SMC-1, 251–260.
doi: 10.1109/TSMC.1971.4308292

Tang, X., Yang, C., Sun, X., Zou, M., and Wang, H. (2023). Motor imagery EEG
decoding based on multi-scale hybrid networks and feature enhancement. IEEE Trans.
Neural Syst. Rehabil. Eng. 31, 1208–1218. doi: 10.1109/TNSRE.2023.3242280

Tangermann, M., Müller, K. R., Aertsen, A., Birbaumer, N., Braun, C., Brunner,
C., et al. (2012). Review of the BCI competition IV. Front. Neurosci. 6:55.
doi: 10.3389/fnins.2012.00055

Tsubone, T., Tsutsui, K., and Wada, Y. (2007). “Estimation of force motor
command for NIRS-based BMI,” in Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, 4719–4722. doi: 10.1109/IEMBS.2007.435
3393

Tudor, M., Tudor, L., and Tudor, K. I. (2005). Hans Berger (1873-1941)–the history
of electroencephalography. Acta Med. Croatica. 59, 307–313.

van Elmpt, W., Ollers, M., Dingemans, A. M., Lambin, P., and Ruysscher, D., e.
(2012). D. Response assessment using 18F-FDGPET early in the course of radiotherapy
correlates with survival in advanced-stage non-small cell lung cancer. J. Nucl. Med. 53,
1514–20. doi: 10.2967/jnumed.111.102566

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. arXiv:1706.03762.

Wang, X., Hersche, M., Magno, M., and Benini, L. (2024). MI-BMInet: an efficient
convolutional neural network for motor imagery brain–machine interfaces with
EEG channel selection. IEEE Sens. J. 24, 8835–8847. doi: 10.1109/JSEN.2024.335
3146

Xie, S., and Krishnan, S. (2019). “Feature extraction of epileptic EEG using wavelet
power spectra and functional PCA,” in 2019 41st Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), 2551–2554.
doi: 10.1109/EMBC.2019.8856308

Yang, X., and Jia, Z. (2024). Spatial-temporal mamba network for EEG-based motor
imagery classification. arXiv:2409.09627.

Zhang, R., Liu, G., Wen, Y., and Zhou, W. (2023). Self-attention-based
convolutional neural network and time-frequency common spatial pattern
for enhanced motor imagery classification. J. Neurosci. Method 398:109953.
doi: 10.1016/j.jneumeth.2023.109953

Zhao, X., Zhang, H., Zhu, G., You, F., Kuang, S., Sun, L., et al. (2019).
A multi-branch 3D convolutional neural network for EEG-based motor
imagery classification. IEEE Trans. Neural Syst. Rehabilit. Eng. 27, 2164–2177.
doi: 10.1109/TNSRE.2019.2938295

Zhi, H., Yu, Z., Yu, T., Gu, Z., and Yang, J. (2023). A multi-domain convolutional
neural network for EEG-based motor imagery decoding. IEEE Trans. Neural Syst.
Rehabil. Eng. 31, 3988–3998. doi: 10.1109/TNSRE.2023.3323325

Zippi, E. L., Shvartsman, G. F., Vendrell-Llopis, N., Wallis, J. D., and Carmena, J. M.
(2023). Distinct neural representations during a brain–machine interface and manual
reaching task in motor cortex, prefrontal cortex, and striatum. Sci. Rep. 13:17810.
doi: 10.1038/s41598-023-44405-y

Frontiers inNeuroscience 24 frontiersin.org

https://doi.org/10.3389/fnins.2025.1469244
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/SMC42975.2020.9283028
https://doi.org/10.20965/jrm.2020.p0738
https://doi.org/10.1038/nn1444
https://doi.org/10.1109/BIOCAS.2019.8919117
https://doi.org/10.1109/GCCE.2015.7398718
https://doi.org/10.1109/ICASSP43922.2022.9747443
https://doi.org/10.1038/242190a0
https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.1016/j.bspc.2022.104066
https://doi.org/10.1109/TNSRE.2024.3382226
https://doi.org/10.1109/TBME.2022.3193277
https://doi.org/10.1016/j.bspc.2022.104456
https://doi.org/10.1109/TBCAS.2015.2392555
https://doi.org/10.2967/jnumed.108.060590
https://doi.org/10.1016/j.jneumeth.2019.108421
https://doi.org/10.1109/TBME.2007.897815
https://doi.org/10.1016/j.bspc.2021.102826
https://doi.org/10.1109/TIM.2023.3338676
https://doi.org/10.1684/j.1950-6945.2006.tb00205.x
https://doi.org/10.1109/TNSRE.2022.3186442
https://doi.org/10.1109/IS3C.2018.00076
https://doi.org/10.1016/j.brainres.2023.148673
https://doi.org/10.1109/TNSRE.2015.2490621
https://doi.org/10.1109/EMBC40787.2023.10340748
https://doi.org/10.1007/978-3-030-51935-3_11
https://doi.org/10.1109/ACCESS.2022.3161489
https://doi.org/10.1109/LSENS.2023.3265682
https://doi.org/10.1109/IEMBS.1997.757001
https://doi.org/10.1109/TSMC.1971.4308292
https://doi.org/10.1109/TNSRE.2023.3242280
https://doi.org/10.3389/fnins.2012.00055
https://doi.org/10.1109/IEMBS.2007.4353393
https://doi.org/10.2967/jnumed.111.102566
https://doi.org/10.1109/JSEN.2024.3353146
https://doi.org/10.1109/EMBC.2019.8856308
https://doi.org/10.1016/j.jneumeth.2023.109953
https://doi.org/10.1109/TNSRE.2019.2938295
https://doi.org/10.1109/TNSRE.2023.3323325
https://doi.org/10.1038/s41598-023-44405-y
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Parameter optimization of 3D convolutional neural network for dry-EEG motor imagery brain-machine interface
	1 Introduction
	1.1 Related work

	2 Establishment of optimal conditions for 4-Class and 2-Class motor imagery measurement to reduce user burden and minimize hardware requirements
	2.1 4-Class and 2-Class motor imagery measurement condition parameter optimization based on classification accuracy
	2.1.1 Manual channel selection
	2.1.2 Sample window size
	2.1.3 Downsampling

	2.2 Experiments aimed at optimizing measurement conditions
	2.2.1 Configuration and experimental procedures
	2.2.2 Optimization of measurement condition parameters among deep-learning models
	2.2.3 Experimental results on manual channel selection
	2.2.4 Experimental results on sample window size
	2.2.5 Experimental results on downsampling
	2.2.6 2-Class and 3-CHs BCI-IV2b


	3 Utilization of 3D convolutional neural network
	3.1 Proposed 3D-CNN model
	3.2 Effect of input data shape on classification accuracy of proposed 3D-CNN
	3.3 Optimization of models' parameters for BCI-IV2a and BCI-IV2b

	4 Motor imagery measurement demonstration
	4.1 Dry electrode to reduce user load, acquisition of new motor imagery EEG data using moving image materials for feature manifestation
	4.2 Sample window size dependency
	4.3 Model parameter dependency

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


