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Introduction: Scalp electroencephalography (EEG) is commonly used to assist

in epilepsy detection. Even automated detection algorithms are already available

to assist clinicians in reviewing EEG data, many algorithms used for seizure

detection in epilepsy fail to account for the contributions of different channels.

The Fully Convolutional Network (FCN) can provide the model’s interpretability

but has not been applied in seizure detection.

Methods: To address these challenges, a novel convolutional neural network

(CNN) model, combining SE (Squeeze-and-Excitation) modules, was proposed

on top of the FCN. The epilepsy detection performance for patient-independent

was evaluated on the CHB-MIT dataset. Then, the SE module was removed from

the model and integrated the model with Inception, ResNet, and CBAM modules

separately.

Results: The method showed superior advancement, stability, and reliability

compared to the other three methods. The method demonstrated a G-Mean

of 82.7% for sensitivity (SEN) and specificity (SPE) on the CHB-MIT dataset. In

addition, The contributions of each channel to the seizure detection task have

also been quantified, which led us to find that the FZ, CZ, PZ, FT9, FT10, and T8

brain regions have a more pronounced impact on epileptic seizures.

Discussion: This article presents a novel algorithm for epilepsy detection that

accurately identifies seizures in different patients and enhances the model’s

interpretability.

KEYWORDS
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1 Introduction

Epilepsy is a neurological disorder affecting the brain, with a lifetime prevalence
of 7.6h. It is characterized by recurrent and unprovoked epileptic seizures, making
it a chronic condition (Fiest et al., 2017; Zhang et al., 2020). Based on the estimated
figures by the World Health Organization, around 50 million individuals worldwide
are impacted by epilepsy, which is categorized as a disorder affecting the central
nervous system (Chakrabarti et al., 2021). Epileptic seizures, marked by spontaneous and
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irregular electrical activity in the brain, can cause profound
and temporary changes in a person’s behavior, movement,
sensory experience, and awareness of their surroundings
(Nasiri and Clifford, 2021).

Identifying and treating epilepsy in its early stages can
make a critical and valuable difference for individuals with this
condition. Scalp electroencephalogram (EEG) is a non-intrusive
technique for measuring the electrical activity in the brain and
is a widely employed supplementary examination in diagnosing
epilepsy (Liang et al., 2020). During a seizure episode, the patient’s
EEG will exhibit significant abnormal patterns (Staba et al.,
2014). Doctors can use the examination of an EEG to help
determine if epilepsy is occurring. However, reviewing long-term
EEG requires doctors to invest much time and effort. Therefore,
developing automated epilepsy detection algorithms is crucial
(Si et al., 2023).

Researchers are actively working toward the development of
automated detection of epileptic seizures using EEG data. From
the initial attempts using hardware circuits to later utilizing time-
domain information and threshold-based methods for seizure
detection. The subsequent development involves using frequency-
domain features and extracting time-frequency characteristics (Xia
et al., 2015) for seizure detection.

Deep learning models are more resilient in computer vision
tasks compared to features extracted manually since their
introduction (Chen et al., 2024), speech recognition (Eris and
Akbal, 2024), and natural language processing (Luo et al., 2024).
Therefore, utilizing deep learning techniques to detect epileptic
seizures using EEG signals automatically has shown significant
prospects in making the most suitable and fastest clinical decisions
(Ahmad et al., 2023). In the last few years, various deep learning
models have been utilized for epileptic seizure detection, including
recurrent neural networks (Tuncer and Bolat, 2022), generative
adversarial networks (Rasheed et al., 2021), deep neural networks
(Liu and Richardson, 2021), hierarchical neural networks (Hu et al.,
2021), and convolutional neural networks. These models have
achieved promising results (Kaur et al., 2022).

Convolutional networks have shown further improvements in
performance after being trained end-to-end, pixel by pixel. With
the introduction of a Fully Convolutional Network (FCN), the
neural network design could handle inputs of varying sizes and
produce correspondingly-sized outputs through highly effective
inference and learning mechanisms (Chou et al., 2023). However,
FCN has not yet been widely applied in seizure detection.
Meanwhile, previous deep learning algorithms often neglected
the contributions of different channels to the classification task,
resulting in models with limited interpretability.

To overcome the problem above, an independent epilepsy
detection algorithm based on deep learning was introduced.
algorithm can autonomously extract temporal and spatial
information from multi-channel EEG data, enabling precise
identification of seizure events across diverse patients. This paper
makes several key contributions, including:

λ A CNN model detection algorithm incorporating the SE
(Squeeze-and-Excitation) module was proposed. This method
has been evaluated on the CHB-MIT dataset and has achieved
excellent performance.

λ For the first time, the upsampling method in the FCN model
was applied to seizure detection, achieved through the utilization
of deconvolution, which upscales the downscaled images from the

convolutional layers back to their original size, allowing for the
visualization of the processed EEG.

λ The EEG data was subjected to weight normalization to
quantify the varying contributions of each channel to seizure
detection. Then, the brain regions FZ, CZ, PZ, FT9, FT10,
and T8 were explored for their more significant influence
on epileptogenesis. As a result, the interpretability of the
model was enhanced.

The remaining section are as follows. Section “2 Deep learning”
analyzes related methods for epilepsy detection using deep learning,
including CNNs, LSTM and Transformer networks. Subsequently,
FCN was introduced. Section “3 Materials and methods” outlines
the approach employed in this study, encompassing the dataset,
enhanced seizure detection models, and the training methodology.
Section “4 Results” showcases the experimental results, featuring
a comparison with the baseline model and a visual examination
of the EEG channel weights. Section “5 Discussion” evaluates the
paper by examining its performance and the interpretability of the
proposed model. Section “6 Conclusion” provides a comprehensive
summary of the research in this paper, presents the obtained results,
and discusses the existing limitations and future prospects.

2 Related work

2.1 Deep learning

With the advancement of theoretical principles of computer
science and the availability of computational resources, deep
learning has outperformed conventional machine learning and
achieved better results in many fields (Si et al., 2021). Deep learning
algorithms can extract data features that are automated and robust
without the biases and complexities involved in feature engineering
by hand (LeCun et al., 2015). As a result, some deep learning
methods have been used for detecting epileptic seizures, including
CNN (Du and Liu, 2022; O’Shea et al., 2020; Abdulwahhab et al.,
2024),Long Short-Term Memory (LSTM) (Alharbi et al., 2024;
Singh and Malhotra, 2022), Transformer models (Hu et al., 2023),
and so on.

Ozdemir et al. (2021) introduced a novel approach that utilizes
the Short-Time Fourier Transform (SST) and CNN to detect and
forecast epileptic seizure episodes. The proposed method was
evaluated on the IKCU and CHB-MIT datasets and achieved high
accuracy and precision in detecting seizure episodes based on
segments. Albaqami et al. (2023) proposed a novel deep learning
network called Multi-Path Seizure Classification Network (MP-
SeizNet), which consists of a CNN and a Bidirectional Long Short-
Term Memory Neural Network (Bi-LSTM). The proposed method
was evaluated on the EEG epilepsy database from the Temple
University Hospital and achieved an F1 score of 87.6%. Li suggested
a method for predicting seizures in EEG data, which involves
using a Transformer-guided CNN (TGCNN) to extract both local
and global characteristics efficiently (Li et al., 2022). This method
combined different benefits of both CNN and Transformer models.
It achieved a sensitivity of 82.2%, an FPR (False Positive Rate) of
0.06/h, and an AUC (Area Under the Curve) of 83.5% on the Kaggle
database.

Since Shelhamer et al. (2017) proposed the FCN, it has
found diverse applications across multiple domains, such as image
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segmentation and hyperspectral image classification, achieving
excellent results. Jiang introduced a new end-to-end, pixel-
level Fully Convolutional Spatial Propagation Network (FCSPN),
consisting of a 3D-fully convolutional network (3D-FCN) and
a convolutional spatial propagation network (CSPN) (Jiang
et al., 2021). This method has achieved advanced performance
in hyperspectral image (HSI) classification. Shen et al. (2021)
proposed a method that combines a deep FCN with an effective
non-local module (ENL-FCN) for hyperspectral HSI classification.
The FCN takes the entire HSI as input in the proposed framework
and extracts spectral-spatial information within local receptive
fields (Shen et al., 2021). The proposed method achieved excellent
classification performance while maintaining lower computational
costs.

2.2 Explainable deep learning
architecture

In recent years, FCN has also been applied in medical
image processing. For example, Qiu has suggested a hybrid
framework that merges FCN and Multi-Layer Perceptron (MLP)
to generate high-resolution probability maps of diseases using local
brain structures. And generate precise and intuitive individual
Alzheimer’s disease risk visualization maps to achieve accurate
diagnosis. The diagnostic accuracy achieved by this framework is
comparable to that of neurologists (Qiu et al., 2020).

However, FCN has not yet been applied in seizure detection.
Meanwhile, Due to the opaque nature of deep learning models,
interpreting and comprehending the learned models in an
intuitive manner remains a significant challenge (Khan et al.,
2024). In particular, different channels of EEG signals contribute
differently to seizure detection and the impact of different brain
regions on seizure occurrence in the brain. Therefore, a CNN
detection algorithm that combines an SE module on top of
the FCN was proposed. The SE module offers the advantage
of being easily pluggable and has not been previously applied
to EEG-based seizure detection algorithms using deep learning.
The algorithm not only performs epilepsy detection but also
obtains the weights of each EEG signal channel, after which the
corresponding brain regions can be found according to the cascade
system correspondence. It enhances the model’s performance and
interpretability.

3 Materials and methods

3.1 EEG data

The CHB-MIT database was utilized as the EEG database in
this research. The details are as follows (Table 1). Records from 22
patients were available for this study, including 5 boys aged between
3 and 22 and 17 girls aged between 1.5 and 19. These records were
divided into 23 individual cases, with one (chb21) belonging to
the same patient as the case chb01 but collected 1.5 years later.
The specific details of each subject can be found in Table 2. The
chb24 case was included in the dataset in December 2010. However,
the exact age and gender of this individual are not accurate. Each

TABLE 1 CHB-MIT dataset details.

Dataset CHB-MIT

Type Scalp EEG

Subjects 23

Male 5

Female 17

Age Between 1.5 and 22

Electrodes 23

Sampling rate 256 Hz

EDF file for each patient Between 9 and 42

Average number of seizures per
Patient

5.75

Electrode positions The international 10–20 method

patient has between 9 and 42 consecutive.edf files, with the majority
of these files containing precise one-hour signals. Each patient has
an average of 5.75 seizure episodes of varying durations. In this
database, the EEG signals were universally sampled at 256 Hz with a
16-bit resolution. Most EEG recordings include 18–23 bipolar EEG
electrodes arranged according to the international 10–20 system
(Abdallah et al., 2023; Liu et al., 2022).

3.2 Data preprocessing

The processed data was passed through a sixth-order
Butterworth bandpass filter from 1 to 60 Hz to eliminate baseline
noise and high-frequency interference. The raw EEG signals were
resampled to a frequency of 128 Hz to reduce the data in the deep
learning model. Because epileptic seizures have an intermittent
nature, during seizures, EEG recordings are usually of shorter
duration compared to non-seizure periods. Therefore, following
previous research, the filtered EEG data was segmented into 2-s
epochs using a sliding window analysis (Park et al., 2020). All the
operations above were performed using the MNE-Python library
in Python (Jaiswal et al., 2020).

3.3 Proposed method

A lightweight CNN combined with an SE module was used to
build a seizure detection algorithm. Figure 1 shows a schematic
representation of the proposed method’s framework, which draws
inspiration from the FCN architecture for the model design, mainly
utilizing its skip connections and deconvolution (upsampling)
approach.

The EEG segment was initially configured with 32 channels.
Due to each component containing 2 s of EEG data with a
sampling rate of 128 Hz, the shape of the input EEG segment
would be (32, 256). The data segment is passed through a two-
dimensional convolutional layer in the next step. This layer consists
of 32 filters with a kernel size of (1, 4) and a stride of (1, 2).
Batch normalization and ReLU activation extract low-level features
and minimize data superfluity. Following that, the data is passed
through a convolutional layer with 64 filters, a kernel size of (1, 4),
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TABLE 2 Specifics of each subject.

No. Sex Age Number of used
seizures

Total duration (h) Mean seizure
duration(s)

1 F 11 7 40.55 63.15

2 M 11 3 35.27 57.34

3 F 14 7 38.00 57.43

4 M 22 4 156.07 94.50

5 F 7 5 39.00 111.60

6 F 1.5 10 66.74 15.30

7 F 14.5 3 67.05 108.34

8 M 3.5 5 20.01 183.80

9 F 10 4 67.87 69.00

10 M 3 6 50.02 65.50

11 F 12 3 34.79 268.67

12 F 2 27 20.69 36.63

13 F 3 12 33.00 44.59

14 F 9 8 26.00 22.13

15 M 16 20 40.01 99.60

16 F 7 10 19.00 8.40

17 F 12 3 21.01 97.67

18 F 18 6 35.63 52.84

19 F 19 3 29.93 78.67

20 F 6 8 27.60 36.75

21 F 13 4 32.83 49.75

22 F 9 3 31.00 68.00

23 F 6 7 26.56 60.58

24 N/A N/A 16 21.30 31.94

Summary – 9.98 184 979.93 74.22

and a stride of (1, 2). Batch normalization and ReLU activation are
applied again. The core idea of batch normalization is to perform
standardization on the inputs of each layer in the network. Batch
normalization layers can maintain the stability of the input data
distribution while preserving the network’s nonlinear expressive
power. The data is then passed through another convolutional layer
with 128 filters, a kernel size of (1, 4), and a stride of (1, 2). At this
stage, the output feature map shape would be (32× 32× 128). The
output features are passed through the SE module, which focuses
on channel relationships. The goal of the SE module is to enable the
model to learn the relative significance of diverse channel features
automatically (Hu et al., 2020).

The feature maps are then passed through a convolutional layer
with two filters, a kernel size of (1, 1) and a stride of (1, 1). Next, they
enter the first deconvolutional layer with two filters, a kernel size of
(1, 4) and a stride of (1, 2). At this stage, the output feature map
shape would be (32 × 64 × 2). The second convolutional layer has
two filters, a kernel size of (1, 1) and a stride of (1, 1). The output
features from the first convolutional layer are simultaneously fed
into a deconvolutional layer with two filters, a kernel size of (1,
4), and a stride of (1, 2). At this stage, the output feature map

shape would be (32 × 128 × 2). The output features from the
first convolutional layer are passed through a convolutional layer
with two filters, a kernel size of (1, 1), and a stride of (1, 1).
Simultaneously, the second deconvolutional layer’s output features
are fed into a deconvolutional layer with two filters, a kernel size of
(1, 4), and a stride of (1, 2). At this stage, the output feature map
shape would be (32 × 256 × 2). Finally, the output features are
passed through a flattened layer and a Multilayer Perceptron (MLP)
to output probabilities of epileptic and non-epileptic seizures (Table
3).

The details of SE are shown in Figure 2A. In SE, the first step
is to perform a Squeeze operation (Fsq(·)) on the input feature
U, resulting in zc. This operation (1) decreases the number of
dimensions in the feature map by taking the average value and
extracting global feature information.

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (1)

Next, the Excitation operation (Fex(·)) is performed, where z
represents the previous step’s output, and W1 and W2 denote linear
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FIGURE 1

The architecture and flow diagram of the proposed method. Conv Transposed: deconvolution.

layers. The computed s (2) in this step is the module’s core, meaning
the weights for each channel.

s = Fex(z,W) = σ(g(z,W)) = σ(W2δ(W1z)) (2)

Finally, the Scale operation [Fscale(·)] is performed. This results in
the final output X̌ of the SE module.

X̌ = Fscale(uc, sc) = sc (3)

Where uc represents a channel in U, and sc means the weight of the
channel. Therefore, it is equivalent to multiplying the value of each
channel by its weight.

3.4 Training and testing strategy

A leave-one-patient-out cross-validation approach was
implemented to assess the effectiveness of the method, specifically
designed for medical utilization. In the dataset of N patients,
one patient’s data served as the test set, while the data from
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TABLE 3 The number of parameters in each layer of the network.

Layer (type) Output shape

Input 32× 256

CNN_1 32× 128× 32

Batch_Normalization_1 32× 128× 32

CNN_2 32× 64× 64

Batch_Normalization_2 32× 64× 64

CNN_3 32× 32× 128

SE module 32× 32× 128

CNN_4 32× 32× 2

CNN_Transposed_1 32× 64× 2

CNN_Transposed_2 32× 128× 2

CNN_Transposed_3 32× 256× 2

CNN_1_1 32× 128× 2

CNN_2_1 32× 64× 2

Flatten 16,384

MLP head 2

the remaining N-1 patients were employed as the training and
validation sets. Each patient’s data was sequentially utilized as the
test set, repeating this process N times to ensure comprehensive
coverage (Park et al., 2020). Within the data of N-1 patients, 20%

was arbitrarily picked as the validation set, while the remaining
80% was utilized for training the model.

The specifics of the training and testing approach are illustrated
in Figure 3. During the training process, a batch size of 32 was
utilized, and the model was trained for 100 epochs. The model that
achieved the highest validation accuracy was chosen for the testing
stage. The model was developed using Python 3.10 and Keras 2.4.3,
and it is configured to operate on an NVIDIA GeForce RTX 3080
Ti GPU.

4 Results

Several metrics were presented for each technique to
thoroughly and fairly assess their results. These metrics include
sensitivity (SEN), specificity (SPE), geometric mean (G-Mean),
and the area under the receiver operating curve (AUC). Sensitivity
refers to the proportion of all actual epileptic samples that are
correctly classified as epileptic. High sensitivity means that the
model is capable of accurately identifying most epileptic seizures.
Specificity refers to the proportion of all actual non-epileptic
samples that are correctly classified as non-epileptic. High
specificity means that the model is capable of accurately identifying
most non-epileptic situations. The geometric mean is the geometric
mean of sensitivity and specificity, used to balance the model’s
sensitivity and specificity. A high AUC value indicates that the
model has a high level of accuracy in distinguishing between

FIGURE 2

Improved module: (A) the detailed architecture of SE (Squeeze and Excitation). (B) the detailed architecture of Inception. (C) the detailed
architecture of Resnet. (D) the detailed architecture of CBAM.
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FIGURE 3

The diagram of leave-one-patient-out cross-validation.

epileptic and non-epileptic samples. The expressions for SEN, SPE,
ACC, and G-Mean are as follows:

SEN =
TP

TP+ FN
(4)

SPE =
TN

TN+ FP
(5)

G−Mean =
√

SEN× SPE (6)

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(7)

FP, TP, FN, and TN denote false positive, true positive, false
negative, and true negative.

(1) Evaluation and comparison
Table 4 summarizes the detection evaluation results of the

SE model on the CHB-MIT dataset. For instance, the results
obtained from chb02 indicate that the model was trained using
data from 22 patients, excluding chb02, and chb02’s data was
used solely for testing the model’s performance. The SE model
achieved 79.6% SEN, 86.0% SPE, 82.7% G-Mean, and 0.89
AUC.

To further showcase the efficacy of the FCN architecture, three
new networks were constructed by removing the SE module from
the proposed network and incorporating Inception (Figure 2B),
Resnet (Figure 2C), and CBAM (Figure 2D) modules. Please refer
to the Supplementary material for more details. In addition, to
demonstrate the excellence of the approach, it is crucial to compare
it with other excellent seizure detection methods, including
EEGNet (Lawhern et al., 2018), CNN+LSTM (Xu et al., 2020),
and Wei-CNN (Craley et al., 2021). Table 5 provides a summary
of the result comparison of each technique on the CHB-MIT
datasets.

The methods mentioned above were experimented on the
CHBMIT dataset, and ROC curves (Figure 4) and performance
boxplots (Figure 5) were generated to compare the proposed
methods with the baseline methods. It can be observed that

the method achieves higher G-Mean, ACC, and AUC, indicating
superior performance.

To evaluate the contribution of the SE module to the
performance improvement of the proposed epilepsy detection
model, an ablation experiment was conducted on the proposed
method. Table 6 summarizes the results of the ablation experiments
conducted on the CHB-MIT dataset. The results show that the SE
module enhances the model’s performance across all five evaluation
metrics. Compared to other metrics, the SE module demonstrates
the greatest improvement in the model’s Spe.

(2) Explainability analysis
The main innovation of the proposed method is inspired

by the FCN architecture, specifically utilizing skip connections
and deconvolution (upsampling) techniques. The size of feature
maps decreases after the preceding convolutional operations,
and the deconvolution restores the reduced feature maps to
their original size. After the final deconvolution, the original
feature map was extracted. This layer was removed and processed
into a 2560 × 32 feature matrix in the main program. Since
the sampling frequency is 128, 2560 represents a 20-s EEG
feature map, and 32 represents 32 channels, including zero-
padding channels.

Perform the following operations on the feature matrix:

A = [a1,1, a2,1an,1] = Max (|b1,1|, |b1,2| . . . |b1,t|),

Max (|b2,1|, |b2,2| . . . |b2,t|)

. . . Max (|bn,1|, |bn,2| . . . |bn,t|)] (8)

C = [(
|b1,1|

a1,1
,
|b1,2|

a1,1
. . .
|b1,t|

a1,1
),

(
|b2,1|

a2,1
,
|b2,2|

a2,1
. . .
|b2,t|

a2,1
)

. . . (
|bn,1|
an,1

,
|bn,2|
an,1

. . .
|bn,t|
an,1

)] (9)
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TABLE 4 The performance of the SE model on the CHB-MIT dataset.

ID Sen (%) Spe (%) G-Mean (%) Acc Auc

chb01 96.8% 93.6% 95.2% 0.94 0.99

chb02 80.8% 92.9% 86.7% 0.93 0.96

chb03 99.5% 79.9% 89.2% 0.90 0.99

chb04 77.2% 88.0% 82.4% 0.88 0.89

chb05 96.1% 82.7% 89.1% 0.83 0.98

chb06 56.5% 75.7% 65.4% 0.75 0.51

chb07 92.6% 87.8% 90.2% 0.88 0.94

chb08 64.5% 92.8% 77.4% 0.92 0.86

chb09 99.3% 61.3% 78.0% 0.62 0.99

chb10 95.7% 77.6% 86.2% 0.78 0.97

chb11 56.9% 96.0% 73.9% 0.95 0.82

chb12 53.6% 86.0% 67.9% 0.85 0.89

chb13 57.4% 92.3% 72.8% 0.91 0.80

chb14 55.7% 87.4% 69.8% 0.87 0.73

chb15 78.7% 94.2% 86.1% 0.92 0.88

chb16 66.0% 84.6% 74.7% 0.85 0.79

chb17 94.2% 82.3% 88.0% 0.82 0.96

chb18 72.0% 79.5% 75.7% 0.79 0.88

chb19 81.9% 88.1% 84.9% 0.88 0.93

chb20 76.2% 79.4% 77.8% 0.90 0.84

chb21 82.4% 89.7% 86.0% 0.90 0.94

chb22 98.5% 95.4% 97.0% 0.95 1.00

chb23 97.2% 91.7% 94.4% 0.92 0.98

(Mean± SEM) 79.6%± 0.91% 86.0%± 0.57% 82.7%± 0.23% 0.87± 0.009 0.89± 0.006

SEM: standard error of mean.

TABLE 5 G-mean, Acc, Auc and Lat of each method.

Method G-mean
(%)

Acc Auc Lat(s)

EEGNet 81.3 0.84 0.85 13.9

CNN+LSTM 81.2 0.84 0.83 16.2

Wei-CNN 79.7 0.83 0.77 18.7

SE model 82.7 0.87 0.89 6.1

Inception 83.4 0.87 0.88 8.9

ResNet 84.6 0.83 0.87 7.3

CBAM 84.3 0.85 0.84 7.0

Lat: latency.

Where matrix b ∈ Rˆ(n × t). Took the absolute value of
each value in the feature matrix and normalized each row
by dividing it by the maximum value of that row. Mapped
the data of each pixel to the range of 0 to 1, resulting in
the weight matrix.

The diagram below shows the weights of each channel
in the model during the first seizure of patient CHB04
(Figure 6). The weight matrix was visualized by naming the

rows of channels as the names of the corresponding brain
regions. The channels corresponding to FP1-F7, F7-T7, T7-
P7, P7-O1, FP1-F3, FZ-CZ, CZ-PZ, FT9-FT10, and FT10-
T8 were filtered out. It can be observed that during the
first 20 s of the seizure, the brain regions FZ-CZ, FT9-
FT10, and FT10-T8 have a significant impact on the onset
of epilepsy. For the weight diagrams of the Inception, Resnet,
and CBAM modules (Figure 6), in addition to observing that
the channels corresponding to the brain regions FZ-CZ, FT9-
FT10, and FT10-T8 have relatively large weights, the channels
corresponding to the CZ-PZ brain region have significant weights.
A brain region map can be generated based on the channel
diagram and mark the corresponding brain regions (Figure 7).
Indeed, this further enhanced the interpretability of the FCN
structure.

5 Discussion

5.1 CNN algorithm and model benefits

The EEG is an often utilized medical technique for diagnosing
epilepsy (Duan et al., 2022). In the past few years, extensive interest
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FIGURE 4

The receiver operating characteristic curves (ROC) illustrate the performance of each network. (A) baseline methods (B) the proposed methods.

FIGURE 5

Box plot of the methods’ and baseline methods’ performance on the CHB-MIT dataset.

TABLE 6 The results of the ablation experiments on the CHB-MIT dataset.

Dataset SE module Sen (%) Spe (%) G-Mean (%) Acc Auc

CHB-MIT × 76.2% 81.8% 79.0% 0.84 0.85
√

79.6% 86.0% 82.7% 0.87 0.89

Bold values means effective.
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FIGURE 6

The weight distribution of each channel in each model during the first 20 s before the initial seizure in patient chb04. The channel weights
corresponding to the brain regions FZ-CZ, FT9-FT10, FT10-T8, and CZ-PZ are comparatively higher.

has been in seizure detection based on EEG. EEGNet, proposed
by Lawhern, is a compact CNN used for brain-computer interface
based on EEG (Lawhern et al., 2018). Xu et al. (2020) proposed a
1D CNN-LSTM model for automatically identifying and Detecting
epileptic seizures by analyzing EEG signals. Zuochen Wei proposed
a CNN method for automatically detecting epileptic EEG signal
segments and seizure events (Craley et al., 2021). These methods
have demonstrated excellent performance.

However, the comparative results on the CHB-MIT dataset
between the approach and these methods indicate that the designed
CNN-based epileptic seizure detection algorithm exhibits superior
advancement, stability, and reliability. This is because their CNN
algorithms overlooked the importance of different channels in
the feature maps during the convolution and pooling processes,

leading to a performance loss. The approach incorporated the
SE module, which helps reduce this loss by considering the
significance of different channels. The SE module explicitly
models interdependencies among convolutional feature channels
to enhance the network’s representation capability, allowing
feature recalibration to be performed (Hu et al., 2020). With
this mechanism, global information can selectively emphasize
enlightening characteristics and constrain usefulness (Chen et al.,
2022). Therefore, introducing the SE module can improve
performance metrics such as accuracy (Khan et al., 2022).

Moreover, skip connections were adopted from the FCN
architecture, involving the connection of fundamental and
advanced attributes. This enables the model better to capture
crucial elements at different scales (Liu et al., 2021). Enhancing
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FIGURE 7

According to the international 10–20 electrode placement system, the brain regions FZ, CZ, PZ, FT9, FT10, and T8 are marked. The BrainViewer is
used to visualize the brain atlas, labeling the corresponding areas and establishing functional connections at those positions.

discriminating epileptic abnormal signals improves classification
accuracy, ensuring the model’s robustness and precision. The skip
connections facilitate the gradient propagation of shallow features
to deeper layers, thereby accelerating the network’s training,
learning, and convergence speed (Huang et al., 2022). It helps
reduce training time and enhance the training and testing efficacy
of the model. Indeed, the CNN model detection algorithm, which
combines the SE module with the FCN base, enables more
accurate identification of epileptic seizures in different patients.
This approach effectively addresses the issue of doctors having
to spend significant time and effort reviewing long-term EEG
recordings.

5.2 Brain area exploration and weighted
significance

In addition, the seizure onset zone of epilepsy can be further
explored. Dissanayake et al. (2022) proposed two geometric
deep learning (GDL) techniques. One approach involved
utilizing graphs generated from the physical connections in the
electroencephalogram (EEG) grid, while the other employed deep
neural network-synthesized diagrams for predicting seizures in
epilepsy. This method aids in the localization of epileptic seizures
based on scalp EEG (Dissanayake et al., 2022). Narasimhan
et al. (2020) utilized non-directional resting-state connectivity
measurements to evaluate the connectivity between brain
regions in patients and discovered that areas with increased
epileptogenicity exhibited higher functional connectivity.

Similarly, the approach identifies seizures in different patients
and considers the impact of brain regions on seizure occurrence.
The system utilizes the FCN architecture with skip connections
and deconvolution (upsampling) method. Deconvolution
(upsampling) enlarges the shrunken feature maps to their
original dimensions. If upsampling is only applied to the final

layer’s feature map to obtain the actual image size, the results are
often unsatisfactory. This is because the last layer’s feature map is
too small, resulting in the loss of a significant amount of detail.
Therefore, global and local effects can be balanced by combining
the final layer (which contains global information) with shallower
layers (which contain local information) through skip connections.

Visualizing the upsampled feature map of the last layer and
normalizing it helps us obtain a weight matrix. In this weight
matrix, the value at each position represents the importance of
that position for epileptic seizures. By doing this, the classification
can be extended from the image-level to the pixel-level. Each
row of pixels forms a channel, allowing us to examine each row
channel’s weight distribution, thus quantifying each row channel’s
contribution to the occurrence of epileptic seizures. Each channel
can correspond to specific brain regions using the international 10–
20 electrode placement system. This allows us to investigate the
significant impact of brain regions such as FZ, CZ, PZ, FT9, FT10,
and T8 on the occurrence of epileptic seizures.

5.3 Limitations and future work

This paper proposes a compact CNN model on top of the
FCN architecture for epileptic seizure detection, integrating the
SE module. This algorithm is a method for independent epileptic
seizure detection within the same dataset. Nevertheless, building
an epileptic seizure detection algorithm that can generalize across
different datasets is a more significant challenge. Developing an
advanced algorithm for cross-dataset epileptic seizure detection is
the next objective, demanding enhanced generalization capabilities
from the algorithm.

In addition, while the contribution of EEG channel weights
to epileptic seizure detection has been quantified, it is also being
explored which brain regions play a significant role in the onset of
epileptic seizures. However, the contrast of the weights in the EEG
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channel map needs to be more evident. Therefore, the algorithm
still needs improvement to achieve better visualization and enhance
the interpretability of the model.

It has been observed that effective channels are not the same
across subjects and they may vary. In order to explore the variation
in effective channels and to make the proposed model more
generalizable, In the future, a dedicated dataset will be utilized for
multicenter cross-validation.

6 Conclusion

In this study, a lightweight CNN model incorporating
skip connections and deconvolution operations from the FCN
architecture was designed. The model was developed explicitly
for independent seizure detection in patients. To enhance the
model’s ability to recognize seizures, the SE module was introduced,
which focuses on channel relationships and automatically helps
the model learn the importance of different channel features. The
method was evaluated on the CHB-MIT dataset, which consists
of long-term continuous EEG data. The approach demonstrated
higher G-Mean, ACC, and AUC scores than the baseline methods,
indicating superior advancement, stability, and reliability. The
contributions of each channel to the seizure detection task have
also been quantified, which led us to find that the FZ, CZ, PZ,
FT9, FT10, and T8 brain regions have a more pronounced impact
on epileptic seizures. This analysis improves the interpretability
of the model. In summary, the approach holds great promise
in significantly reducing the workload for EEG examinations of
epileptic seizures, thus aiding the future clinical application of
seizure detection algorithms.
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