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Introduction: Alterations in multiple subregions of the human prefrontal cortex 
(PFC) have been heavily implicated in psychiatric diseases. Moreover, emerging 
evidence suggests that circadian rhythms in gene expression are present across 
the brain, including in the PFC, and that these rhythms are altered in disease. 
However, investigation into the potential circadian mechanisms underlying 
these diseases in animal models must contend with the fact that the human 
PFC is highly evolved and specialized relative to that of rodents.

Methods: Here, we use RNA sequencing to lay the groundwork for translational 
studies of molecular rhythms through a sex-specific, cross species comparison 
of transcriptomic rhythms between the mouse medial PFC (mPFC) and two 
subregions of the human PFC, the anterior cingulate cortex (ACC) and the 
dorsolateral PFC (DLPFC).

Results: We find that while circadian rhythm signaling is conserved across species 
and subregions, there is a phase shift in the expression of core clock genes between 
the mouse mPFC and human PFC subregions that differs by sex. Furthermore, we 
find that the identity of rhythmic transcripts is largely unique between the mouse 
mPFC and human PFC subregions, with the most overlap (20%, 236 transcripts) 
between the mouse mPFC and the human ACC in females. Nevertheless, we find 
that basic biological processes are enriched for rhythmic transcripts across species, 
with key differences between regions and sexes.

Discussion: Together, this work highlights both the evolutionary conservation of 
transcriptomic rhythms and the advancement of the human PFC, underscoring the 
importance of considering cross-species differences when using animal models.
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1 Introduction

The human prefrontal cortex (PFC) is a complex structure associated with many functions, 
including higher order cognitive function, goal directed behavior, and emotional regulation 
(Fuster, 2001). Two regions of particular interest are the dorsolateral prefrontal cortex 
(DLPFC), which is associated with cognition and plays a critical role in working memory, and 
the anterior cingulate cortex (ACC), which is implicated in both emotional and cognitive 
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functions (Goldman-Rakic, 1995; Fuster, 2001; Yücel et al., 2003). 
Notably, alterations in the DLPFC and the ACC have been linked to 
psychiatric diseases such as schizophrenia and major depressive 
disorder (MDD; Haznedar et al., 1997; Yücel et al., 2003; Glausier and 
Lewis, 2018).

To investigate the role of the PFC in the pathophysiology of 
psychiatric diseases, many studies utilize mouse models. However, there 
is widespread debate about the cross-species homology between the 
human and mouse PFC (Carlén, 2017). Indeed, while similar functions 
are attributed to both the mouse medial PFC (mPFC) and the human 
DLPFC, such as delay period activity during a working memory task 
(Liu et al., 2014), the cytoarchitecture of the mouse mPFC most closely 
resembles that of the human ACC. Specifically, both the mouse mPFC 
and the human ACC lack a granular layer 4 (Carlén, 2017). Likewise, 
studies have suggested a role of the rodent mPFC in conflict monitoring, 
reminiscent of findings in the human ACC (Botvinick et al., 2004; 
Bissonette and Roesch, 2015). Therefore, it remains unlikely that the 
mouse mPFC fully encapsulates the functions of a single human PFC 
subregion; instead, it likely represents a spectrum of features associated 
with different subregions of the highly diversified human PFC.

Circadian rhythms are ~24-h rhythms present in biological 
processes. These rhythms are produced through the molecular clock, a 
transcriptional-translational feedback loop (TTFL) consisting of 
CLOCK and BMAL1, which dimerize as proteins and promote the 
transcription of the Per and Cry genes. After translation, the PER and 
CRY proteins then feedback and inhibit the activity of the CLOCK and 
BMAL1 proteins, creating an ~24 h cycle of gene expression (Buhr and 
Takahashi, 2013). Beyond the TTFL, the proteins encoded by core clock 
genes bind to E-box elements, generating rhythms in the expression of 
up to 80% of protein coding genes (Oishi et al., 2003; Mure et al., 2018). 
Interestingly, polymorphisms in core clock genes, as well as changes in 
rhythms, have been linked to multiple psychiatric diseases and are 
thought to represent a key feature of disease pathophysiology (McClung, 
2007; McCarthy and Welsh, 2012; Johansson et al., 2016). Indeed, recent 
studies using human postmortem tissue have shown that there are broad 
changes in transcriptomic rhythms in the PFC of people with psychiatric 
diseases, including dampened rhythms in both the DLPFC and ACC of 
individuals with MDD and widespread circadian reprogramming in the 
DLPFC in schizophrenia (Li et al., 2013; Seney et al., 2019). As daily 
rhythms are present in functions associated with the PFC (Woodruff 
et al., 2018; Munnilari et al., 2023), alterations in transcriptomic rhythms 
may contribute to broad PFC dysfunction in psychiatric disease.

In this study, we use RNA sequencing to compare rhythms in the 
transcriptome of the mouse mPFC to two psychiatric disease relevant 
subregions of the human PFC, the DLPFC and the ACC. Our results 
indicate that rhythms in core molecular clock components and 
circadian rhythm signaling are broadly conserved. We additionally 
uncover species, sex, and subregion differences in the identity and 
associated biological functions of rhythmic transcripts.

2 Methods

2.1 Mouse tissue collection and RNA 
extraction

Age-matched (~12–14 weeks) adult male and female C57BL/6J 
(Jax ID: 000664) mice were group housed with mice of the same sex 

under a 12:12 light–dark cycle [lights on 0700, zeitgeber time (ZT0), 
lights off 1900 (ZT12)] for at least 2 weeks prior to sacrifice. Mice had 
access to food and water ad libitum and all experiments were performed 
in compliance with University of Pittsburgh Institutional Animal Care 
and Use Committee guidelines. The number of animals used was 
determined by a previous study modeling the effects of experimental 
design and sample size on rhythm detection (Zong et al., 2023).

Mice were sacrificed via cervical dislocation at 4-h intervals across 
24 h (ZT2, 6, 10, 14, 18, 22); brains were removed and immediately 
placed on dry ice. Serial 150 μm coronal sections were cut on a 
cryostat (Leica Biosystems, Wetzlar, Germany) and tissue punches 
(1 mm, centered between hemispheres) of the mPFC were taken. The 
mPFC (containing the anterior cingulate and prelimbic cortices) was 
visually identified using the Allen Mouse Brain Coronal Atlas (Allen 
Brain Institute, Seattle, WA, USA) as a reference. RNA was extracted 
from mPFC tissue punches using a RNeasy Plus Micro kit (Qiagen, 
Hilden, Germany).

2.2 Mouse sequencing and data processing

Samples were assessed for concentration (Qubit, Thermo Fisher 
Scientific, Waltham, MA, USA) and RNA integrity (average: 9.1, 
standard deviation: 0.48; Agilent RNA 6000 Kit, Agilent, Santa Clara, 
CA, USA). Library preparation was performed using a SMART 
Stranded Total RNA kit (Takara, Kusatsu, Japan) and samples were 
sequenced (2x101bp; 40 million reads/sample) using a Nova-Seq S4 
(Illumina, San Diego, CA, USA). One sample (female ZT10) was 
excluded for failure to generate a library, leaving 4–5 mice/sex/
timepoint for downstream analysis (59 mice total). Samples were 
evaluated for read quality using FASTQC and the per base sequence 
quality was high (average > 34). Reads were aligned to the mouse 
reference genome (Mus musculus Ensembl GRCm38), converted to 
expression count data (HTSeq), and transformed to log2CPM 
(CPM = counts per million). Information on read counts can be found 
in Supplementary Table S1. Counts were filtered with additional mouse 
mPFC sequencing samples and transcripts that did not meet a criterion 
of log2CPM > 1 in >50% of the samples in at least one group, as well as 
genes on the Y-chromosome, were removed. Raw counts of the 13,102 
transcripts that met the filtering criteria were normalized by the 
median of ratios method in DESeq2 and log2 transformed (Love et al., 
2014). To identify transcriptomic rhythms, we utilized a parametric 
cosinor model (Cornelissen, 2014), whereby gene expression over a 
24-h period was fitted to a sinusoidal curve. R2 values were calculated 
as a measure of goodness of fit. p-values and FDR-corrected q-values 
were calculated from the F-test and used to determine rhythmicity.

2.3 Human samples

Sequencing data for the human samples were obtained from the 
CommonMind Consortium. All subjects had a known time of death, 
were <65 years old, and had a postmortem interval (PMI) of <35 h. 
This cohort has previously been described in detail (Logan et  al., 
2022). Briefly, subjects were matched between sexes within subregion 
for age, PMI, RNA integrity, and cause of death. There were no 
significant differences in these variables between sexes. In total, 84 
subjects (42 per sex) were used for analysis of the DLPFC, and 76 
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subjects (38 per sex) were used for analysis of the ACC. Transcripts 
were filtered based on the criteria outlined above and Y-chromosome 
and unidentified transcripts were removed, leaving 15,239 transcripts 
for downstream analysis. Rhythmicity analysis was performed as 
described in (Logan et al., 2022), with subject time of death normalized 
to sunrise.

2.4 Comparison of rhythms and 
downstream analysis

Due to the exploratory nature of this study and limited sample 
sizes, transcripts with a p < 0.05 were considered rhythmic and 
were used for downstream analysis. This is consistent with previous 
studies examining transcriptomic rhythms in the human and 
mouse brain (Li et al., 2013; Chen et al., 2016; Seney et al., 2019; 
Petersen et al., 2024). We also utilized a threshold-free approach 
(rank-rank hypergeometric overlap, abbreviated as RRHO) to 
assess differences in rhythmicity across groups (Cahill et al., 2018). 
Here, transcripts are ordered along the axes by -log10(p-value) and 
a heatmap is generated to visualize the overlap of rhythmic 
transcripts. To compare the phase shift in the timing of conserved 
canonical circadian genes (PER1-3, DBP, CIART, and NR1D1) 
across species by sex, differences in the peak times of these 
transcripts between the human PFC subregions and the mouse 
PFC were pooled within sex and compared across sexes using a 
random effects model in the metafor package (R software). 
Ingenuity Pathway Analysis (IPA; Qiagen) was used to assess 
functional pathways associated with rhythmic transcripts 
(p  < 0.05); a user-supplied background list of all transcripts 
meeting our filtering criteria was used for each analysis. Pathways 
that contained fewer than 15 genes were excluded. To compare 
between groups, the top  10 pathways enriched for rhythmic 

transcripts in each group were used to assess significant enrichment 
in the opposing group. Pathways were considered enriched with a 
p < 0.05 (−log10p-value>1.3).

3 Results

3.1 Transcripts in the mouse mPFC show 
diurnal rhythms in expression

Similar to a previous study which found that ~10% of transcripts in 
the mouse PFC display diurnal rhythms in their expression (Yang et al., 
2007), we find that ~12% of transcripts are rhythmic in the mouse mPFC 
(1,521 transcripts; p < 0.05 cutoff; Figure 1A; Supplementary Table S2). 
The top rhythmic transcripts, determined by p-value, include the core 
clock component Arntl, which encodes BMAL1, as well as transcripts 
such as Ciart, Dbp, and Tef, which have previously been shown to have 
conserved rhythmicity across tissues (Yan et al., 2008; Mure et al., 2018; 
Figure 1B). Scatterplots showing the expression of the top two rhythmic 
transcripts over a 24-h period, along with the fitted sinusoidal curve, are 
displayed in Figure 1C. Using an additional cohort of mice, RNAscope 
was used to confirm diurnal rhythms in the core clock gene Per2 
(Supplementary materials and methods; Supplementary Figure S1).

3.2 Rhythms in transcripts associated with 
the molecular clock are conserved across 
species

To compare transcriptomic rhythms between the mouse mPFC 
and human PFC subregions, we utilized a cohort containing data from 
the DLPFC and the ACC that has been previously described (Logan 
et  al., 2022). As this study found extensive sex differences in 

FIGURE 1

Rhythms in the mouse mPFC transcriptome. (A) The number (and percentage) of rhythmic transcripts detected in the mouse mPFC at different 
significance cutoffs. At a cutoff of p < 0.05, 12% of transcripts in the mPFC are rhythmic. (B) The top 10 rhythmic transcripts in the mouse mPFC, as 
determined by p-value. Top rhythmic transcripts include known circadian genes including the core molecular clock component Arntl. (C) Scatterplots 
depicting rhythmic expression across 24 h of the top two rhythmic transcripts. Time of death is depicted on the X-axis while expression is depicted on 
the Y-axis. Each point represents one subject. n = 9-10/timepoint. mPFC = medial prefrontal cortex, ZT = zeitgeber time.
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rhythmicity within the DLPFC and ACC, we performed our cross-
species analysis stratified by sex. There are eight transcripts with 
conserved rhythms in the mouse mPFC and human PFC subregions 
of both sexes: CHRM4, CIART, DBP, KANSL3, NR1D1, PER1, PER2, 
and PER3. The majority of these transcripts (6/8) are associated with 
the molecular clock either directly (PER1-3) or through auxiliary 
loops that help to regulate the TTFL (CIART, DBP, and NR1D1; Buhr 
and Takahashi, 2013; Anafi et al., 2014; Figure 2). This is consistent 
with previous studies showing that rhythms in transcripts associated 
with the molecular clock are conserved between mice and humans in 
the brain (Li et al., 2013).

3.3 Peak times of canonical circadian 
transcripts differ across species by sex

We next determined how canonical circadian transcripts differ in 
their timing between the mouse mPFC and human PFC subregions 
(Table 1). We find a phase shift across species that differs by sex, with 
known circadian transcripts largely peaking ~12 h apart between the 
mouse mPFC and human PFC subregions in males. However, the 
difference in the peak time of canonical circadian transcripts across 
species is significantly smaller (p  = 0.002) in females, with most 
transcripts peaking only ~9 h apart. Moreover, previous studies have 
shown that in both the mouse suprachiasmatic nucleus (SCN) and the 
human PFC, PER1 peaks first, followed by PER3, and then PER2 
(Takumi et al., 1998; Li et al., 2013), a pattern that we also observe 
across species in males. However, this temporal sequence is not 
observed in females in either the mouse mPFC or the human 
ACC. Therefore, while canonical circadian transcripts peak in 
opposing phases in the mouse mPFC and human PFC subregions, a 
finding that likely reflects differences in the active phase of each 
species, we  also find sex differences in the timing of core 
clock components.

3.4 Largest overlap in the rhythmic 
transcriptome between the mouse mPFC 
and ACC in females

To examine transcriptome-wide similarities, or differences, in 
rhythms between the mouse mPFC and human PFC subregions, 
we next assessed the degree of overlap in rhythmic transcripts across 
species. When comparing rhythmic transcripts (p < 0.05) from each 
human PFC subregion to the mouse mPFC, we find that ~5–10% of 
rhythmic transcripts are shared across species (Figure 3A), except for 
between the mouse mPFC and the ACC in females. Here, 20% (236 
transcripts) of rhythmic transcripts in the mouse mPFC are also 
rhythmic in the human ACC. Notably, this overlap is not reciprocal, 
as only 8% of rhythmic transcripts in the human ACC are also 
rhythmic in the mouse mPFC in females. Using a more stringent 
significance threshold of p < 0.01, we confirm that the greatest number 
of rhythmic transcripts (21 transcripts) overlaps between the mouse 
mPFC and human ACC in females (Supplementary Figure S2).

We next used rank-rank hypergeometric overlap (RRHO) plots as 
a threshold-free approach. Once more, we find that among all groups, 
there is the most overlap in rhythmic transcripts between the human 
ACC and the mouse mPFC from female subjects (Figure  3B). 
Rhythmic transcripts in the DLPFC of female subjects and the mPFC 

of female mice also show slight overlap, although less than that of the 
ACC. Notably, the RRHO analysis only uses transcripts that are 
expressed in both the mouse mPFC and human PFC subregions, 
suggesting that there are broad cross-species differences in rhythmicity 
even among the same subset of transcripts.

3.5 Conservation of circadian rhythm 
signaling

Although the identity of rhythmic transcripts is largely distinct 
between the mouse mPFC and human PFC subregions, we  next 
determined if the functions of rhythmic transcripts are conserved. 
Using Ingenuity Pathway Analysis (IPA), we  find that circadian 
rhythm signaling is found among the top 10 enriched pathways in all 
sexes, species, and subregions (Figures 3C,D).

In males, two additional pathways (senescence signaling and 
myelination signaling) are enriched for rhythmic transcripts in both 
the human ACC and the mouse mPFC (Figure 3C-top). Myelination 
signaling is also enriched for rhythmic transcripts in the DLPFC in 
males, suggesting a sex-specific conservation of rhythms in this 
process (Figure 3C-bottom). Additional pathways enriched in both 
the human DLPFC and the mouse mPFC of males include those 
associated with pain (neuropathic pain signaling in dorsal horn 
neurons), cytokine signaling (TGF-β signaling), and mitogen-
activated protein (MAP) kinase signaling (LPS stimulated MAPK 
signaling). Many transcripts belonging to the MAP kinase family are 
also found within the enriched gonadotropin-releasing hormone 
signaling pathway. This suggests a conserved role of rhythms in 
intercellular signal transduction between the mouse mPFC and the 
human DLPFC in males.

We next performed the same analysis in females (Figure 3D). In 
addition to circadian rhythm signaling, four additional pathways are 
significantly enriched for rhythmic transcripts in both the human 
ACC and the mouse mPFC (Figure  3D-top). These pathways are 
associated with synaptogenesis, protein folding (unfolded protein 
response), autophagy, and lysosomal degradation (CLEAR signaling). 
When pathways enriched for rhythmic transcripts in the DLPFC and 
the mouse mPFC of female subjects are compared, we find less overlap 
in enriched pathways, consistent with our finding of less overlap in the 
identity of rhythmic transcripts (Figure 3D-bottom). In addition to 
circadian rhythm signaling, there are two pathways with significant 
overlap between the DLPFC and mPFC in females: sirtuin signaling 
and cAMP-mediated signaling. Many of the rhythmic transcripts that 
belong to the cAMP-mediated signaling pathway are G-protein 
coupled receptors (GPCRs), although the type of receptor differs 
between the human DLPFC and the mouse mPFC. Together, this 
indicates that although rhythmic transcripts differ in their identity, key 
biological processes, including neuronal signaling and protein 
processing, are enriched for rhythmic transcripts across species in 
females. However, in both sexes, over half of the enriched pathways 
are distinct between the mouse mPFC and human PFC subregions.

We next performed a cross species analysis of rhythms in the 
mouse mPFC and an evolutionarily intermediate species, using 
previously published data from male baboons (Mure et al., 2018). 
While there are methodological differences between studies, we find 
that when compared to mice of the same sex, ~20% of rhythmic 
transcripts in the mouse mPFC are also rhythmic in the baboon PFC 
(Supplementary Figure S3A). This is more than twice the proportion 
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FIGURE 2

Rhythms in canonical circadian transcripts are conserved across species. Scatterplots depicting the expression of canonical circadian transcripts PER1, 
PER2, and NR1D1 in the mouse mPFC and both human PFC subregions, separated by sex. Time of death is depicted on the X-axis while expression is 
depicted on the Y-axis. Each point represents one subject. mPFC = medial prefrontal cortex, DLPFC = dorsolateral prefrontal cortex, ACC = anterior 
cingulate cortex, ZT = zeitgeber time.
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of rhythmic transcripts that are shared between the mouse mPFC and 
human PFC subregions in males. Moreover, there is greater overlap in 
the enriched biological processes (9 pathways) between the baboon 
PFC and mouse mPFC than between any of the human PFC 
subregions and the mouse mPFC (Supplementary Figure S3B). This 
suggests that there is greater conservation of transcriptomic rhythms 
between the mouse and baboon PFC than between the mouse and 
human PFC.

3.6 Temporal patterns of rhythmic gene 
expression differ by species and sex

To examine overall patterns of rhythmic transcript expression 
across species, the percentage of rhythmic transcripts peaking at each 
timepoint (ZT) was plotted across 24 h in two-hour bins. In males, 
nearly 60% of all rhythmic transcripts in the mouse mPFC peak 
during the active (dark) phase, with peak times fairly evenly 
distributed across the phase (Figure 4A). Similarly, in both human 
PFC subregions, the majority of rhythmic transcripts peak in the 
active (light) phase, with ~68%, or over 80%, of rhythmic transcripts 
peaking during the active (light) phase in the human ACC and 
DLPFC, respectively.

In females, rhythmic transcripts in the mouse mPFC largely fall 
into two groups, with approximately half peaking in each phase 
(Figure 4B). Similarly, large groups of rhythmic transcripts in the 
human ACC peak in each phase, with ~57% peaking in the active 
(light) phase and ~ 43% peaking in the inactive (dark) phase. In 
contrast, in the human DLPFC of female subjects, most (~70%) of the 
rhythmic transcripts peak during the active (light) phase. These data 
demonstrate that although the expression of core clock genes can 
be predicted by the active phase of the species, the temporal patterns 
of total rhythmic transcripts are highly variable between species, PFC 
subregions, and even sexes.

4 Discussion

Recent literature has highlighted the importance of transcriptomic 
rhythms in brain health and disease (Li et al., 2013; Seney et al., 2019; 
Logan et al., 2022). In this study, we compared rhythms between the 
mouse mPFC and two subregions of the human PFC, the ACC and the 
DLPFC, that are heavily implicated in psychiatric disorders (Haznedar 
et al., 1997; Yücel et al., 2003; Glausier and Lewis, 2018). Consistent 
with previous studies, we  find that canonical circadian genes are 

rhythmic in both humans and mice (Yan et al., 2008; Li et al., 2013). 
These conserved rhythmic transcripts largely peak in opposing phases 
in mice and humans, likely reflecting differences in the active phase of 
each species. However, we find that the difference in timing of core 
circadian genes between species depends on sex, with females showing 
a smaller shift than males (~9 h vs. ~12 h). This may be driven by sex 
differences in the rhythms of core clock genes within species. Indeed, 
previous studies found that the peak time of core clock gene expression 
differs by sex in the DLPFC of elderly subjects (Lim et  al., 2013), 
whereas studies in the rodent PFC found that rhythms in core clock 
genes were more robust in males (Chun et  al., 2015). While the 
mechanisms underlying sex differences in transcriptomic rhythms are 
currently unknown, we hypothesize that circulating hormones may 
have an effect. Indeed, the SCN expresses both estrogen and androgen 
receptors (Karatsoreos et al., 2007; Hatcher et al., 2020) and systemic 
estradiol administration has been shown to phase advance core clock 
gene expression in the SCN (Nakamura et al., 2005). Moreover, one 
study found that in the PFC, rhythms in Arntl differed between rats 
with a normal estrous cycle and non-cycling rats, while rhythms in 
Per1 and Per2 were unaffected (Chun et al., 2015). Although data on 
the estrous phase/menstrual cycle and menopausal status was not 
assessed/available in this study, the proportion of rhythmic transcripts 
is not consistently lower in female subjects. Therefore, potential 
variability due to changes in the levels of sex hormones across the 
estrous/menstrual cycle and menopause likely does not impair our 
ability to detect rhythmic transcripts. Nevertheless, the role of sex 
hormones on age-related changes in rhythmic gene expression remains 
an important area of future research.

While most rhythmic transcripts that are broadly conserved 
across species and sexes are closely associated with the molecular 
clock, rhythms in two transcripts, KANSL3 and CHRM4, are also 
broadly conserved. KANSL3, which is involved in chromatin 
remodeling, plays a role in regulating the transcription of 
housekeeping genes and facilitates the transcription of mitochondrial 
DNA in cells with high metabolic rates, such as neurons (Chatterjee 
et al., 2016; Sheikh et al., 2019). The conserved rhythmicity of this 
transcript suggests that molecular clock control over the transcription 
of housekeeping genes and mitochondrial function are evolutionarily 
conserved. On the other hand, CHRM4 encodes the muscarinic 
acetylcholine receptor M4, which has been proposed as a therapeutic 
target for schizophrenia (Gibbons and Dean, 2016; Gould et al., 2018), 
Therefore, conservation of rhythms in CHRM4 across species may 
be important for successful translation of these drugs into humans.

Nevertheless, we find that most of the rhythmic transcripts in 
the human PFC subregions are not rhythmic in the mouse mPFC 

TABLE 1 Peak times of conserved transcripts differ across species by sex.

mPFC M DLPFC M ACC M mPFC F DLPFC F ACC F

PER1 14.5 3.8 (−10.7) 5 (−9.5) 15.2 5.8 (−9.4) 6.5 (–8.7)

PER2 18.5 6.6 (−11.9) 6.1 (−12.4) 17.1 9 (−8.1) 7.9 (–9.2)

PER3 17.9 5.6 (−12.3) 5.4 (−12.5) 17.8 6.2 (−11.6) 5.5 (–12.3)

DBP 15 3.5 (−11.5) 2.9 (−12.1) 13.5 4.1 (−9.4) 4.9 (–8.9)

CIART 13.6 3 (−10.6) 2.2 (−11.4) 12.5 2.9 (−9.6) 3.8 (–8.7)

NR1D1 11 3.9 (−7.1) 3.6 (−7.4) 12.5 2.8 (−9.7) 4.3 (–8.2)

The peak time (ZT) of all transcripts that are rhythmic in the mouse mPFC and both human PFC subregions in both sexes. The difference between the peak time in the human PFC subregion 
and the mouse mPFC of the respective sex is shown in parentheses. Broadly, transcripts peak closer in time across species in females than in males. mPFC = medial prefrontal cortex, 
DLPFC = dorsolateral prefrontal cortex, ACC = anterior cingulate cortex, ZT = zeitgeber time.
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FIGURE 3

Greatest overlap in rhythmic transcripts between the mPFC and ACC in females. (A) Venn diagrams depicting the overlap in rhythmic transcripts 
(p < 0.05) between the mouse mPFC and human PFC subregions, separated by sex. Twenty percent of rhythmic transcripts in the mouse mPFC are 
also rhythmic in the human ACC in females. All other comparisons across species share ~5–10% of rhythmic transcripts. (B) Rank-rank hypergeometric 
overlap plots visualizing the overlap in rhythmic transcripts between the mouse mPFC and human PFC subregions. This threshold-free approach 
indicates that there is the most overlap in rhythmic transcripts between the mouse mPFC and the human ACC in females. (C) Ingenuity Pathway 
Analysis (IPA) was used to determine the top 10 pathways enriched for rhythmic transcripts (p < 0.05) and their overlap between the mouse mPFC and 
human PFC subregions in males. (D) The top 10 pathways enriched for rhythmic transcripts (p < 0.05), determined by IPA, and their overlap between 
the mouse mPFC and human PFC subregions in females. While the overlap in biological processes associated with rhythmic transcripts differs by 
region and sex, circadian rhythm signaling is among the top 10 pathways in the mouse mPFC and the human PFC subregions of both sexes. 
mPFC = medial prefrontal cortex, DLPFC = dorsolateral prefrontal cortex, ACC = anterior cingulate cortex.
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of the same sex. Indeed, while 20% of rhythmic transcripts in the 
mouse mPFC are rhythmic in the ACC in females, only 8% of 
rhythmic transcripts in the human ACC are rhythmic in the mouse 
mPFC. This suggests that rhythms in gene expression changed as 
the human PFC evolved and became more specialized. Our 
findings are consistent with theories of PFC evolution, whereby 
agranular and dysgranular regions, such as the ACC, evolved 
earlier, while granular regions of the PFC, such as the DLPFC, 
evolved later and are considered to be unique to primates (Preuss 
and Wise, 2022). The idea that molecular rhythms diverged across 
evolution is further supported by our finding that there is greater 
overlap in rhythmic transcripts between the baboon PFC and the 
mouse mPFC, as well as findings from a recent paper showing that 
up to 38% of rhythmic transcripts are shared between mice and 
humans in the more evolutionarily conserved striatum (Petersen 
et al., 2024). Notably, however, we find that the elevated overlap 
between the mouse mPFC and the human ACC is specific to 
females, a finding perhaps driven by previously described sex 
differences in rhythmicity in the human ACC (Logan et al., 2022).

When the biological processes associated with rhythmic transcripts 
are assessed, we  find that pathways associated with intercellular 
communication and the integration of extracellular signals are 
significantly enriched for rhythmic transcripts in both the mouse mPFC 
and human PFC subregions. The enrichment of rhythmic transcripts in 
these pathways suggests that control of the molecular clock over 
mechanisms associated with cellular signaling, including 
neurotransmission, are broadly conserved. Moreover, while the 
rhythmic transcripts belonging to each pathway are generally different 
between mouse and human, some are closely related. This is particularly 
true within the unfolded protein response pathway, whereby many 
rhythmic transcripts in both the human ACC and the mouse mPFC 
encode proteins in the DNAJ heat shock family. Of note, while this study 
and many others have focused on rhythms in the transcriptome, recent 
advances have made the measurement of rhythms in the proteome 
possible (Robles et al., 2014; Wang et al., 2018; Brüning et al., 2019; Noya 
et  al., 2019). Therefore, future studies examining the relationship 
between transcriptomic rhythms and proteomic rhythms in the mouse 
and human PFC will provide further insight into the role of circadian 
rhythms on physiological processes in the brain.

Similar to previous studies, which found that the timing of total 
rhythmic transcripts varies widely even in anatomically adjacent 
tissues (Mure et al., 2018), we find broad differences in the temporal 
patterns of rhythmic gene expression across PFC subregions, sexes, 
and species. These patterns are much more variable than the timing of 
core clock genes, suggesting that they are generated downstream of 
the molecular clock. Indeed, studies have found that many targets of 
the molecular clock are transcription factors, resulting in rhythms in 
gene expression that are tissue specific (Miller et al., 2007). It is likely 
that a similar mechanism underlies the differences found in this study. 
Understanding temporal patterns in gene expression, and what drives 
them, may have clinical implications for psychiatry. For example, a 
recent study found that the time in which antipsychotics were 
administered affected the development of metabolic side effects in 
both humans and mice (Zapata et al., 2022). However, the timing 
depended on the active phase of each species, highlighting the 
importance of considering cross-species differences in rhythms when 
translating preclinical findings into humans.

Differences in rhythms between the mouse mPFC and human 
PFC subregions may be  partially attributable to cross-species 
differences in the cellular makeup of these regions. Indeed, the 
expression of markers used to define individual cell types differs 
across species in the cortex and studies have shown that, even within 
conserved cell types, gene expression differs between mice and 
humans (Zeng et al., 2012; Hodge et al., 2019). Moreover, differences 
in the timing of transcripts across cell types may make transcripts 
appear non-rhythmic in homogenate tissue, as one study in the mouse 
SCN found that core clock genes peak earlier in neurons relative to 
non-neuronal cells (Wen et al., 2020). It remains unknown whether 
similar differences in timing exist across cell types in the PFC and 
whether these differences are conserved across species.

Variation in the light–dark cycle may also contribute to the 
observed differences in rhythmicity between the mouse mPFC and 
human PFC subregions. While mice in this study were housed under 
a strict 12:12 light–dark cycle, the light–dark cycle of the human 
subjects was likely more variable. While the time of death of human 
subjects is normalized to sunrise, we cannot eliminate the effect of 
artificial light or differences in behavioral rhythms. Therefore, it is 
likely that increased variability in human samples may result in an 

FIGURE 4

Temporal patterns of rhythmic expression vary by region, sex, and species. (A,B) The peak time of rhythmic transcripts (p < 0.05), plotted as the 
percentage of total rhythmic transcripts peaking in each 2-h bin across 24 h (ZT) in (A) males and (B) females. In males, rhythmic transcripts largely 
peak in the opposite phase between the mouse mPFC and human PFC subregions. In females, over half of rhythmic transcripts peak in the active 
phase (light) in humans, whereas about half of transcripts peak in each phase in the mouse mPFC. mPFC = medial prefrontal cortex, 
DLPFC = dorsolateral prefrontal cortex, ACC = anterior cingulate cortex, ZT = zeitgeber time.
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underestimation of true rhythmic transcripts and/or lower amplitude 
rhythms. Due to this variability, consistent with previous studies (Li 
et al., 2013; Chen et al., 2016; Seney et al., 2019; Petersen et al., 2024), 
we utilized a less stringent p-value for this exploratory analysis. While 
our percentage of rhythmic transcripts in the mouse mPFC is similar 
to what has been described in previous studies (Yang et al., 2007), 
we would undoubtedly identify additional rhythmic transcripts in 
humans with higher sample sizes and more statistical power.

As over 80% of proteins identified as druggable targets by the FDA 
show rhythms in gene expression (Mure et  al., 2018), this study 
provides an important translational framework for understanding 
how these rhythms differ across species. These findings paint a 
complex picture, whereby molecular rhythms show distinct patterns 
based on sex, species, and PFC subregion, likely reflecting the unique 
functions of rhythmicity in the highly specialized human PFC. Given 
that patterns of rhythmic gene expression show extensive changes in 
the brains of individuals with psychiatric diseases, it is imperative to 
carefully consider differences in rhythms between species when mice 
are used for mechanistic studies into these disorders.
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