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Introduction: Brain dynamics o�er a more direct insight into brain function

than network structure, providing a profound understanding of dysregulation

and control mechanisms within intricate brain systems. This study investigates

the dynamics of functional brain networks in major depressive disorder (MDD)

patients to decipher the mechanisms underlying brain dysfunction during

depression and assess the impact of repetitive transcranial magnetic stimulation

(rTMS) intervention.

Methods: We employed energy landscape analysis of functional magnetic

resonance imaging (fMRI) data to examine the dynamics of functional brain

networks in MDD patients. The analysis focused on key dynamical indicators

of the default mode network (DMN), the salience network (SN), and the central

execution network (CEN). The e�ects of rTMS intervention on these networks

were also evaluated.

Results: Our findings revealed notable dynamical alterations in the pDMN, the

vDMN, and the aSN, suggesting their potential as diagnostic and therapeutic

markers. Particularly striking was the altered activity observed in the dDMN in

the MDD group, indicative of patterns associated with depressive rumination.

Notably, rTMS intervention partially reverses the identified dynamical alterations.

Discussion: Our results shed light on the intrinsic dysfunction mechanisms of

MDD from a dynamic standpoint and highlight the e�ects of rTMS intervention.

The identified alterations in brain network dynamics provide promising analytical

markers for the diagnosis and treatment of MDD. Future studies should further

explore the clinical applications of these markers and the comprehensive

dynamical e�ects of rTMS intervention.

KEYWORDS

major depressive disorder (MDD), repetitive transcranial magnetic stimulation (rTMS),

fMRI, resting state dynamics, energy landscape

1 Introduction

Major Depressive Disorder (MDD) is a prevalent human brain dysfunction,
leading to symptoms such as depressed mood, anhedonia, cognitive dysfunction, and
increased suicidal tendencies (Wiebenga et al., 2022). It significantly impairs psychosocial
functioning and diminishes individuals’ overall well-being (Malhi and Mann, 2018).
However, the specific etiology and pathogenesis of MDD remain unclear, and there is an
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urgent need to explore the diagnosis of depression and effective
treatment. Despite the efficacy of antidepressants, approximately
one-third to one-half of individuals with MDD do not experience
a full response to multiple antidepressant treatments, and others
may only achieve partial relief (Rush et al., 2009; Cipriani et al.,
2018). There is a clinical need for more effective antidepressant
treatments. Repetitive Transcranial Magnetic Stimulation (rTMS)
is a noninvasive brain stimulation technique and its efficacy in
the treatment of depression has been demonstrated by several
original studies and meta-analyses (Luber et al., 2017; Tik et al.,
2023a; Valiengo et al., 2022; Chen et al., 2017; Slotema et al.,
2010). However, the mechanisms underlying rTMS intervention
in MDD are still not fully understood, which limited further
improvements of this promising technique. Therefore, the brain
science basis and effects of rTMS intervention become hot topics
in MDD study (Anand et al., 2005; Drevets et al., 2008; Hasanzadeh
et al., 2019; Dai et al., 2019; Kaster et al., 2023). In such studies,
the functional magnetic resonance imaging (fMRI) serves as an
essential technical tool which supports basic measurements of the
activities of brain regions (region of interest, ROI) and function-
specific brain networks (Galioulline et al., 2023; Tik et al., 2023b;
Kim et al., 2023).

In 2011, Menon (Menon, 2011) proposed the “triple network
model" (TNM) theory. It is demonstrated that altered functional
connectivity of the default mode network (DMN), the central
execution network (CEN), and the salience network (SN) is
closely related to various mental illnesses, including depression
(Chibaatar et al., 2023). It was found that task engagement or
exposure to external stimuli markedly diminishes DMN activity
while concurrently activating the CEN (Bressler andMenon, 2010).
The SN is believed to dynamically regulate the activities of the
DMN and CEN (Sridharan et al., 2008). During the past decades,
the TNMhas been increasingly utilized in the investigation ofMDD
(Supekar et al., 2019; Zheng et al., 2015).

On the other hand, an increasing number of research studies
have begun to investigate brain function and its disorders from
the perspective of dynamics (Deco et al., 2011; Parkes et al., 2022;
Zhou et al., 2023, 2024). Specifically, inspired by thermodynamics
and statistical physics, researchers have embarked on efforts
to quantify and intuitively investigate the global dynamics and
transition properties of the brain’s complex systems (Ye et al., 2023).
This shift toward a physics-informed perspective has fostered
novel analytical methods and enriched the understanding of brain
dynamics. Several studies have employed statistical mechanics-
related approaches to explore the brain. For instance, Breakspear
and Stam (2005) proposed a multiscale neural framework using
nonlinear oscillators and wavelet decomposition to explore neural
dynamics across different organizational scales. Deco and Jirsa
(2012) introduced the concepts of criticality and multistability,
using methods from statistical physics to simulate and analyze
the dynamic behavior of brain cortical networks. Chialvo (2010)
explained the self-organizing behavior of the nervous system
and the emergence of complex dynamic patterns based on
complex systems theory. These studies provide new perspectives
and methods for neuroscience research and the treatment
of neurological disorders. Among these novel approaches for
investigating brain dynamics, the energy landscape analysis (Ezaki
et al., 2017; Ashourvan et al., 2017) based on spin glass theory
(Binder and Young, 1986) drew a great deal of attention since its

robustness, easy training and elegant pictures. Energy landscape
analysis is a data-driven method based on statistical mechanics that
is used to investigate states and transitions in complex systems.
In the study of resting-state brain dynamics, researchers employ
energy landscape analysis to describe the energy distribution and
stability of the brain network in different states (Watanabe and
Rees, 2017). The definitions of state, energy, and stability are similar
to those in the Ising model in statistical physics. The microstates of
a system are configurations of the binary states of the brain regions
it contains (akin to spins), and each configuration corresponds
to a state function similar to the energy of a spin system in the
Ising model, based on its probability of occurrence. However, in
this energy function, both the spin coupling strength and the
field strength coefficients are heterogeneous and need to be fitted
from the observed data. This state function (i.e., energy) indicates
the stability of the system’s microstates, with lower energy states
indicate greater stability. The coarse-grained state of the system is a
combination of local minima in the energy landscape of microstates
and all microstates within their basins. This analytical approach
can reveal dynamic features of the resting-state brain, such as state
stability and transition probabilities. Through energy landscape
analysis, researchers can gain a deep understanding of the resting-
state brain activities and theirmodulations. For example, it has been
found that the locus coeruleus-norepinephrine (LC-NE) system can
modulate the switch of the triple network activities (He et al., 2023),
and the energy landscape analysis provides a novel dynamical
perspective to investigate such modulations (Munn et al., 2021).

In this paper, we focus on exploring the dynamic characteristics
of MDD by delineating the temporal and state-dependent activity
patterns of the brain, as well as the governing principles of
state transitions. By contrasting these dynamics with those of
healthy individuals, we seek to identify functional anomalies that
may contribute to the pathogenesis of MDD. Moreover, we will
investigate the intervention effects of rTMS onMDD by comparing
the corresponding pre- and post-treatment dynamics. Our aim is
to elucidate the specific mechanisms by which rTMS modulates
brain function, thereby providing theoretical underpinnings and
practical guidance for MDD therapy.

2 Materials and methods

2.1 Data and participants

The data used in this study are from Xijing Hospital,
including three subject groups: pre-intervention major depressive
disorder patients (MDD_Prior), post-intervention MDD patients
(MDD_Post), and healthy controls (HC). It comprises 38, 38, and
34 participants, respectively. All participants met the following
inclusion criteria: (1) right-handed, (2) aged 18–60, (3) HAMD-17
>17, (4) non-psychotic, (5) negative urine screen and pregnancy
test for females, and (6) no TMS/MRI contraindications.

The MRI-navigated rTMS treatment was delivered by a Black
Dolphin Navigation Robot system (SmarPhin 760, Solide Brain
Control Medical Technology Co., Ltd., Xi’an, China), targeting
a specific position in the left dorsolateral prefrontal cortex
(DLPFC) which exhibits the strongest negative correlation with
the subgenual anterior cingulate cortex (sgACC) (Fox et al., 2012)
based on functional negative correlation with resting-state fMRI.
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The individualized rTMS stimulation target is defined as the peak
subunit on the DLPFC that is most negatively connected to the
sgACC according to Cole et al. (2022). However, the definition
of the sgACC was slightly different from that in Cole et al.
(2022). In the current study, No. 187 and 188 atlases based on
Brainnetome Atlas (BNA) (https://atlas.brainnetome.org/bnatlas.
html) (Fan et al., 2016) were selected as the sgACC to improve
the signal-to-noise ratio and avoid mixing information comes from
the corpus callosum. After the definition of the individualized
stimulation target, 5-day sgACC FC-guided rTMS treatment, i.e.,
SAINT, was administered to each patient (Cole et al., 2020, 2022).
Participants received a daily regimen of 6 iTBS sessions, each
characterized by a structured protocol of 20 iTBS cycles. Within
each cycle, three magnetic pulses were delivered at 0.2-s intervals,
resulting in a total of 600 pulses per session. The clusters of
pulses were separated by 8-s intervals, ensuring optimal temporal
dynamics for neuromodulation. The stimulation intensity was
carefully calibrated to 90% of the individual’s motor threshold,
ensuring both safety and efficacy. Each session was spaced by 30-
min intervals to allow for physiological recovery and integration of
the treatment effects. Over the course of five consecutive days, this
intervention resulted in a cumulative total of 3,600 pulses per day,
amounting to 18,000 pulses over the treatment period. HAMD-
17 scores were collected before and after treatment, coinciding
with fMRI. Before rTMS intervention, the HAMD-17 scores of
MDD patients were 28 ± 4.52. After rTMS intervention, the
HAMD scores of MDD patients were 9.52 ± 6.01, exhibiting
a significant difference (p<0.001). This difference indicates
rTMS efficacy, providing a clinical foundation for exploring
its mechanism.

High-resolution MRI data were acquired using a 3.0 T uMR
780 scanner before and after treatment. During resting-state fMRI,
participants kept their eyes closed, maintaining wakefulness while
avoiding deliberate thinking. The parameters for resting-state fMRI
were as follows: slices = 35, repetition time = 2,000 ms, echo time
= 30 ms, slice thickness = 4 mm, matrix size = 64 × 64, field of
view = 224 mm× 224 mm, flip angle = 90◦. The resting-state fMRI
sessions lasted ∼12 min. The post-treatment MRI acquisition was
conducted 1–2 days after the TMS intervention.

We conducted our research with rigorous adherence to ethical
guidelines following approval from the Medical Ethics Committee
of Xijing Hospital (Approval No. KY20202066-X-1). Our study
was executed in strict accordance with the approved clinical
research protocol, adhering to the principles of Good Clinical
Practice (GCP), ensuring that informed consent was obtained
from all participants. We diligently safeguarded the rights, privacy,
and safety of our subjects, while maintaining full compliance
with relevant national and international regulations, thereby
contributing to the scientific community with a study of integrity
and ethical excellence.

2.2 Preprocessing

The preprocessing of resting-state functional magnetic
resonance imaging (fMRI) data primarily utilized the software

tools SPM12 (http://www.fil.ion.\ucl.ac.uk/spm/) and Gretna. The
main objectives of preprocessing were threefold, (1) to minimize
errors introduced during data acquisition or due to physiological
characteristics of the brain, (2) to test the statistical assumptions of
the model and transform the data to satisfy these assumptions, (3)
to standardize the brain region locations across different subjects
for subsequent group analyses, thereby enhancing the validity
and sensitivity of such analyses. The preprocessing steps typically
included fMRI data visualization, censoring, ICA-denoising,
temporal alignment, head motion correction, spatial smoothing,
linear trend removal, band-pass filtering, structural-functional
alignment, and the removal of white matter and cerebrospinal
fluid signals.

Subjects with displacement greater than 2 mm, head motion
exceeding 2 degrees, or those receiving sham stimulation were
excluded, resulting in a final participant count for each group in this
study: 28 patients with MDD (age range: 18–54 years, 22 females,
mean age: 27.35 ± 9.73 years) and 29 healthy controls (HC) (age
range: 22–38 years, 13 females, mean age: 30.90± 4.59 years).

The main brain regions selected in this study are the DMN,
CEN, and SN, using Region of Interest (ROI) templates obtained
from the Stanford University NeuroImage and Neuroinformatics
Laboratory (Shirer et al., 2012). This ROI template was used to
extract the time series of different brain regions within these three
networks in the low-frequency oscillation (LFO) frequency band.
The template divides the DMN, CEN, and SN into 22, 12, and 19
ROIs, respectively. However, not all ROIs from the template were
included in this study. Some ROIs are either too small or too deep,
making it challenging to extract their activity signals. Therefore, to
ensure data reliability, we excluded such ROIs. Specifically, 22 ROIs
from the DMN, eight from the CEN, and 15 from the SN were
selected. In the context of functional magnetic resonance imaging,
the finite length of time series data, which typically spans several
hundred to a thousand time points, imposes a constraint on the
dimensionality of the system’s microstates. Specifically, the number
of ROIs that can be effectively included in the analysis is limited, as
exceeding this limit may lead to a pronounced bias in the estimation
of state occupancy probabilities and transition probabilities due
to data scarcity. The upper bound of the dimension Nm can be
empirically determined by the approximation that 2Nm is roughly
equivalent to the product of the data length and the number of
subjects under investigation. This relationship serves as a pragmatic
guideline for ROI selection in fMRI studies to ensure the reliability
and validity of the subsequent statistical inferences. The greater the
number of ROIs in the model, the higher the potential number
of configurations. If the amount of data is insufficient, such as
when the time series is too short, some configurations may not be
observed. This inevitably leads to biases in estimating configuration
probabilities. Due to the dimension limitations of energy landscape,
the three networks were further divided into six subnetworks:
dorsal DMN (dDMN), posterior DMN (pDMN), ventral DMN
(vDMN), anterior SN (aSN), posterior SN (pSN), and CEN. The
division of subnetworks follows the approach of the Stanford
University NeuroImage and Neuroinformatics Laboratory (Shirer
et al., 2012). Corresponding brain regions, Brodmann areas
(BA), and Montreal Neurological Institute (MNI) standard space
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coordinates for these six networks are detailed in Tables 1–3
in Appendix 1).

2.3 Energy landscape analysis

Energy landscape analysis (Watanabe et al., 2014) is an
approach that investigates the interactions between localized brain
regions from the perspective of statistical physics. The concept
of “energy" is operationalized by selecting specific state variable
functions, describing the energy associated with different brain
regions, thus composing the brain system states. These states are
essentially modeled based on empirical distribution data derived
from fMRI data of various brain regions. By employing the
model defined by the energy function, the energy landscape of
the brain system within the state space, also referred to as the
energy terrain of the system, can be derived. The configuration
of the energy landscape mirrors the stability and interactions of
the brain states, and it can elucidate a series of the system’s
dynamic characteristics. The key points of energy landscape
analysis involve fitting a pairwise maximum entropy model (MEM)
(Watanabe et al., 2013; Ezaki et al., 2018) based on the BOLD
signals and characterizing the metastable dynamics based on the
energy landscape of the brain states. Given the extensive data
required for this method, this study aggregated fMRI signals from
subjects within the same group before conducting the pairwise
MEM fitting.

For each network, there exist N ROIs, named by i (i = 1, 2,
. . . , N). For each ROI of each subject, a threshold was set based on
the average signal value over the entire time length. If the signal
value exceeded this threshold, the ROI was considered active. The
BOLD signals of each ROI were binarized based on the threshold.
At each time point, the state of a single ROI i is σi = 0,1 (i = 1,
2, . . . , N) and the state of a network consisting of N ROIs will be
represented by anN-dimensional binary vector σ = [σ1, σ2, . . . , σN]
which indicates the network’s activity pattern. There are 2N possible
activation patterns for each network. For each activity pattern σ , its
probability of occurrence was calculated using Equation 1, where
nσ is the occurrence frequency of the state in the time series, and T

is the length of the time series.

p(σ ) =
nσ

T
. (1)

The “energy" associated with each activity pattern σ was calculated
using Equation 2 as follows

E(σ |J, h) = −
1

2

∑

i6=j

Jijσiσj −
∑

i

hiσi. (2)

In the case of MEM, the occurrence frequency p(σ ) of each
activity pattern σ follows the Boltzmann distribution as shown in
Equation 3.

p(σ |J, h) =
exp−E(σ |J, h)

∑

σ
′ expE(σ ′|J, h)

, (3)

where Jij and hi are parameters representing the strength of
interaction between ROIs i and j and the trend of isolated activation

of ROI i, respectively. In this definition, a lower energy value
corresponds to a higher occurrence frequency of an activity pattern
over time.

MEM is amethod based on gradient descent that maximizes the
entropy of the Boltzmann distribution. The parameters J ∈ R

N×N

and h ∈ R
N are iteratively updated to enhance the accuracy of the

model fitting, ultimately leading to an optimized model. Based on
this optimized model, the energy landscape of the system can be
constructed. The dynamic characteristics of different brain states
can be reflected in the energy landscape, including local minima,
energy basins, disconnectivity graphs, and energy barriers. The
process of energy landscape analysis is illustrated in Figure 1.

Within the energy landscape, among the constructed 2N activity
patterns (also known as state vectors), two states differing by only
one element were considered adjacent states. Thus, each state
corresponds to n adjacent states. If the energy value of a state is
lower than that of all its n adjacent states, the state is defined as a
local minimum state, corresponding to the lowest point of a basin
in the energy landscape.

Disconnectivity graphs can be used to characterize the primary
features of the dynamics, including the energy levels of local
minima, metastates, and the energy barriers between adjacent
basins. A disconnectivity graph is a tree-like branching structure,
where different branches represent different local minima. The
height of the branches corresponding to adjacent local minima
reflects the energy barrier between them. Compared to the energy
landscape, the disconnectivity graph provides a more concise and
intuitive representation of the relationships between various states.
The specific steps for constructing the disconnectivity graph are as
follows:

1. Create a superlattice composed of state vectors, where each state
is connected to its adjacent states.

2. Set an energy threshold Eth as the maximum energy among all
current states.

3. Remove all states with energy E ≥ Eth and their corresponding
connections.

4. Verify that at least one path connects each local minimum state
in the superlattice.

5. Repeat steps 3 and 4, setting Eth as the maximum remaining
energy value, until all local minima are mutually disconnected.

Record the Eth value set when two local minima are first
disconnected, as it represents the potential energy barrier between
the two basins. This process results in the construction of the
disconnectivity graph for local minima.

Energy landscape analysis is a computational approach that
offers an intuitive interpretation of multivariate time series
data. In summary, the analysis involves four main steps: (1)
data binarization, (2) estimation of the pairwise maximum
entropy model (Boltzmann distribution), (3) construction of
disconnectivity graphs and energy basins for local minima, and
(4) calculation of dynamic metrics for the energy landscape.
Empirically, the energy landscape analysis method is most effective
when the number of variables ranges from ∼6 to 15. For a greater
number of variables, the computational cost becomes substantial
and interpreting the results becomes challenging, while fewer
variables may result in poor fitting accuracy and stability.
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FIGURE 1

The flowchart of the energy landscape modeling. (A) The BOLD signal for each ROI is binarized based on its temporal mean. At each time point, if its

value is higher than the mean, it is assigned a value of 1; otherwise, it is assigned a value of 0. Thus, the state of a single ROI will be similar to a spin in

Ising picture. (B) The empirical probability of each pattern σ , configuration of the spins, is estimated according to the time series. (C) A function

called “energy function," which maps each pattern σ to a potential, is fitted under the constraint of the empirical probabilities of the patterns. (D) The

energy landscape is obtained based on the energy function. (E) From the energy landscape, the attractors and their basins, along with the barriers

between di�erent basins, can be identified and then the disconnectivity graph can be constructed. Each attractor and its basin form a metastate. In

this paper, whenever we mention the brain states while analyzing brain dynamics, we are referring to the metastates.

2.4 Statistical analysis

In this study, independent-sample t-tests were used to analyze
the statistical significance of differences between groups for various
parameters. This method determines whether there are significant
differences in the population means of two independent samples.
The threshold for statistical significance was set at p0 = 0.05,
with p-value below this threshold indicating a significant difference.
Moreover, since multiple comparative tests were conducted on the
same dataset, a Bonferroni correction was applied to mitigate the
risk of type I errors due to multiple testing.

Additionally, to ascertain whether changes in dynamic
indicators of MDD, identified based on differences between pre-
intervention MDD patients and the healthy control group, were
related to rTMS intervention, correlations with clinical scales
were calculated. A p-value <0.05 was considered indicative of a
significant correlation. The strength of the correlation is denoted
by the magnitude of the correlation coefficient: values above 0.7
suggest a very strong relationship, values between 0.4 and 0.7
indicate a moderate relationship, and values between 0.2 and 0.4
suggest a weak relationship. Even if the correlation coefficient

is below 0.2, a significant p-value implies a weak yet existent
correlation.

3 Results

3.1 Changes of metastable dynamics
induced by MDD su�ering and rTMS
intervention

Based on the energy models derived from energy landscape
analysis (see Supplemental Materials for details), we have identified
that certain local minima are more prevalent. It is crucial to
understand that these energy values do not correspond to any
biological form of energy; rather, they are statistical metrics
representing the likelihood of each brain activity pattern occurring
over time.We posit that patterns with lower energy values are more
likely to manifest and tend to be more stable.

Consequently, we have delineated two primary brain state
groups, designated as major state 1 and major state 2. These groups
typically encompass a fully inactive state and a fully active state,
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FIGURE 2

Major states, minor states and the activity patters of the microstates. (A) The activity patters of the 14 attractors of pSN dynamics in HC group. (B) The

major states and minor states of pSN in HC group. The pSN from the HC group is utilized as an illustrative example in this context due to its

possession of the greatest number of attractors and minor states. In (A), green indicates inactive, while red indicates active.

respectively, along with their adjacent states. All other states are
classified as minor state 1. However, if any states within minor state
1 exhibit consistent intergroup characteristics, such as significantly
higher energy, they are categorized as minor state 2 or even
minor state 3 (Figure 2). For meaningful intergroup comparisons,
we ensure that the same patterns are indexed consistently across
all participant groups. That is, state groups are uniform and
representative for all three groups of participants. Any inconsistent
patterns are relegated to minor state 1.

Through energy landscape analysis, we obtained
disconnectivity graphs and activity patterns for six brain
networks, averaged across the three groups. To discern markers
useful for evaluating MDD and monitoring rTMS efficacy, we
consider three dynamic characteristics. To apply the Bonferroni
correction, we first determine the total number of indicators under
statistical scrutiny. For the six brain networks, the number of
indicators varies due to the division of states, contingent on the
number of state groups. The formula for the number of indicators
N(indicators) is given by

N(indicators) = 2× n(state groups)+ n(transitions). (4)

The equation for n(transitions) is

{

2, n(state groups) > 2
1, n(state groups) = 2

(5)

For the Bonferroni correction, the total number of comparisons
M equals N(indicators). Therefore, the significance level α is
adjusted to 0.05/M, and this Bonferroni-corrected p-value is used to
identify the indicators. After applying the Bonferroni correction, we
pinpoint several network features that meet the correction criteria,
which may serve as potential indicators for distinguishing MDD
and monitoring the effects of rTMS.

Our analysis reveals distinct alterations in the dynamic brain
states in the MDD group and that after rTMS intervention.

Significant differences are found in the frequency and duration
of brain states when comparing HC and MDD, as well as pre-
and post-intervention conditions across all subject groups. These
differences highlight the potential of these dynamic characteristics
as biomarkers for MDD progression and intervention efficacy.

In the dDMN, we observe no significant alterations for MDD
patients compared to the HC group (Figure 3). A similar result
is found in the CEN, as shown in Figure 4. Moreover, neither
dDMN nor CEN is significantly affected by the rTMS intervention.
However, in all other subnetworks of the TNM, MDD and rTMS
intervention may induce changes in some dynamic indicators.

3.1.1 Brain state dynamics alterations in MDD
patients

In the pDMN, the major state 1 becomes more prominent in
the MDD group, compared to the HC group, with increases in
both occurrence frequency and average duration, while major state
2 shows a reduction in these indicators (Figure 3). The vDMN
shows an overall increase in the activity of major states in the MDD
group. Both the occurrence frequencies and average durations of
the two major states significantly increase. Conversely, the minor
states of the vDMN show a decrease across all indicators, suggesting
a less frequent occurrence of this state in the MDD group. In
addition, the direct transitions between the major states increase,
while the indirect transitions decrease (Figure 3). The indirect
transitions are that transitions between the major states mediated
by minor states. In the SN, the aSN shows that for the MDD
group, the occurrence frequency and average duration of major
state 2 decrease while major state 1 remains unchanged. The
occurrence frequency and average duration of the minor states
increase, the direct transition frequency significantly decreases,
and the indirect transition frequency increases (Figure 5). The
results of the pSN indicate that for the MDD group, both the
occurrence frequency and average duration of the major states 1
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FIGURE 3

The statistics of dynamical characters of subnetworks in DMN for the three groups. (A, D, G) illustrate the appearance frequencies of the merged

metastates of dDMN, pDMN and vDMN, respectively. Metastates with low potential energy and large basins are termed major states, while those with

high potential energy and small basins are referred to as minor states. (B, E, H) illustrate the transition frequencies of the merged metastates of

dDMN, pDMN and vDMN, respectively. The direct transitions between major states are referred to as direct transition frequencies, whereas the

transitions between major states that are mediated through minor states are referred to as indirect transition frequencies. (C, F, I) illustrate the

durations, i.e., lifetime, of the merged metastates of dDMN, pDMN and vDMN, respectively. The duration of a state refers to the length of time for

which that state persists. HC, MDD-Prior, and MDD-Post refer to the healthy control group, the group of MDD patients before rTMS intervention, and

the group of MDD patients after rTMS intervention, respectively. In statistical analyses, asterisks are employed to signify the levels of statistical

significance: a single asterisk (*) denotes a p-value < 0.05, a double asterisk (**) indicates a p-value < 0.01, and a triple asterisk (***) corresponds to a

p-value below 0.001. These symbols are used consistently in all subsequent figures.

FIGURE 4

The statistics of dynamical characters of CEN for the three groups. (A–C) illustrate, respectively, the appearance frequencies, transition frequencies,

and durations of the merged metastates.

and 2 significantly increase, while all minor states show a decrease
in occurrence frequency and average duration. This suggests
transitions from minor states to major states, implying enhanced

dominance of the major states. Additionally, the increased direct
transition frequency between major states further confirms this
point (Figure 5).
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FIGURE 5

The statistics of dynamical characters of subnetworks in SN for the three groups. (A, D) illustrate the appearance frequencies of the merged

metastates of aSN and pSN, respectively. (B, E) illustrate the transition frequencies of the merged metastates of aSN and pSN, respectively. (C, F)

illustrate the durations of the merged metastates of aSN and pSN, respectively.

3.1.2 Alterations in brain state dynamics induced
by rTMS intervention

The observed alterations within the pDMN in the context of
MDD are reversible following rTMS intervention. Specifically, in
the pDMN, the major state 2 emerges with enhanced salience
following the intervention, with increases in both occurrence
frequency and average duration. Conversely, major state 1 of the
pDMN exhibits a significant decline in the aforementionedmetrics.
However, in the vDMN, almost all alterations in MDD remain
unchanged after rTMS intervention, except for the appearance
frequency of the major state 1. The phenomena within the aSN
exhibit intriguing and distinct characteristics. The alterations in
the aSN are completely reversed by rTMS intervention, since all
the dynamic indicators are pulled back to the HC levels. After
rTMS, the occurrence frequency and average duration of major
state 2 in the aSN increase, while those of the minor states
decrease. The direct transition frequency increases and the indirect
transition frequency decreases, coinciding with the disappearance
of minor state 1. This indicates a reassertion of the dominance
of major states, especially major state 2. However, in the pSN,
the alterations are not reversed. Conversely, all alterations that
occur in the MDD brain continue to be reinforced. It is found
that after rTMS, the occurrence frequency and average duration
of the major states in the pSN of the MDD brain are further
increased, while those of the minor states are further decreased.
Additionally, the increased direct transition frequency between
major states is further increased. The results indicate that rTMS
intervention amplifies the variabilities observed in the pSN within
the MDD group, potentially constituting a limitation that prevents
the current rTMS intervention program from achieving the desired
therapeutic outcome for MDD.

3.1.3 Correlation of potential dynamic indicators
with clinical pathologies

To elucidate the link between the amelioration of dynamic
brain indicators and rTMS intervention, we conducted a
correlation analysis with clinical scale scores. The aim is to
determine whether alterations in the brain’s dynamic indicators
parallel improvements in depressive symptoms.

In this study, a total of 10 scales were considered, with the
details presented in Table 4 in Appendix 2. These scales assess
behavioral outcomes at various time points during the treatment
period. Scales 1–6 provided measurements at baseline, as well as
after 5, 15, and 30 days of treatment. Scales 7–9 provided insights
at two time points: baseline and after 5 days. Scale 10, known as
HAMD-6, was assessed daily from the initial baseline up to 5 days
following the intervention. This chronological evaluation displays
a consistent pattern of decreasing scores, suggesting the potential
effectiveness of rTMS intervention. Correlation coefficients were
computed to examine the relationship between the scores on
these scales and the dynamic indicators of brain activity. Positive
coefficients denote a concurrent decrease in both scale scores and
indicator values, while negative coefficients indicate an inverse
relationship.

The correlation analysis results depicted in Figure 6 suggest
relative consistency across Scales 1–6, with Scale 10’s outcomes
aligning with those of Scales 1–6 in most instances. However, the
results for Scales 7–9 appear less consistent, which we attribute
to the fact that only two time points are insufficient to establish a
trend or even a correlation. In this paper, we primarily focus on the
findings pertaining to Scales 1–6. Figure 6 presents the correlation
coefficients that reached statistical significance condition p < 0.05,
with the horizontal axis representing the indicators and the vertical

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2025.1444999
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Su et al. 10.3389/fnins.2025.1444999

FIGURE 6

The heatmap of correlations between the potential dynamical indicators and the 10 clinical scales (see Supplemental Materials for details). The

vertical numbers represent clinical scales as described in Table 4 in Appendix 2, while the horizontal numbers represent dynamical indicators. Each

subnetwork encompasses n (n ≤ 5) states which belong to the 5 state groups. The labels on the horizontal axis sequentially represent the

occurrence, i.e. the appearance frequency, of the ith state (i = 1, 2, . . . , n), the direct transition frequency, the indirect transition frequency, and the

duration of the ith state (i = 1, 2, . . . , n). The 5 state groups and the states of di�erent subnetworks are shown in Table 5 in Appendix 3. Only the

correlations that pass the significance test are displayed in color.

axis denoting the scale number. The color coding within the figure,
orange for positive and green for negative, indicates the strength of
the correlation, with deeper hues signifying a stronger correlation.
Given that higher scores on depression scales denote more severe
depressive symptoms, a positive correlation coefficient implies that
an increase of the indicator value indicates a negative therapeutic
effect, whereas a negative coefficient suggests a positive therapeutic
effect.

Most of these observations are consistent with the findings

from brain state dynamics analyses. Specifically, metrics that show
a significant increase following the intervention exhibit a negative
correlation with scale scores, whereas a significant decrease is
associated with a positive correlation. This suggests that the changes

in most indicators are clinically significant. However, despite many
significant changes in the vDMN, no significant consistency is
observed in the consistency analysis with clinical practice except for

the appearance frequency of major state 1. In addition, although we
only find a significant change in the appearance frequency of major
state 1 in the CEN, many indicators (especially those of the minor

state) show consistency with the scale results.

3.2 Underlying temporal relation changes
revealed by metastates transitions

Based on the initial energy landscape analysis, which focuses on
the dynamics of single subnetwork for the identification of dynamic
indicators pertinent to diagnostics and therapy, the investigation
does not encompass the dynamic interplay between different
subnetworks. To address this gap, the present study expands the
scope to include an examination of the inter-network dynamic
relationships by scrutinizing the frequency of state transitions
within networks in relation to specific transition relationships,
herein defined as the “motivate rate" (MR).

Within each network, n distinct state groups are identified,
resulting in m potential state transition relationships. For each
specified transition relationship, designated as “a," the frequency
with which “a" occurs in network A immediately preceding or
in concurrence with its manifestation in network B is computed,
denoted as Na,A→B. Concurrently, the aggregate frequency of “a"
across each network is tallied, denoted as Na,A. These data points
facilitate the computation of the motivate rate.
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FIGURE 7

The temporal relations among the six subnetworks for di�erent groups. (A) The temporal relationships that consistently exist among the three

groups. (B–D) depict the temporal relationships among subnetworks for the healthy control group, the MDD patients prior to rTMS intervention, and

the MDD patients following rTMS intervention, respectively, with the steady temporal relations omitted.

The motivate rate from network A to network B is defined as

MR(A → B) =

∑

m Na,A→B
∑

m Na,B
, (6)

wherem = n!/(n− 2)!.
To ascertain the dynamic interplay between networks A and B,

we compare the motivate rate from A to B, MR(A → B), with that
from B to A, MR(B → A). If MR(A → B) exceeds MR(A → B), it
is inferred that network A precedes network B in their dynamic
relationship.

Since the length of individual participants’ BOLD signals
is too short, precluding accurate estimation of the motivated
rate, we eschewed the calculation of temporal relationships for
individual subjects and the subsequent statistical testing. Instead,
we aggregated data at the group level and calculated the temporal
relationships between subnetworks for each group, facilitating
comparative analysis across distinct groups. By calculating the
motivate rate, we first identified several temporal relationships that

consistently exist among the three groups of subjects, as shown
in Figure 7A. These temporal relationships may not be associated
with MDD, and thus we do not include them in the subsequent
inter-group comparisons and thus we do not include them in the
subsequent inter-group comparisons (Figures 7B–D).

Comparing the temporal relationships between participants
in the HC group and the MDD_Prior group, we found changes
in five pairs of temporal relationships. There are two temporal
relationships related to the dDMN, where the state transitions
of the dDMN undergo a notable transformation, shifting from
a mode of posterior occurrence to one of predominant anterior
occurrence; two temporal relationships related to the vDMN, where

the vDMN changes from the anterior occurrence mode to the
posterior occurrence mode; Additionally, there are two temporal
relationships related to the aSN, where the aSN changes from the

posterior occurrence mode to the anterior occurrence mode.
Comparing the temporal relationships between participants

in the MDD_Prior group and the MDD_Post group, we found
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changes in seven pairs of temporal relationships, with the two
pathological temporal relationships related to the aSN remaining
unchanged.

4 Discussion

In addition to the changes in metastable dynamics, the major
focus of this study is on major state 1 and major state 2, which
are associated with the fully deactivated state and fully activated
state, respectively. The fully activated state may indicate functional
integration and coordination of multiple brain regions. When
multiple brain regions are simultaneously activated, they may
participate in complex cognitive, emotional, or control processes
involving information exchange and integration across multiple
brain networks. In contrast, the fully deactivated state may indicate
functional segregation or a lack of coordination among these brain
regions.

It is suggested that self-reference and emotion are relevant
factors in sustaining or evoking activity of default mode network
(Gusnard et al., 2001; Harrison et al., 2008). Additionally, it is
proved that the role of DMN for MDD patients in self-referential
processing is impaired (Sheline et al., 2009; Nejad et al., 2013). Our
results further corroborate this point, as the pDMN and vDMN
both show increasing activity in major state 1 in the MDD group.
In other words, MDD patients are more often in a fully deactivated
state, indicating lower efficiency in executing cognitive tasks.

Among the three groups of participants, significant differences
are observed in the pDMN, vDMN, aSN, and pSN networks. Since
results with significant differences are the most convincing, we
focus only on indicators with significant differences, especially
those that have consistently significant correlations with clinical
scale results. To facilitate the interpretation of the combined effects
of multiple indicators, we provide the following explanations. If a
state group has a high occurrence frequency and long duration, it is
considered to have a greater functional role in brain activity in that
region. This suggests that such a state group is stable and potentially
critical for the sustained functioning of that region. However, if a
state group has a high occurrence frequency and short duration, it
is considered significant in the transitional activities in that region.
This implies that the state group is involved in quick shifts or
changes in brain activity, rather than sustained processes.

For the changes related to MDD, the pDMN and pSN
networks exhibit a significant increase in the frequency and
duration of their major states, indicating an elevated functional
role within these regions. Conversely, the dDMN and aSN show
changes suggesting a nuanced shift toward states with transitional
significance, with major state 2 in the dDMN and major state 1 in
the aSN becoming more prominent in their respective networks’
transitional dynamics. Regarding the effects post-intervention,
there is a discernible enhancement in the functional roles of major
state 1 in the dDMN andmajor state 2 in the pDMN, as well as both
major states in the aSN, reflecting the intervention’s impact on these
networks. The pSN’s increase in all state indicators and the CEN’s
rise in major state 1 alongside more frequent indirect transitions
suggest a complex reconfiguration of functional and transitional
roles within these networks, highlighting the intervention’s broad
modulatory effects.

In our investigation of the pDMN, vDMN, and aSN, we
identified several indicators that not only undergo significant
changes in MDD group but also demonstrate substantial
correlations with scale scores. These indicators may serve as reliable
diagnostic criteria for MDD. Within the pDMN, the frequency
and average duration of major state 1 are considered reliable
indicators. In the vDMN, the frequency and average duration of
major state 2, along with the frequency of major state 1, stand out.
For the aSN, the direct transition frequency of major states and the
negative correlation of the indirect transition frequency indicate
their diagnostic potential.

According to the scale results, patients with MDD received
effective treatment after rTMS intervention. Based on the changes
in temporal relationships we found that three out of five
pathological temporal relationships are effectively restored after
rTMS intervention. We speculate that the three pairs of temporal
relationships related to the dDMN and vDMN are associated
with brain region activities related to MDD pathophysiology. The
unchanged dominant temporal relationship status of the aSN after
rTMS intervention may indicate that the effects of rTMS on the
aSN are limited. Moreover, it appears that the effect of rTMS
intervention is reflected in the reversal of temporal relationships
in brain activities, but it does not precisely identify pathological
temporal relationships, instead performing a generalized reversal.
This provides a new perspective for researching the precise
mechanisms of rTMS in the treatment of depression.

Rumination is believed to be a critical characteristic in
understanding how depression emerges and endures over time
(Smith and Alloy, 2009). Evidence suggests that increasing levels
of DMN dominance in depression are associated with higher
levels of maladaptive, depressive rumination and lower levels
of adaptive, reflective rumination (Hamilton et al., 2011). This
excessive DMN activity is associated with the hippocampus and
leads depression patients to excessively focus on negative memories
in their autobiographical recollections (Young et al., 2016). In this
study, the hippocampus is part of the dDMN network, and it is
found that the dDMN shows altered activity in MDD group. This
is reflected in the dDMN transitioning from a network preceded
by the CEN and pDMN to one that precedes the CEN and pDMN.
This finding aligns with the phenomenon of depressive rumination.
Additionally, our research results further narrow the association
between the DMN and rumination to the dDMN.Moreover, among
the two altered temporal relationships observed in the vDMN, one
pair exhibits the same aberrant temporal relationship, leading us to
speculate that the vDMN also exerts a certain degree of influence
on the phenomenon of rumination.

In our study, a key aspect of our methodology involved
subdividing the CEN, SN, and DMN into sub-networks. This
approach was necessitated by the dimension limitations inherent
to energy landscape analysis, as detailed in our methods section.
However, it is important to address potential concerns regarding
how such subdivision, as well as the selection of specific brain
regions, might influence the robustness and validity of our results.
Indeed, energy landscape analysis is designed to capture the
dynamic interactions and stability properties of the brain networks
based on the selected ROIs. When we subdivide a larger network
into smaller sub-networks, we focus on more localized and specific
aspects of the overall network dynamics.While this may limit direct
comparability to analyses conducted on the entire network without
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subdivision, it allows us to gain deeper insights into the specific sub-
networks that are most relevant to the pathophysiology of MDD
and the effects of rTMS. In this sense, the subdivision can be seen
as a necessary trade-off between comprehensiveness and analytical
tractability, rather than a source of bias. Furthermore, energy
landscape analysis inherently involves a probabilistic and dynamic
framework that can accommodate some degree of variability in
the input data. The state transitions and stability properties that
we examined are derived from the collective behavior of the
selected ROIs, rather than relying on the specific characteristics of
individual regions. This probabilistic nature of the analysis provides
a certain level of robustness against minor perturbations in the
selection of brain regions.

5 Limitations

This study, while providing significant insights into the brain’s
metastable dynamics and the effects of rTMS intervention in
MDD, has several limitations to consider. Firstly, the focus on
major and minor states may not encapsulate the full complexity
of intermediate states. The study also does not provide a
detailed mechanistic explanation for rTMS’s therapeutic effects.
Secondly, the sample size and demographic scope may limit
the generalizability of findings. The proposed diagnostic criteria
from the pDMN, vDMN, and aSN require further clinical
validation. Lastly, uncontrolled confounding factors may affect the
results, indicating the need for larger, more diverse samples and
longitudinal studies to better understand MDD’s pathophysiology
and the nuanced effects of rTMS interventions.

6 Conclusions and future work

In conclusion, this study enhances our understanding of MDD
by pinpointing novel dynamic indicators of the resting state
networks (RSNs) in the human brain based on the energy landscape
perspective, providing new potential biomarkers for diagnosis and
treatment monitoring. The observed functional changes in these
networks, especially the pathophysiology alterations in major state
1 and its subsequent recovery following rTMS, emphasize the
clinical utility of these indicators. Furthermore, the reversal of most
temporal relationships after rTMS intervention, including those
in the dDMN that reflect rumination phenomena, provides new
insights into the therapeutic mechanisms of rTMS.

Although our research sets the stage for future inquiries, it
also underscores the inherent limitations of studies constrained
by limited datasets and sample sizes. Future research should
aim to validate these indicators in a broader demographic and
enhancing analytical models to encapsulate the subtle spectrum of
brain dynamics. Such initiatives could catalyze the development of
personalized treatments, potentially increasing the effectiveness of
interventions like rTMS for individuals with MDD.

Our work serves as a foundation for a deeper, more refined
understanding of MDD and signals a possible paradigm shift
in clinical practices for diagnosis and treatment. The quest to
decipher the complexities of brain function in depression forges
ahead, fostering the aspiration to improve the prognosis for those
impacted by this condition.
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