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Neurodevelopmental disorders (NDDs) affect 4.7% of the global population and

are associated with delays in brain development and a spectrum of impairments

that can lead to lifelong disability and even mortality. Identification of biomarkers

for accurate diagnosis and medications for effective treatment are lacking, in

part due to the historical use of preclinical model systems that do not translate

well to the clinic for neurological disorders, such as rodents and heterologous

cell lines. Human-induced pluripotent stem cells (hiPSCs) are a promising in vitro

system for modeling NDDs, providing opportunities to understand mechanisms

driving NDDs in human neurons. Functional assays, including patch clamping,

multielectrode array, and imaging-based assays, are popular tools employed

with hiPSC disease models for disease investigation. Recent progress in machine

learning (ML) algorithms also presents unprecedented opportunities to advance

the NDD research process. In this review, we compare two-dimensional and

three-dimensional hiPSC formats for disease modeling, discuss the applications

of functional assays, and offer insights on incorporating ML into hiPSC-based

NDD research and drug screening.

KEYWORDS

hiPSC, neurodevelopmental disorders, patch clamping, MEA, voltage imaging, calcium
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1 Introduction

Neurodevelopmental disorders (NDDs) are a heterogeneous group of disorders that
affect patients’ cognitive, communication, emotional, and motor development, with an
onset at an early age (Mullin et al., 2013). NDD patients present with various symptoms,
including language impairment, learning disabilities, seizures, and other neurological
dysfunctions. Examples of the disorders include intellectual disability (ID), attention-
deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and epilepsy.
Approximately 3% of young children worldwide have at least one NDD, and comorbidity
(i.e., having more than one NDD) is common in these patients, which often results
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in missed diagnoses (Goldstein and Schwebach, 2004; Parenti
et al., 2020; Francés et al., 2022; Bonti et al., 2024). While
some symptoms associated with NDDs improve as the child gets
older, or with early intervention, others persist into adolescence
and adulthood, which leads to decreased independence, lowered
occupational outcomes, and social disabilities (Hechtman et al.,
2016; Halvorsen et al., 2019; Gidziela et al., 2023; Antolini and
Colizzi, 2023). Progress to accelerate diagnosis of NDDs has been
improved by advances in genetic testing, especially for severe
and early-onset monogenic NDDs, but is still slowed by the
lack of candidate biomarkers with high specificity and sensitivity
to reliably detect the disorders before the onset of symptoms.
Furthermore, therapeutic interventions are lacking to effectively
treat NDDs across individuals, leading to mortality or lifetime
disabilities in patients, high stress on the caregivers, and immense
costs in healthcare and social welfare (Kularatna et al., 2022;
Cortese et al., 2023). Since early diagnosis and intervention
improve patient outcomes and alleviate the cost of following
treatments, identifying and understanding the biological causes
underlying the diseases are promising and important research
directions.

Human induced pluripotent stem cells (hiPSCs) are a popular
in vitro model for investigating disease mechanisms and testing
therapeutic candidates (Anderson et al., 2021). hiPSCs are derived
from patients and thus retain the human genetic backgrounds
while being able to undergo various experimental manipulations.
The pluripotency of the model allows researchers to differentiate
hiPSCs into specific neuronal cell types (Takahashi et al., 2007;
Zhang et al., 2013; Zhang et al., 2016; Yang et al., 2017; Ehrlich
et al., 2017; Dolan et al., 2023) in 2-dimensional (2D) formats
(Zhang et al., 2013; Qi et al., 2017) or into brain region-specific
3-dimensional (3D) organoids (Jo et al., 2016; Miura et al., 2020),
which provides flexibility in experimental design depending on the
research question. Functional assays (Belinsky et al., 2014) have
been developed to characterize hiPSC models at various spatial
and temporal resolutions. Additionally, the recent advancements
in machine learning (ML) and its subset algorithms assist hiPSC
disease models in further understanding NDDs (Trujillo et al.,
2019). In this review, we compare various hiPSC model formats and
discuss their advantages and limitations for investigating NDDs.
We also provide systematic reviews on the phenotypic functional
assays applied to hiPSC-derived cultures for several disorders
and offer insight into their respective potential for therapeutic
advancement. Finally, we will discuss the integration of ML into
the hiPSC model to streamline the data analysis, mechanism
investigation, and drug development process. To address the
translational aspect of NDD research, the paper concludes with a
discussion on the opportunities and challenges of hiPSC models
with respect to bridging the gap between preclinical experiments
and the clinic.

Abbreviations: MECP2, Methyl-CpG binding protein 2; TSC2, TSC complex
subunit 2; ALDH5A1, aldehyde dehydrogenase 5 family member A1; UBE3A,
ubiquitin protein ligase E3A; FMR1, fragile X messenger ribonucleoprotein
1; SGCE, sarcoglycan epsilon; NRXN1, neurexin 1; STXBP1, syntaxin binding
protein 1; SCN8A, sodium voltage-gated channel alpha subunit 8; KCNQ2,
potassium voltage-gated channel subfamily Q member 2; SCN1A, sodium
voltage-gated channel alpha subunit 1; CAPRIN1, cell cycle associated
protein 1; NANS, N-acetylneuraminate synthase; NGN2, neurogenin 2.

2 hiPSCs as an in vitro model for
NDD disease study and drug
screening

2.1 hiPSCs vs animal models

Animal models such as zebrafish, Drosophila, rodents, and
non-human primates share highly similar genetic profiles with
humans and have been used to model NDD phenotypes, including
deficits in learning and memory, seizures, and hyperactivity
(Sukoff Rizzo and Crawley, 2017; Damianidou et al., 2022).
An advantage to using in vivo models is that they permit
the investigation of connectivity between brain regions in the
disease state. Furthermore, animal models offer the opportunity
to study the complex interactions among different organ systems,
physiological responses, and behavior (Figure 1). However, animals
have different brain development milestones and do not exhibit
the complex brain functions observed in humans (Gómez-Robles
et al., 2024). Due to the lack of human-specific brain architecture
and neuronal signaling mechanisms, studies have reported that
the animal models fail to recapitulate the disease phenotypes or
present minor symptoms (Goorden et al., 2007; Ehninger et al.,
2008). For example, Kang et al. (2021) found that inhibition of the
phosphoinositide 3-kinase pathway, rather than the metabotropic
glutamate pathway identified in the fragile X syndrome (FXS)
mouse model, rescued the neurodevelopmental defects in hiPSC-
derived FXS forebrain organoids. Although animal models have
largely contributed to our current knowledge, these models alone
are insufficient to understand the underlying genetic and molecular
mechanism of NDDs or to identify therapeutic targets for these
disorders.

In contrast, hiPSCs present a promising opportunity to study
NDDs in vitro in the context of human neurons (Figure 1).
Derived from patient samples, hiPSC recapitulates the effects of
genetic variations with the human genetic background. hiPSCs are
reprogrammed back into an embryonic-like state and can be guided
toward neural stem cells (NSC) and neural progenitor cells, which
can give rise to central nervous system (CNS) neuronal subtypes
to study brain development in vitro (Mariani et al., 2012). Gene
editing technologies, such as CRISPR/Cas9, offer the possibility to
generate corresponding isogenic controls (Hinz et al., 2019; Afshar-
Saber et al., 2024a), reporters (Galiakberova et al., 2022), and
other experimental manipulations (Puppo et al., 2021). However,
issues related to variability and reproducibility have hindered
preclinical findings from translating into drug discovery (Anderson
et al., 2021). This represents a great challenge and needs to be
continuously addressed. Toward this end, hiPSC maintenance and
differentiation protocols, as well as recommendations for quality
control procedures, have been established (Anderson et al., 2021;
Ludwig et al., 2023; Sandoval et al., 2024), while commercialized
cells and assay kits are available for trials and pilot experiments,
making hiPSCs an advantageous model for conducting NDD
research.

2.2 2D vs 3D hiPSC models

The 2D or monolayer hiPSC-derived culture is a well-
established format for studying NDDs in specific cell types.
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FIGURE 1

Advantages and limitations of hiPSC and animal models for NDD research and drug testing.

hiPSCs can be differentiated into a reproducible and homogenous
population of excitatory neurons (Zhang et al., 2013), inhibitory
neurons (Yang et al., 2017), astrocytes (Zhang et al., 2016;
Voulgaris et al., 2022), microglia (Abud et al., 2017; Dolan et al.,
2023), and oligodendrocytes (Ehrlich et al., 2017; Martinez-Curiel
et al., 2023) using small molecule combinations (Chambers et al.,
2009; Qi et al., 2017; Cao et al., 2017) or transcription factors
(Zhang et al., 2013; Ehrlich et al., 2017). The small molecule
approach guides hiPSCs through in vivo-like neurogenesis,
while the transcription factor approach bypasses the steps in
between and produces target cell types rapidly. Additionally,
2D cell cultures allow easy access to measure the cellular and
functional changes in the disease state. Marchetto et al. (2010)
modeled Rett syndrome (RTT) using hiPSC-derived neurons
and observed a decrease in synaptic formation, axon spine
density, and neuronal activity of proband compared to the
controls. Vijayalingam et al. (2020) examined the effects of CtBP1
mutation on neurodevelopmental delays through transcriptomic
studies, consistent with the observed reduction in cell size and
calcium activity in the patient hiPSC-derived neuronal cultures.
In addition to disease studies, monolayer cultures can be the
starting material for stem cell-based therapies (Damianidou
et al., 2022). However, 2D cultures lack intercellular interactions
with other types of cells and extracellular interactions with
surrounding culture matrices. Studies also report shorter neurites

(Chandrasekaran et al., 2017) and less mature networks in 2D
systems compared to in vivo brains or cortical organoids (Woodruff
et al., 2020).

Co-culture systems with two or more hiPSC-derived cell
populations are one way to increase the heterogeneity of 2D models
and to study intercellular interactions. Astrocytes regulate synaptic
formation, modulate network activity, and provide metabolic
support to neurons in vivo (Eroglu and Barres, 2010; Perea et al.,
2014; Mederos et al., 2018). Plating hiPSC-derived astrocytes with
excitatory neurons in vitro was reported to increase spontaneous
activity in neurons and network synchronization (Tang et al., 2013;
Ishii et al., 2017; Tukker et al., 2018; Hedegaard et al., 2020).
Furthermore, co-cultures where specific genotypes and cell types
are selected and plated together can be employed to interrogate
the non-cell-autonomous impacts of disease-causing variation (Sun
et al., 2023; Sharma et al., 2023; Parnell et al., 2023). For example,
Supakul et al. (2024) observed tripartite synapse formation and an
astrogliosis-like phenotype in neuron-astrocyte co-culture derived
from a familial Alzheimer’s Disease patient, recapitulating the brain
pathology that was not detected in the monoculture. In addition,
co-cultures can be utilized to investigate the impact of alterations
in cell population ratios that are observed in NDDs, including
ASD (Lee et al., 2017; Culotta and Penzes, 2020; Vakilzadeh et al.,
2024), schizophrenia (Gao and Penzes, 2015), Down syndrome
(Zdaniuk et al., 2011) and ADHD (Bogdańska-Chomczyk et al.,
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2024). Importantly, the ratio of cell populations has been reported
to affect the neuron development and activities in vitro even
in control lines (Tukker et al., 2018; Ahtiainen et al., 2021;
Parodi et al., 2023), but the consensus on plating density warrants
further investigation. Therefore, while the co-culture system allows
studying the interaction between cell populations of interest in
a controlled laboratory setting, the plating ratio of different cell
types should at least represent the in vivo state (e.g., a 3:1 ratio of
excitatory-inhibitory neurons tested in (Parodi et al., 2023).

Additionally, 3D brain organoids are an alternative format to
study NDDs. After being programmed into NSCs, the cells can self-
aggregate into spheres and develop into cerebral organoids through
“self-patterning” (Lancaster et al., 2013; Lancaster and Knoblich,
2014; Quadrato et al., 2017) or “directed patterning” in which a
specific brain region is formed (Yoon et al., 2019; Whye et al., 2023).
Single-cell RNA sequencing data of brain organoids generated
using either approach reveals diverse cell types and populations
similar to the corresponding regions in vivo (Velasco et al., 2019).
In addition, the organoid model allows the study of early brain
maturation (Gordon et al., 2021), as well as cell migration (Urresti
et al., 2021) and network development and activity (Trujillo et al.,
2019; Sharf et al., 2022). Several groups have utilized organoid
models to study ASD (Urresti et al., 2021; Wang et al., 2022;
Jourdon et al., 2023; Bury et al., 2024), FXS (Kang et al., 2021),
Dravet syndrome (DS) (Yokoi et al., 2023), and Tuberous Sclerosis
Complex (TSC) (Eichmüller et al., 2022), where the mixture of
cell types present in the model allows for a better understanding
of the developmental process and cell-cell interactions. A novel
technique using organoids to uncover how developing neurons
integrate into circuits of other brain regions is grafting, where
mature cortical organoids are transplanted into animal models (e.g.,
rodent models) for studying neuronal development in an in vivo
environment (Figure 1). Transplanted neurons have increased
complexity in morphology and intrinsic firing properties compared
to in vitro counterparts (Revah et al., 2022), but this approach
can pose ethical considerations that need to be navigated (Hyun
et al., 2022; Hoppe et al., 2023; Pas̨ca, 2024). Another popular
approach is employing assembloids—where multiple spheroids are
integrated—to study interregional cell migration, neural circuit
formation, signal transduction, and cell-cell interaction in vitro
(e.g., Andersen et al., 2020; Kim et al., 2024). For instance, Birey
et al. (2017) observed the cell-autonomous defects in interneuron
migration from the subpallial spheroids to cortical spheroids in
the Timothy Syndrome assembloids compared to the controls,
suggesting directions for future investigation and treatment target.
Alternative methods to generate 3D hiPSC models include scaffold-
based approaches using an extracellular matrix, bioreactors, or
microfluidic chips (Huang et al., 2022). Nonetheless, the 3D model
faces challenges such as the lack of nutrient delivery mechanisms to
the core of mature organoids which lead to necrotic cores and lack
of vascularization. These 3D models also suffer from limitations
such as the inability to reconstitute complex brain architecture.
Additional challenges related to scalability and reproducibility are
greatly influenced, particularly when it comes to developing more
intricate structures, as managing the growth and specialization of
various cell types within multicellular or multi-tissue organoids is
difficult (Urrestizala-Arenaza et al., 2024).

The choice to use either 2D or 3D cultures depends on the
questions of interest, and studies have provided great details on the

comparisons between the two formats (Liu et al., 2018; Damianidou
et al., 2022). At the same time, groups have taken advantage of
both systems to investigate the molecular and cellular mechanisms
of NDDs. To study CDKL5 deficiency disorder (CDD), Negraes
et al. (2021) cultured 2D hiPSC-derived cortical neurons to
study the cellular morphology and synaptic formation of neurons
while conducting electrophysiological recordings on the cortical
organoids to investigate the network activity and synchronization.
Brighi et al. (2021) measured the circuit function in FMRP-deficient
hiPSC-derived cortical neurons using calcium imaging, and they
examined cell diversity and development in 3D cortical organoids,
demonstrating the role of FMRP in cell proliferation and network
development. Therefore, each hiPSC model format provides
opportunities to examine different properties and characteristics of
NDDs in vitro.

2.3 hiPSCs as a high-throughput
screening platform for drug discovery

Although the etiology of many NDDs has been linked
to single gene variations, effective therapeutic targets to treat
NDDs remains to be discovered and developed. Every year,
pharmaceutical companies and research groups put tremendous
effort into designing novel drugs based on the known pathological
mechanism of the disorders. These candidates undergo multiple
rounds of rigorous efficacy and safety tests before being approved
for clinical trials, yet more than 90% of these attempts fail (Sun
et al., 2022). CNS drugs in general have a higher failure rate
than other systems, especially regarding clinical efficacy (Williams
et al., 2022). Lack of efficacy in the clinic is due in part due
to lack of target-relevant biomarkers in NDD patients, but also
stems from lack of translation of targets found in preclinical
studies. Therefore, to identify novel targets, filter out non-targeting
compounds, develop drugs with minimal toxicity and side effects,
and increase the possibilities of reaching clinics to help patients, a
well-designed, optimized, and efficient preclinical model and drug
screening platform are essential (Hughes et al., 2011). Important
components of an ideal drug screening platform include: (1) a
model with reproducible and representative disease phenotypes,
(2) high-throughput assays for testing large volumes of drug
candidates, (3) computational programs for analyzing the obtained
data rapidly and accurately, and (4) translatable results to human
clinical endpoints or biomarkers.

While in vivo models have been a popular platform for
testing potential drug candidates for decades, the biological
and genetic differences between humans and animals hinder
translation to patients. There are also ethical concerns and
restrictions on treating animals with chemicals (Kiani et al.,
2022). In contrast, preclinical models based on hiPSCs emerge
as a complementary and promising drug testing platform for
NDD treatment. Besides their advantages for studying disease
mechanisms, it is also easy to use the cell-based model to conduct
long-term studies on drug effectiveness, dose concentrations, and
cytotoxicity for early-stage drug discovery and validation, which
would improve translational success. Examples of drug screening
with 2D cultures include testing retigabine for ALS (Wainger
et al., 2014) and antisense oligonucleotide (ASO) treatments for
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Angelman Syndrome (Dindot et al., 2023), which both moved to
clinical trials. At the same time, several functional assays are well
established for accurate and rapid readouts and analysis for drug
screening on 2D cultures, which we will discuss later in this review.

Additionally, brain organoids have become an increasingly
popular model for drug screening because the cell types and
neuronal network in an organoid are more in vivo-like, and
organoids can model the complex aspects of NDDs. For
example, Chen et al. (2024) employed Timothy Syndrome cortical
organoids, forebrain assembloids, and rat transplanted with
proband organoids to test ASO treatments, which rescued the
defects in calcium channel activation, interneuron migration, and
morphology, showing the promising therapeutic strategy for the
disorder. Additionally, there are commercial services for generating
streamlined, reproducible organoids with low variability (e.g.,
StemoniX R© microBrain R© 3D Assay-Ready 384 Well Plates), which
can be a viable alternative for conducting drug screening. Even
though the technologies to rapidly characterize organoids are
still in development, brain organoids will undoubtedly advance
drug discovery for NDDs and complement in vivo testing
(Giorgi et al., 2024).

3 Functional assays for hiPSC
models

Studying cellular activity and neural network development
is a critical component of NDD research to understand how
the disorders affect neuron function. Investigating the effect of
the disease genotype at the cellular and network level provides
explanations for the clinical presentations of the disorders.
For example, epilepsy, characterized by recurrent episodes of
seizures (i.e., multiple hypersynchronous bursts from the neurons)
(Stafstrom and Carmant, 2015), is a common neurological disorder
and comorbidity with other NDDs (e.g., in 4–86% of ASD patients
and 8–77% of ADHD patients) (Dunn et al., 2003; Keller et al.,
2017). Imbalance between excitation and inhibition in cortical
neurons–one of the possible neurological mechanisms of epilepsy–
can be caused by ion channel dysfunction, ion homeostasis
disruption, neurotransmitter dysregulation, or glial abnormalities
(Bromfield et al., 2006; Shen et al., 2023). Modeling and monitoring
the activity patterns in vitro allow researchers to investigate the
cause of the disease phenotype and identify effective treatments.
Therefore, it is critical to choose a functional assay that accurately
measures the disease-relevant phenotypes when conducting NDD
research.

Four established and widely applied methodologies for
measuring neural activity are (1) patch clamping (Yajuan et al.,
2012; Gao et al., 2021); (2) multielectrode array (MEA) (Obien
et al., 2015; McCready et al., 2022); (3) voltage imaging (Knöpfel
and Song, 2019), and (4) calcium imaging (de Melo Reis
et al., 2020). These methods have been applied to hiPSC-
derived neuronal cultures and contributed to the understanding
of several NDDs, including FXS (Telias et al., 2015), TSC
(Winden et al., 2019; Sundberg et al., 2021), DS (Doorn et al.,
2023), Succinic Semialdehyde Dehydrogenase Deficiency disorder
(SSADHD) (Afshar-Saber et al., 2024b), RTT (Dong et al., 2018),
and more (Tables 1–4). Here, we focused on highlighting the

respective advantages and new advancements in the context of
their applications with hiPSC-derived cultures and potential as a
high-throughput screening platform.

3.1 Patch clamping

Patch clamping is a gold-standard, direct electrophysiological
measurement of ion channel functions, which are proteins that
regulate ion currents across the cell membrane. The technique was
first invented in the 1970s as the loosely suctioned cell-attached
mode (Neher and Sakmann, 1976), followed by whole-cell patch-
clamp, with reduced background noise and increased temporal and
spatial resolution to assess synaptic excitability in voltage mode or
intrinsic excitability in current mode (Segev et al., 2016). Then,
inside-out and outside-out configurations also became popular.
The former permits studying the intracellular environment of the
ion channel, and the latter focuses on investigating the properties
of the ion channel isolated from the cell (Yajuan et al., 2012).
Patch clamping is an excellent tool for studying action potential
waveforms, ion channel current, and subthreshold membrane
potential changes in neuronal cultures. While the traditional
manual patch-clamp (MPC) technique is information-dense, it
is time-consuming, labor-intensive, low-throughput, and requires
extensive practice to obtain high-quality data (Yajuan et al.,
2012). Consequently, the demand for overcoming these challenges
prompts the development of automated patch clamping (APC)
systems with higher throughput and lower skill requirements
(Obergrussberger et al., 2016).

3.1.1 Patch clamping data acquisition and analysis
Traditional MPCs have laborious setups before data acquisition

(Leyrer-Jackson et al., 2019). Once set up, a differential interference
contrast (DIC) microscope is essential to locate and identify the
healthy cells for recording. Occasionally, fluorescent markers are
used to identify specific cell types from a mixed population.
Successful cell hunting takes time and expertise from human
researchers using MPC, but also introduces bias from the
investigator, while in APC, a robotic system executes most of
the process. There are commercially available instruments for
MPC (e.g., AxonMultiClamp from Molecular Devices, LLC) and
APC (e.g., Syncropatch 768 PE from Nanion Technologies) that
come with data analysis programs. Furthermore, interpreting
patch clamping data depends on sample types (i.e., tissue slices
or cultured cells), acquisition mode (i.e., voltage or current),
and the configuration of patch clamping (i.e., cell-attached,
whole-cell, inside-out, etc.). Comparative studies also showed
differences in the data collected using MPC and APC (Franz
et al., 2017). Nonetheless, conventional readouts of patch clamping
include resting membrane potential, AP waveform, and after-
hyperpolarization in the current clamp mode (Figure 2A).

3.1.2 Application of patch clamping for studying
NDDs using hiPSC models

Several genes associated with NDDs are linked to ion channel
dysfunction (Lee et al., 2021), which is a common etiology of
seizures (Lascano et al., 2016). Therefore, patch clamping is an ideal
tool for studying NDDs linked to channelopathy and alteration
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TABLE 1 How patch clamping was used to study NDD with hiPSC model.

NDD Author Model format Configuration Coupled
with other
functional
assays?

Metrics used/reported Key findings

Myoclonus dystonia
(SGCE deficiency)

Sperandeo et al., 2023 2D excitatory cortical
neurons (dual-SMAD
inhibition)

Whole-cell MEA and
calcium imaging

Current clamp: RMP, Rin, Cm, τm,
AP numbers, amplitude, half-width,
rise time, fall time

SGCE-deficient neurons are intrinsically more
excitable than the isogenic controls.

Voltage-clamp: N/A

Dup15q syndrome
(UBE3A duplication)

Elamin et al., 2023 2D excitatory cortical
neurons (dual-SMAD
inhibition)

Whole-cell Calcium
imaging

Current clamp: Rin, AP amplitude,
width, firing frequency, threshold,
RMP, Cm

UBE3A duplication led to changes in intrinsic
excitability and synaptic transmission of the
hiPSC-derived neurons from patient samples,
presenting as hyperexcitability. Early normalization
of UBE3A expression at 6 weeks in vitro rescued the
phenotype but was less effective at a later time point
(16 weeks), suggesting that excess UBE3A is
necessary but not sufficient to cause the phenotype.

Voltage clamp: inward sodium
current, outward potassium current,
frequency and amplitude of sEPSC,
sIPSC, mEPSC, and mIPSC, and
interevent interval

ASD (NRXN1α+/-) Avazzadeh et al., 2021 2D excitatory cortical
neurons (dual-SMAD
inhibition)

Whole-cell N/A Current clamp: Rin, RMP, Cm, AP
amplitude, rise time and slope, decay
time and slope

NRXN1α+/- neurons showed altered sodium channel
functions and hyperactivity compared to the control
culture.

Voltage clamp: ion channel currents

FXS (FMR1-KO) Susco et al., 2022 2D excitatory cortical
neurons (NGN2
transcription factors +
dualSMAD inhibition)

Whole-cell N/A Current clamp: RMP, Rin, τm, Cm,
AP threshold, AP half-width, AP
amplitude, AHP, f-I curves, max
frequency

FMR1-KO neurons had premature and increased
intrinsic membrane excitability and increased firing
frequency compared to age-matched controls but
showed no differences in synaptic transmission.

Voltage clamp: sEPSCs amplitude,
sEPSCs frequency, and percentage of
cells with sEPSCs

FXS (FMR1-KO) Kang et al., 2021 Forebrain organoids
(miniature
bioreactor+dual-SMAD)

Whole-cell recording on
organoid slices

N/A Current clamp: RMP, Cm, Rin, AP
firing frequency, first AP properties
(amplitude, threshold, half-width, and
rise time).

FMRP-deficient forebrain organoids showed higher
firing frequency and larger potassium channel
current, suggesting loss of FMRP could lead to an
increase of potassium channels and hyperexcitability.

Voltage clamp: ion channel currents

(Continued)
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TABLE 1 (Continued)

NDD Author Model format Configuration Coupled
with other
functional
assays?

Metrics used/reported Key findings

FXS Sharma et al., 2023 2D cortical neurons (from
NPC generated with dual
SMAD inhibition) and
astrocytes (from APC using
small-molecule approach)

Whole-cell N/A Current clamp: burst number, burst
duration, firing pattern

Control neurons plated with FXS astrocytes or with
FXS astrocyte-conditioned media displayed higher
number of bursts but of shorter duration similar to
the FXS neurons. On the other hand, FXS neurons
co-cultured with control astrocytes or with control
astrocyte-conditioned media showed similar activity
as the control cells, suggesting the pivotal role of
astrocytes in FXS phenotype. The neurons affected
by FXS astrocytes also exhibited reduced persistent
sodium current. Application of veratridine, a sodium
channel opener, rescued the disease phenotype, while
the potential astrocyte-derived candidate, S100ß, also
showed the same effect.

Voltage clamp: sodium current

FXS Zhang A. et al., 2022 2D GABAergic inhibitory
neurons (small molecule)

Whole-cell MEA Current clamp: N/A FXS and control GABAergic neurons showed similar
miniature inhibitory postsynaptic currents,
suggesting functional GABAergic synapses in both
genotypes.

Voltage clamp: miniature
postsynaptic currents

STXBP1-related disorder
(STXBP1-RD)

van Berkel et al., 2023 2D excitatory cortical
neurons (NGN2
transcription factors +
dualSMAD inhibition)

Whole-cell
(micro-islands)

Calcium
imaging

Current clamp: N/A No significant difference was observed between the
healthy controls and STXBP1-RD neurons

Voltage clamp: mEPSC amplitude and
frequency, paired-pulse ratio, synaptic
depression ratio,

Angelman syndrome
(UBE3A deletion)

Fink et al., 2017 2D cortical excitatory
neurons (dual SMAD
inhibition)

Whole-cell Calcium
imaging

Current clamp: RMP, AP maturation
patterns (no AP, immature, single
mature, and mature train), Rin, Cm,
AP width, AP frequency, amplitude,
FWHM

AS neurons exhibited depolarized resting membrane
potential. AS and UBE3A-KO neurons displayed
delayed firing maturation compared to isogenic
controls. AS neurons also showed increased outward
current throughout development but less than the
isogenic controls, which could result in the immature
firing activity. Both AS and UBE3A-KO neurons
showed reduced synaptic activity and plasticity.

Voltage clamp: inward sodium
current, outward potassium current,
sEPSC frequency and amplitude

(Continued)
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TABLE 1 (Continued)

NDD Author Model format Configuration Coupled
with other
functional
assays?

Metrics used/reported Key findings

Angelman syndrome
(UBE3A deletion)

Sun et al., 2019 2D excitatory neurons
(transcription factor)

Whole-cell Calcium
imaging

Current clamp: spike frequency,
fAHP amplitude

Loss of UBE3A causes increased excitability with
enhanced fAHP in 2D neurons and organoids
compared to controls.

3D cortical spheroids
(dual-SMAD + small
molecules)

Whole-cell/whole mount Voltage clamp: big potassium channel
current

RTT (MeCP2) Tang et al., 2016 2D astrocyte-assisted
hiPSC/NPC derived-neurons

Perforated N/A Current clamp: GABA functional
switch

MeCP2-mutated neurons showed an altered GABA
functional switch, but IGF1, which treats
glutamatergic deficits and increases KCC expression,
can rescue the GABA functional switch.

Voltage clamp: N/A

RTT (MeCP2) Pradeepan et al., 2024 2D cortical excitatory
neurons (NGN2
transduction)

Whole-cell [data from
Mok et al. (2022)]

MEA Current clamp: RMP, firing rate,
number of spikes

MeCP2 null neurons displayed reduced rheobase
compared to isogenic controls. MeCP2-deficient
neurons also exhibited an increasing firing rate that
peak at a low current and then declined with higher
current input, while the isogenic controls had an
increasing firing rate as the stimulus increased,
suggesting a hyperexcitable disease phenotype.

Voltage clamp: N/A

RTT and CDD Wu et al., 2022 excitatory neurons and glial
cells from cortical organoid
(patterning approach)

Whole-cell on cells
migrating from the
organoids

N/A Current clamp: RMP, number of AP,
AP amplitudes, half-width, threshold,
depolarization, repolarization,
rheobase

CDD organoids have increased intrinsic excitability,
which could be caused by increased potassium and
sodium current densities and faster sodium channel
opening but not due to synaptic formation or altered
glial activity. RTT organoids presented similar
electrophysiological phenotypes as CDD organoids.

Voltage clamp: Cm, Rin,
voltage-dependent sodium and
potassium channel current, current
decay time, sEPSC

(Continued)
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TABLE 1 (Continued)

NDD Author Model format Configuration Coupled
with other
functional
assays?

Metrics used/reported Key findings

EIEE13
(SCN8A-associated
epilepsy)

Tidball et al., 2020 2D excitatory cortical
neurons (dual-SMAD and
Ngn1/NGN2 transcription
factor)

Whole-cell MEA Current clamp: spontaneous action
potentials, repolarization, AP
amplitude, membrane potential after
peak, RMP, Rin, Cm

EIEE13 neurons (dual-SMAD) showed
variant-specific alteration in persistent and resurgent
sodium channel currents compared to unrelated
healthy controls, as well as early depolarizations and
prolonged repolarizations.
EEIE13 neurons differentiated using the
transcription factor-based approach showed similar
action potential shapes as those derived with the
small-molecule-based method, with some differences
in individual action potential metrics.
Applying riluzole and phenytoin was shown to
inhibit all spontaneous activity, which can be
reversed through washout.

Voltage clamp: sodium current, peak
sodium current, persistent/peak
sodium current, resurgent sodium
current

KCNQ2-associated
epilepsy (R581Q
variation)

Simkin et al., 2021 2D cortical excitatory
neurons (NGN2 transduction
+ dual smad inhibition)

Whole-cell (automated
patch clamp)

MEA Current clamp: RMP, Rin, AP
amplitude, half-width, fAHP, mAHP,
sAHP, post-burst AHP

R581Q iPSC-derived neurons exhibit more
depolarized RMP and higher Rin. However, the
mutated neurons displayed slower AP repolarization
at an early stage but faster AP half-width and
enhanced fAHP over time compared to the control
neurons. Administration of apamin, a SK channel
antagonist, reversed the disease phenotype, and
Chronic treatment of XE991, potassium blocker and
M-current inhibitor, in control neurons replicated
the observed phenotypes of R581Q neurons,
suggesting an altered M-current and ion channel
dysfunction.

Voltage clamp: N/A

Dravet syndrome
(SCN1A-deficiency)

Van Hugte et al., 2023 2D cortical excitatory
neurons (NGN2
transduction)

Whole-cell MEA Current clamp: RMP, number of AP,
AP threshold, AP half-width, AP
amplitude, AHP, firing rate, rise slope,
rise time, max rise slope, decay slope,
decay time, max decay slope, rheobase

Neurons with heterozygous loss of SCNQ1A showed
altered intrinsic electrophysiological properties
compared to controls, suggesting that the SCNQ1A
deficiency affects excitatory neurons at single cell
level.

Voltage clamp: sodium current

RMP, resting membrane potential; AP, action potential; Rin, membrane input resistance; AHP, after-hyperpolarization time; fAHP, fast AHP; sEPSC, spontaneous excitatory post-synaptic current; τm, membrane time constant; Cm, capacitance; FWHM, full width at
half-maximum amplitude.
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TABLE 2 How MEA was used to study NDD with hiPSC model.

NDD Author Model
format

MEA
manufacturer

Recording
length

Media Coupled
with other
functional
assays?

Metrics used/reported Key findings

FXS Zhang A. et al.,
2022

2D GABAergic
inhibitory neurons
(small molecule)

48-well CytoView
LD-MEA (Axion
Biosystem)

Every 5 days
from day 47 to
day 77

BrainPhys with
supplements

Patch clamping Mean firing frequency, max firing
frequency, number of spikes per
burst

FXS inhibitory neurons were more active
compared to control neurons, and the
GABAergic switch occurred later in the
FXS culture.

MEF2C deficiency Mohajeri et al.,
2022

2d cortical
excitatory neurons
(NGN2
transduction)

48-well CytoView
LD-MEA (Axion
Biosystem)

Every 3 days
from day 27 to
day 60

BrainPhys N/A Weighted MFR, spike count,
synchrony, oscillation

Neurons with loss of MEF2C displayed
decreased network activity and synchrony,
suggesting a disruption in the synapse
formation.

TSC (TSC2-deficiency) Winden et al.,
2019

2D cortical
excitatory neurons
(NGN2
transduction)

48-well CytoView
LD-MEA (Axion
Biosystem)

Every other day
for 25 days

Not reported N/A Weighted MFR, synchrony index Neurons with loss of TSC2 exhibited a
hyperactive and hypersynchronized
phenotype compared to isogenic controls.
Chronic and early administration of
Rapamycin, mTOR inhibitor, rescued the
disease phenotype in TSC2 neurons,
suggesting that mTORC1 hyperactivation
might lead to epileptic activity.

RTT (MeCP2 mutation) Pradeepan et al.,
2024

2D cortical
excitatory neurons
(NGN2
transduction)

12-well CytoView
LD-MEA (Axion
Biosystem)

Every week for
6 weeks

CM2 BrainPhys
media

Patch clamping Firing rate, mean burst firing rate,
inter-burst-peak-intervals,
network event duration, network
event frequency, mini-burst
frequency, % of bursting wells,
mean number of bursts,
reverberating super bursts

MeCP2 null neurons exhibited a
reverberating super burst (RSB) firing
pattern and more active network activity
compared to isogenic controls.
EGTA-AM, a calcium ion chelator,
decreased the RSB and the duration of the
initiation network burst, suggesting that
the altered firing pattern is calcium
ion-dependent.

CAPRIN1
haploinsufficiency

Pavinato et al.,
2023

2D cortical
excitatory neurons
(small molecule)

24-well LD-MEA
(Multi Channel
Systems)

Day 0 to 14 after
neural
differentiation

Not reported Calcium
imaging

Firing pattern, spike rate, spike
count, burst count, burst duration

Neurons with heterozygous loss of
CAPRIN1 displayed decreased
spontaneous firing rate and
synchronization compared to controls.

(Continued)
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TABLE 2 (Continued)

NDD Author Model
format

MEA
manufacturer

Recording
length

Media Coupled
with other
functional
assays?

Metrics used/reported Key findings

KCNQ2-associated
epilepsy (R581Q
variation)

Simkin et al.,
2021

2D cortical
excitatory neurons
(NGN2
transduction +
dual SMAD
inhibition)

12-well LD-MEA
plate (Axion
Biosystems)

Daily recording
from days 15 to
31

Neurobasal
media with
supplement

Patch clamping Number of bursts, number of
spikes per burst, % of spikes that
occur within a burst, MFR, ISI,
burst frequency, burst duration,
IBI

KCNQ2-mutated neurons started
exhibiting spontaneous activity earlier
than the isogenic control cells, while
showing an increasingly phasic bursting
pattern with more and higher percentage
of spikes per burst and shorter interval
between spikes. Applying apamin (a SK
channel antagonist) and paxilline (a BK
antagonist) to KCNQ2-mutated neurons
rescued the network activity to the same
level as the control neurons, while the
control neurons with chronic XE-991
treatment, M-current inhibitor, suggesting
the role of reduced M-current and ion
channel dysfunction in altered network
behavior in KCNQ2-mutated neurons.

Dravet
syndrome(SCN1A-
deficiency)

Van Hugte et al.,
2023

2D cortical
excitatory neurons
(NGN2
transduction)

24-well LD-MEA
(Multichannel
systems, MCS)

DIV49 Not reported Patch clamping Normalized MFR, PRS, MBR,
burst duration, network burst
rate, network burst duration,
number of high frequency bursts,
bust spike rate

Neurons with heterozygous loss of
SCNQ1A exhibited hyperactive,
asynchronous network activity and
mutation-specific firing pattern. Changing
recording temperature to mimic the
febrile seizure conditions led to altered
neuronal network organization in GEFS+
neurons. In addition, anti-seizure
medication rescued the disease phenotype
in GEFS+ neurons but not in DS patients,
showing a mutation-specific and clinically
relevant phenotype in vitro.

EIEE13
(SCN8A-associated
epilepsy)

Tidball et al.,
2020

2D cortical
excitatory neurons
(NGN2
transduction)

96-well LD-MEA
plate (Axion
Biosystems)

From days 15 to
33 after
doxycycline
induction

BrainPhys with
supplements

Patch clamping Weight MFR, ISI, burst duration,
% of spikes in network

EIEE13 neurons showed an increased
burst activity and epileptiform-like firing
pattern. Riluzole and phenytoin, drugs to
inhibit persistent and resurgent sodium
channel current, were shown to reduce the
bursting phenotype.

(Continued)
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TABLE 2 (Continued)

NDD Author Model
format

MEA
manufacturer

Recording
length

Media Coupled
with other
functional
assays?

Metrics used/reported Key findings

N-acetyl neuraminic
acid synthase (NANS)
mutate

Bu et al., 2023 2D excitatory
neurons
(dual-SMAD
inhibition) and
organoid
(self-patterning)
slices

24-well LD-MEA
Cytoview plate
(Axion
Biosystems)

DIV91 BrainPhys N/A Number of spikes, number of
bursts, number of network bursts,
synchrony index

Loss of NANS disrupted synapse
formation and network activity in
NANS-KO cortical neurons and cerebral
organoids.

Myoclonus dystonia
(SGCE mutation)

Sperandeo et al.,
2023

2D excitatory
glutamatergic
cortical neurons
(dual-SMAD
inhibition
protocol)

24-well Cytoview
LD-MEA plates
(Axion
Biosystems)

Every 3 days
from days 35 to
63 (cells plated
at Day 30)

N2B27 (with
Vitamin A)

Patch clamping
and calcium
imaging

Number of spikes, number of
bursts, network busts, and
synchrony index

SGCE-deficient neurons exhibit
hyperexcitable network activity, compared
to isogenic controls

16p11.2dup Parnell et al.,
2023

2D excitatory
neurons (NGN2
transduction) and
GABAergic
neurons
(Ascl1/Dlx2
transduction)
co-culture

48-well CytoView
LD-MEA (Axion
Biosystem)

Every week from
week 4 to week 7

Neurobasal
media

Calcium
imaging

MFR, synchrony index, network
burst frequency

Co-culture of 16p11.2 dup (DUP)
excitatory and inhibitory neurons and
DUP excitatory neurons alone exhibited
dysregulated and reduced network
activity.

SSADHD
(ALDH5A1-deficiency)

Afshar-Saber
et al., 2024b

2D excitatory
neurons (NGN2
transduction)

48-well CytoView
LD-MEA (Axion
Biosystem)

Every 2 days
from DIV10 to
DIV50

Not reported Calcium
imaging

synchrony index, MFR, average
burst frequency, average burst
duration, average number of
spikes per burst, mean ISI within
burst

Glutamatergic neurons with homozygous
loss of ALDH5A1 exhibited increased
firing activity, reduced bursting frequency
but more spikes per burst and longer burst
duration compared to the neurons with
heterozygous loss and isogenic controls,
suggesting a hypersynchronous network
development in the ALDH5A1-deficient
neurons.

Kleefstra syndrome Frega et al., 2019 2D excitatory
neurons (NGN2
transduction)

24-well LD-MEA
(Multichannel
Systems)

Every 4 days
from DIV7 to
DIV 40

Neurobasal
media with
supplement

Patch clamping MFR, MBR, burst duration, IBI,
% spike out of burst,

KS neurons exhibited less frequency
network bursts, longer burst duration, and
an irregular firing pattern compared to the
control neurons. NMDAR inhibition
drove KS network activity toward the
control.

MFR, mean firing rate; PRS, percentage of random spikes; MBR, mean burst rate; IBI, inter-burst interval; ISI, inter-spike interval; FXS, Fragile X Syndrome; TSC, Tuberous Sclerosis Complex; GEFS+, generalized epilepsy with febrile seizures plus.
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in intrinsic activity. For example, Tang et al. (2016) applied
patch clamping to a monolayer of hiPSC-derived neurons with
MeCP2-mutation from RTT patients. They observed a disruption
in the GABA functional switch in the disease culture, which was
rescued by restoring K+-Cl− cotransporter 2 through IGF-1 (i.e.,
insulin-like growth factor-1). Tidball et al. (2020) used hiPSC-
derived neurons from patients with missense variations in SCN8A
(i.e., a voltage-gated sodium channel gene linked to epilepsy).
They observed persistent sodium channel current and altered AP
waveforms in the patient line with whole-cell patch clamping. They
then rescued the phenotypes in the disease line with riluzole (i.e.,
an FDA-approved persistent sodium current inhibitor), which is
consistent with the decreased seizure frequency in patients after
the drug administration. Combined with the advantages of the 2D
hiPSC model, patch clamping examines the cellular mechanisms of
NDDs and offers promising revenue for testing targeted therapeutic
interventions.

Furthermore, patch clamping supports recording from co-
culture systems because the researcher can selectively record
from cells of interest. For example, to study the astrocyte-to-
neuron communication in co-culture, Hedegaard et al. (2020)
transduced hiPSC-derived astrocytes with Channelrhopsin-2, a
light-gated ion channel commonly used in optogenetics, and
hiPSC-derived neurons with mKate2, a fluorescence marker. Using
whole-cell patch clamping, the authors observed that stimulation
of astrocytes increased the spontaneous excitatory post-synaptic
currents (sEPSCs) in neurons compared to the sEPSCs before
stimulation, showing the effect of astrocytes on network activity.
When examining the effect of astrocytes on neuronal excitability in
FXS, Sharma et al. (2023) mixed hiPSC-derived healthy neurons,
healthy astrocytes, FXS-neurons, and FXS-astrocytes in different
cultures, and observed that FXS-astrocytes induced abnormal
bursting phenotypes in control neurons, suggesting that astrocytes
play a significant role in the disease mechanism. Pre-clinical studies
of FXS have focused on neurons, with the role of glia remaining
largely underexplored so in this study, the authors designed the
previously described co-culture system to study the non-cell-
autonomous effect in NDDs in combination with patch clamping
thereby suggesting a framework for exploring new therapeutic
strategies aimed at human neuron-glia interactions.

In addition, patch clamping has been applied to
organoid models to investigate ion channel functions and
electrophysiological properties as the neurons mature in an in vivo-
like developmental sequence and environment. Wu et al. (2022)
generated CDD and control cortical organoids. Using whole-cell
recordings on cells migrating from the organoids, they detected
an increase in intrinsic excitability and an alteration of voltage-
gated ion channel functions in the CDD organoids. They also
examined RTT organoids and observed the same firing patterns,
suggesting a convergent mechanism between the two disorders.
Sun et al. (2019) generated 2D and 3D hiPSC models of Angelman
syndrome. Using whole-cell/whole-mount patch clamping, they
found that dysfunction of Big Potassium channels likely caused the
increase in AP firing frequency and the fast component of after-
hyperpolarization, which results in the hyperactivity phenotypes
in both model formats. Other studies also recorded from organoid
slices (Pasca et al., 2015), dissociated cells (Gomes et al., 2020), and
intact organoids (Landry et al., 2023). However, each recording
method has drawbacks and fails to take full advantage of the 3D
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TABLE 4 How calcium imaging was used to study NDD with hiPSC model.

NDD Author Model format GI Coupled with
other
functional
assays?

Metrics used/reported Key findings

FXS Brighi et al., 2021 2D cortical neurons
(dual SMAD
inhibition)

Fluo4-AM N/A Rise time, amplitude, event frequency,
network synchrony, number of active
cells, fluorescence intensity,

FMRP-KO neurons showed hyperexcitability, overactive
network, and potential E/I imbalance compared to FMRP-WT
neurons

SSADHD
(ALDH5A1-
deficiency)

Afshar-Saber et al.,
2024b

2D cortical
excitatory neurons
(NGN2
transduction)

pLV- hSyn-jRCaMP1b
(GECI)

MEA Co-active neurons, event frequency,
event amplitude

Glutamatergic neurons with homozygous loss of ALDH5A1
displayed reduced event frequency, increased amplitude, and
more co-active cells compared to isogenic controls and
heterozygous loss of the gene, consistent with the MEA data,
suggesting an enhanced network formation in the diseased
culture.

RTT (R294X
mutation)

Dong et al., 2018 2D astrocyte
media-assisted
astrocytes
differentiated from
neural progenitors

Fluo-4 (CSD) Patch clamping on
mouse astrocytes
and brain slices

Frequency and amplitude of
spontaneous, as well as ATP-,
thapsigargin-evoked activity,

RTT astrocytes showed elevated frequency and amplitude in
spontaneous and ATP-evoked activity. Using thapsigargin, a
chemical inducing the release of Calcium ions from
endoplasmic reticulum (ER), RTT astrocytes showed a higher
storage of Calcium ions and faster leakage compared to the
wildtype astrocytes.

RTT (MeCP2
mutation)

Samarasinghe et al.,
2021

Cortico-subpallial
assembloid

AAV1 Syn:GCaMP6f virus N/A Amplitude, synchronization, number
of microcircuit, number of neurons in
each microcircuit

Cx+GE assembloids exhibited synchronized activity after BMI
treatment but not in Cx+Cx assembloids, so Cx+GE fusion
model were employed in RTT study. MeCP2 Cx+GE
assembloids showed hypersynchrony and hyperactivity
compared to control organoids. In addition, the assembloids
with control Cx and MeCP2 GE showed the same
hypersynchronous activity, while mutant Cx with control GE
assembloids displayed similar activity as the unmixed control
Cx+GE assembloids, suggesting the role of interneurons in the
network dysfunction.

STXBP1-related
disorder
(STXBP1-RD)

van Berkel et al., 2023 2D excitatory
cortical neurons
(NGN2 transcription
factors + dualSMAD
inhibition)

Fluo-4AM (CSD) Patch clamping Burst events, burst frequency, average
interburst interval, event area, event
amplitude, fraction of participation in
a burst event, network synchronicity,
event duration, rise time, decay time

STXBP1-RD neurons have altered event frequency, burst
characteristics, and network activity compared to the control
cells with patient-specific differences.

TSC Hisatsune et al., 2021 2D excitatory
cortical neurons
(dual SMAD
inhibition)

Fluo-8AM (CSD) and
fura-2 AM (CSD)

N/A Number of active cells, event
frequency, percentage of synchronous
events, frequency of non-synchronous
vs synchronous events, resting
calcium level, KCl response

TSC2-deficient neurons showed highly synchronous activity
compared to neurons with heterozygous loss of TSC2 and
isogenic controls. Inhibiting spontaneous activity and stimulate
activities using KCl showed that TSC2-deficient neurons had
enhanced calcium ion influx upon membrane depolarization.
Chronic treatment of rapamycin rescued the hyperactivity and
decreased the expression of CACNA1D, a gene for calcium
channel CaV1.3 subunit, in the TSC2-null neurons to the same
level as the isogenic controls and the heterozygous loss,
suggesting the role of calcium pump activity in the disease
phenotype.
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TABLE 4 (Continued)

NDD Author Model format GI Coupled with
other
functional
assays?

Metrics used/reported Key findings

16p11.2dup Parnell et al., 2023 2D excitatory
neurons (NGN2
transduction) and
GABAergic neurons
(Ascl1/Dlx2
transduction)
co-culture

Cal520-AM (CSD) MEA Normalized amplitude, normalized
frequency, normalized number of
synchronous events, normalized
pairwise correction coefficient,
average peak duration

16p11.2 duplication (DUP) excitatory neurons displayed
reduced calcium event duration and increased calcium recovery
time at single-cell level, while exhibiting decreased spontaneous
activity frequency and network events compared to controls,
suggesting a disruption in the synaptic formation. SCZ neurons
also showed dysregulated calcium activity and reduced event
frequency similar to DUP excitatory neurons, suggesting the
duplication of 16p11.2 may contribute to the SCZ
pathophysiology

Angelman
syndrome (UBE3A
deletion)

Fink et al., 2017 2D cortical excitatory
neurons (dual SMAD
inhibition)

Fluo-4AM (CSD) Patch clamping Number of calcium events, example
calcium transients

AS and UBE3A-KO neurons showed decreased calcium events
and synaptic plasticity compared to isogenic controls.

Angelman
syndrome (UBE3A
deletion)

Sun et al., 2019 3D cortical spheroids
(dual-SMAD + small
molecules)

Fluo-4AM (CSD) Patch clamping Interevent interval, calcium
amplitude, event frequency,
synchronization index

UBE3A-KO organoids showed early synchronized activity with
increased frequency compared to control organoids

Myoclonus
dystonia (SGCE
mutation)

Sperandeo et al.,
2023

2D excitatory
glutamatergic cortical
neurons (dual-SMAD
inhibition protocol)

Fluo-4AM (CSD) Patch clamping and
MEA

Percentage activity, number of
calcium transients, rise time, fall time,
amplitude, and the interspike interval
at three time points

SGCE-mutated cells are more active than isogenic controls, but
have fewer calcium events and longer interevent intervals,
suggesting a disruption in calcium-dependent activity and
network functions

Dup15q syndrome
(UBE3A
duplication)

Elamin et al., 2023 2D neurons
(dual-SMAD
inhibition protocol)

X-Rhod-1 dye (CSD) Patch clamping Number of calcium transients UBE3A duplicated cells showed increased spontaneous activity,
compared to isogenic controls. ASO treatment that normalize
the UBE3A expression reduced the event frequency, suggesting
that UBE3A overexpression is necessary for the disease
phenotype

CAPRIN1
haplodeficiency

Pavinato et al., 2023 2D cortical excitatory
neurons (small
molecule)

Fluo-4 (CSD) MEA Fluorescence intensity Neurons deficient of CAPRIN1 displayed an increased calcium
signal intensity, suggesting calcium ion overload in the cells.
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FIGURE 2

Schematic comparisons of the readouts of neuronal activity from each functional assay. (A) Schematic of action potential properties in
current-clamp mode. AHP, afterhyperpolarization; RMP, resting membrane potential. (B) Schematic of common LD-MEA readouts about
populational neuronal activity. IBI, inter-burst interval. (C) Schematic of voltage imaging readouts. AHP, afterhyperpolarization. (D) Schematic of
calcium imaging readouts. (E) Compared to calcium imaging, voltage imaging better represents each action potential, despite slight delays in the
signal decay.

model. For example, dissociating organoids into 2D monolayer
causes stress on the neurons and risks losing the network formed
in the 3D culture while whole-mount recording only allows access
to the exterior cells and cannot reach and investigate the interior of
the organoid (Sandoval et al., 2024). The intact organoid recording
protocol developed by Landry et al. (2023) claimed to record the
electrophysiological and morphological features of cells from both
the surface and sub-surface of the organoid with an additional step
of clearing, which could be a viable option for investigating deeper
layers of organoids.

3.2 Multielectrode array (MEA)

Multielectrode array (MEA), or microelectrode array, is
an extracellular electrophysiological measurement of neuronal
activity through direct contact between the cultured cells and the
recording electrodes. It is a non-invasive technique with high
temporal resolution that allows long-term investigation of cellular
behaviors and network development, including firing patterns and
synchronization. Low-density MEA (LD-MEA), such as Axion
Biosystem Maestro Pro, has more wells on a plate (e.g., 6-, 12-,
24-, 48-, and 96-well) but fewer electrodes (e.g., 8–64 electrodes)
in each well, so it accommodates more conditions and offers a
bigger sample size at the cost of spatial resolution. On the other
hand, high-density MEA (HD-MEA) has more electrodes covering
each well, but fewer wells on one plate. For instance, MaxWell
MaxOne contains up to 26,400 electrodes per well with at most 6
wells on a plate. Therefore, HD-MEA measures sub-cellular details
(e.g., axon tracking), cellular activities (e.g., action potentials), and
network connectivity (e.g., bursts and synchronization), but at a
lower throughput to test fewer conditions.

3.2.1 MEA data requisition and analysis
Commercially available 2D MEA plates with their compatible

MEA machines and software for data acquisition and analysis

(e.g., Axion Biosystems, MaxWell Biosystems) streamline
the experimental setup. Nonetheless, several factors must be
considered when designing and running experiments with MEA,
including culturing conditions, experimental design, and data
analysis, as reported by Mossink et al. (2021). Additionally, studies
have reported using various culture media, including CM2 media
(Mossink et al., 2021), BrainPhys (Quraishi et al., 2019; Graef
et al., 2020), and DMEM/F12 with supplements (Nageshappa et al.,
2016), but future studies should investigate the effect of media
on functional activity, which would be applicable to all of the
functional assays described in this review. In addition, temperature
and CO2 concentration setting during the MEA recording change
neuronal activity (Van Hugte et al., 2023). McCready et al. (2022)
also provided a detailed overview and recommendations on the
use of MEA, but future research is warranted to test how different
culturing conditions affect the overall functional activity.

In terms of data analysis, a typical recording session generates
various metrics to characterize the activities (e.g., bursting rate,
bursting frequency, etc.) (Figure 2B), but it can be challenging for
beginners to understand all the parameters in the output and for
researchers to decide what metrics to report in a paper. There is
also no consensus on the criteria to exclude inactive wells from the
analysis, which could result in selection bias. The field will benefit
from a standardized procedure of MEA.

3.2.2 Applications of MEA for studying NDD
disease mechanisms using hiPSC models

LD-MEA has been used extensively with 2D hiPSC cultures
in long-term studies of network activity and synchronization in
various NDDs. Winden et al. (2019) plated hiPSC-derived cortical
neurons from TSC patients on 48-well MEA plates to study
the neuronal activity over 25 days and observed an increase
in the spontaneous activity and synchrony consistently in the
TSC2-deficient line, which recapitulated the hyperactivity and
hypersynchrony of seizures in patients. To study SSADHD, Afshar-
Saber et al. (2024b) generated glutamatergic neurons with hiPSCs
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from patients with biallelic loss of ALDH5A1, sex-matched parental
controls with monoallelic loss of ALDH5A1, and CRISPR-corrected
control of the patient hiPSCs. Using MEA to monitor activities
from day in intro 10 to 50, they found that the neurons with
homozygous loss of ALDH5A1 formed early synchronization,
longer bursting, and faster spikes within each burst compared to the
parental and the CRISPR-corrected controls, suggesting an altered
firing behavior of glutamatergic neurons caused by the variant.
Thus, longitudinal LD-MEA recordings provide useful insights into
the development of network firing patterns and connectivity over
time to elucidate the effects of disease on neural circuit behavior.

In addition, multiple NDDs are reported to exhibit deviated
ratios of cell populations (Zdaniuk et al., 2011; Gao and Penzes,
2015; Lee et al., 2017; Culotta and Penzes, 2020; Vakilzadeh
et al., 2024; Bogdańska-Chomczyk et al., 2024). For example, the
imbalance between excitatory neurons and inhibitory neurons has
largely been thought to play a role in the etiological mechanisms of
ASD. Parodi et al. (2023) mixed hiPSC-derived glutamatergic and
GABAergic neurons at different ratios with astrocytes on LD-MEA
plates and monitored the activities for 98 days. Interestingly, they
observed that an extreme imbalance of the excitatory/inhibitory
(E/I) ratio (i.e., no GABAergic or no glutamatergic neurons)
resulted in few, if any, bursting activity and synchronization, while
the presence of inhibitory neurons at any ratio in the co-culture
increased bursting activity and network connections, suggesting
the role of inhibitory neurons in circuit function and development.
However, while the MEA is a useful tool to measure total network
activity, it fails to detect cell type-specific activity because the
electrodes indiscriminately measure activities from all the cells in
contact. There are commercial packages to physically separate cell
populations in the same well (e.g., well divider insert by Axion
Biosystems), but either the two populations are not fully connected,
or the process of removing the divider for building a network can
introduce complications or damage the cells. Future advancements
in MEA technology are encouraged to detect the functional activity
of distinct cell types in co-culture.

Furthermore, MEA can measure network oscillations in
a mature brain organoid model to study in vivo-like brain
development in vitro. Trujillo et al. (2019) carried out a
comprehensive, long-term study of cortical organoids by growing
them on 2D LD-MEA plates. They characterized the development
of the network activity of the organoids, which highly correlated
with the EEG data from preterm infants. However, due to the
flat surface design, it is challenging to ensure that the organoids
are contacting the recording electrodes. Additionally, the results
only reflect the activity from the outer cells and fail to capture the
complex network activity inside the organoids. Therefore, some
groups plate organoid slices on MEA plates to study the interior
network activity. For example, Bu et al. (2023) used slices of control
and N-acetylneuraminic acid synthase (NANS) mutated cortical
organoids on MEA plates and observed a decrease in network
bursting and synchronization in the NANS-mutated organoids. On
the other hand, comparative studies have shown that 2D HD-
MEA provides a more accurate measurement of the interior cortical
organoid activity than LD-MEA (Muzzi et al., 2023). Other groups
also developed custom-designed MEA plates (e.g., 3D MEA or
mesh MEA) to measure the interior activity of organoids, but
these plates require more human labor and have lower throughput
(Quadrato et al., 2017; Muzzi et al., 2023).

3.3 Imaging-based functional assays

Besides patch clamping and MEA, imaging-based methods,
including voltage and calcium imaging, are prevalent options to
measure neuronal activity and have been utilized for over 40 years
(Cohen et al., 1974; Tsien, 1980). Both methods are non-invasive
and utilize chemically synthesized or genetically encoded indicators
which emit fluorescence signals in response to voltage changes or
calcium influx during action potential events. Signals are recorded
by a fluorescence microscope, which provides information on the
activity of individual neurons as well as the network connectivity
within the field of view. Depending on the indicators, a cell culture
plate can be used for long-term studies over months. Detailed
description and discussion of the methods are covered in other
review papers (Braubach et al., 2015; Zlatic et al., 2021). We will
briefly discuss the advantages and limitations of each method and
focus on each has been applied to the study of NDDs using hiPSC
models.

3.3.1 Voltage imaging
Voltage imaging is the direct measurement of the changes

in membrane potential through quantification of fluorescence
intensity emitted from voltage indicators (VIs). This method has
excellent spatial and temporal resolutions for visualizing electrical
activities at the single-cell level from a population of cells that
supports long-term investigation. VIs are able to detect sub-
threshold activity of an action potential on a scale of milliseconds
due to the sensitivity to changes in membrane potential.

3.3.1.1 Voltage indicators (VIs)
Two main kinds of VIs are voltage-sensitive dyes (VSD) and

genetically encoded voltage indicators (GEVIs). VSDs bind to the
cell membrane indiscriminately, emit bright fluorescence signals
in response to changes in membrane potential, and are often
single use (i.e., need to be added before each recording session).
Small molecule VSDs have great signal-to-noise ratio and excellent
temporal resolution (Lippert et al., 2007). On the other hand,
GEVIs are expressed by cells through transduction or transfection,
which makes them more stable and durable, but consequently have
dimmer fluorescence and lower signal-to-noise ratio than VSDs.
However, GEVIs can target specific cell types through the design of
promoters. The comparisons between these VIs and limitations are
summarized in other review papers (Peterka et al., 2011; Kulkarni
and Miller, 2017; Kannan et al., 2019; Aseyev et al., 2023), and
several recent developments also aim to tackle the limitations of
these VIs (Beck and Gong, 2019).

3.3.1.2 Voltage imaging acquisition and analysis
Capturing the rapid changes in action potential requires

a camera that can perform sub-millisecond recordings, which
inevitably means a high exposure rate and risks of phototoxicity.
One cannot instead lower the exposure rate, which makes the
results less representative of the actual firing event. Another
limitation of voltage imaging is cell segmentation when analyzing
the recording. Whether chemically synthesized or genetically
encoded, the VIs are located in the membrane, making it
challenging to differentiate individual cells. Nonetheless, voltage
imaging remains an excellent tool for optically profiling intrinsic
neuronal behaviors (Hochbaum et al., 2014; Figure 2C).
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3.3.1.3 Applications of voltage imaging for studying NDD
disease mechanism using hiPSC models

Voltage imaging does not yet have a wide application in
NDD research. It has been used to measure the spontaneous
activity of hiPSC-derived sensory and forebrain neurons from
erythromelalgia (EM, i.e., a rare vascular pain disorder) patients
(Alich et al., 2023). In the study, Alich and colleagues observed that
EM sensory neurons from patient hiPSCs exhibited an increased
bursting firing pattern compared to the sporadic firing pattern in
the control cells. The EM sensory neurons also had a significant
increase in firing rate in response to a mild rise in ambient
temperature. The group also applied voltage imaging to the EM
co-culture of glutamatergic and GABAergic neurons and detected
a highly synchronized network connection. Other research groups
would benefit from utilizing the VIs more often, particularly to
quantify activity with high spatial and temporal resolutions.

In addition, voltage imaging was combined with optogenetics
technique as the all-optical electrophysiology method, or
“Optopatch”, to record both simultaneous and perturbed activity
of cells, presenting a high-throughput method for studying ion
channel functions (Hochbaum et al., 2014; Puppo et al., 2021).
Kiskinis et al. (2018) applied this method to hiPSC-derived motor
neurons of control and SOD1-mutation for amyotrophic lateral
sclerosis (ALS). They found that the SOD1-variant motor neurons
had higher spontaneous activity at no-to-low stimulation but
lower activity when stimulated with high intensity, suggesting a
disruption in neuronal firing functions. Groups have also used
this approach on hiPSC-derived TSC-deficient neurons and
observed increased repolarization in the waveform, spontaneous
hypoactivity, and a hyperactive phenotype under high-intensity
simulation (Williams et al., 2019; Williams et al., 2024). Multiple
proof-of-concept studies have shown that multisite voltage imaging
allows the study of signal propagations, AP travel speed, network
connectivity, and voltage waveform (Jin et al., 2012; Gu et al., 2014;
Milosevic et al., 2020; Walker et al., 2021).

One reason why the use of VIs is limited in research could be
due to the restriction of the VIs to the membrane, which poses
a technical challenge for recording. Additionally, the promotors
of GEVIs often result in non-specific transfection and thus poor
expression levels of GEVIs (Alich et al., 2023). Nonetheless, the
assay can be a promising alternative to patch clamping with higher
throughput and minimal invasiveness.

3.3.2 Calcium imaging
Calcium imaging is a popular optical functional activity assay

for in vitro studies, which is based on the principle that intracellular
calcium ion level increases during a firing event. Similar to voltage
imaging, this method also allows for long-term recordings at the
single-cell level with minimal technical requirements.

3.3.2.1 Calcium indicators (CIs)
Calcium indicators (CIs) detect the concentration of free

calcium ions in the cytosol and emit fluorescence signals that can be
measured by a microscope (Chen et al., 2013). Two main forms of
calcium indicators are calcium-sensitive dye (CSD) and genetically
encoded calcium indicator (GECI). CSDs are more efficient at
detecting low-frequency, individual action potentials than GECIs
(Tada et al., 2014), but all small molecule dyes share the same
limitation in that they are not specific to one cell population

and are not suitable for long-term experiments. Notably, GECIs
have high signal-to-noise ratio and sustained expression in culture
(Pologruto et al., 2004; Chen et al., 2013). GECIs can also be
expressed in different intracellular compartments, such as the
endoplasmic reticulum (Suzuki et al., 2014; Henderson et al., 2015)
and mitochondria (Kanemaru et al., 2020), thus making them
suitable for studying calcium flux in specific regions of the cell.
Different families of GECI proteins are listed and discussed in other
review papers (Whitaker, 2010; Suzuki et al., 2016).

3.3.2.2 Calcium imaging data acquisition and analysis

A fluorescent microscope is required for acquiring calcium
imaging data. Since calcium indicators have slower kinetics, the
requirement on the camera and exposure time is lower than voltage
imaging, which reduces the risk of phototoxicity. There are open-
source and commercial calcium imaging acquisition and analysis
platforms available for conducting studies using calcium imaging
(e.g., NeuroPlex from RedShirtImaging, Mesmerize (Kolar et al.,
2021), etc.).

However, due to the slow dynamics of calcium influx,
fluorescence signals from calcium indicators have longer signal
decay than electrophysiological measurements (Zhu et al., 2021;
Figure 2D). The calcium transient peak is not linear (i.e.,
fluorescence from multiple electrical events can summate to one
large peak if the electrical events occur in temporal proximity),
making calcium imaging an ideal tool for investigating the pattern
of neuronal activities (Figure 2D), but not the properties of
individual action potentials during a firing burst (Pologruto et al.,
2004; Whitaker, 2010; Ali and Kwan, 2020). Studies also report
that certain calcium indicators could alter the morphology and
physiological activity of culture (Gasterstädt et al., 2020), while
other studies did not find such effects (Võfély et al., 2018), which
should be considered when choosing the calcium indicator for the
experiment.

3.3.2.3 Applications of calcium imaging for studying NDD
disease mechanisms using hiPSC models

Calcium imaging has provided useful information about
network activity, synchrony, and development, as well as calcium
dynamics of hiPSC-derived 2D models for NDD studies. Avazzadeh
et al. (2019) found that hiPSC-derived 2D neuronal cultures
with the NRXN1α+/− genotype (i.e., the most common rare
genetic variation shared by multiple NDDs) exhibited increased
calcium transients (i.e., amplitude, frequency, and duration), which
was validated in another study that found impaired voltage-
gated sodium, potassium, and calcium channel functions using
patch clamping (Avazzadeh et al., 2021). When investigating
TSC, Hisatsune et al. (2021) observed a hypersynchronous
spontaneous activity in TSC2-null neurons compared to neurons
with monoallelic loss of TSC2 and isogenic controls. Using
TTX to inhibit spontaneous activity and KCl to depolarize
neurons, the authors found that the TSC2-deficient neurons
displayed the highest increase in calcium ion influx. In addition,
chronic treatment of rapamycin, an mTOR inhibitor, rescued the
hyperactive phenotype and decreased the CACNA1D expression in
the TSC2−/− neurons, suggesting an interaction between mTOR
and calcium signaling in TSC pathology. Therefore, calcium
imaging is a critical tool in studying disease mechanisms that allows
researchers to visualize functional and calcium-related activities.
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In addition, calcium imaging is advantageous for measuring
the activity of co-culture and organoid systems of NDDs, thanks
to the variety of fluorescence markers available for labeling
multiple cell types or cell compartments. The technique has been
applied to neuron-astrocyte (Kuijlaars et al., 2016) and microglia-
motor neuron (Vahsen et al., 2022) co-culture systems and has
the potential to benefit other combinations, such as excitatory-
inhibitory neuron co-culture. In terms of the application to 3D
brain organoids, a common way for recording is to use organoid
slices. Rylaarsdam et al. (2024) performed calcium imaging on
organoid slices of PACS2 syndrome at days 40 and 80 and
observed the maturation of the network over time but no significant
difference between the control and proband activities, which they
attributed to the lack of GABAergic interneurons in the organoids.
Notably, slicing could interrupt the neurons and neurites in
the organoid, which could confound the recording results. On
the other hand, Samarasinghe et al. (2021) generated cortical
organoids with excitatory neurons and ganglionic organoids with
inhibitory neurons using the patterning approach to model RTT
and later transduced with neuron-specific GECI. The authors then
integrated the cortical and ganglionic organoids into assembloids
and performed 2-photon calcium imaging, and they observed a
hyperactive and hyper-synchronized phenotype in the assembloids
with mutant ganglionic organoids regardless of the genotype
of cortical organoid, suggesting the role of interneurons in the
network dysfunction. Future studies can transduce cortical and
ganglionic organoids with different GECIs to investigate the
intrinsic functional behavior of each cell type in healthy and disease
states using calcium imaging.

3.4 Comparing functional assays

The functional assays discussed above are applicable for hiPSC
models in in vitro NDD studies (Tables 1–4). Each method
measures different aspects of neuronal development and activity,
which can be utilized individually or complementary to other
assays, providing flexibility in experimental design. However, some
assays are more suitable for investigating disease mechanisms,
while others are advantageous as drug screening platforms. In the
following section, we focused on comparing the assays based on
their performance in disease studies (Table 5) and drug screening
(Table 6).

3.4.1 Disease mechanism study of NDD
Studying NDDs involves investigating the biological causes

of the disorders to better understand underlying mechanisms
and develop translational treatments (Benam et al., 2015). The
hiPSC model provides unique opportunities to reveal the molecular
and cellular aspects of NDDs in a scalable, reproducible, and
human-related approach. Therefore, it is critical for the supporting
functional assays to detect the changes in sub-cellular, cellular,
or network activities in the hiPSC model, to distinguish between
healthy and aberrant behaviors, and to validate that the model
recapitulates the clinical presentation of the disorders. In addition,
long-term functional studies allow for an understanding of brain
development, profiling disease progression, and identifying critical
time points for therapeutic intervention, which can provide
translational results for drug development.

3.4.1.1 Different spatial and temporal resolutions describe
different aspects of neuronal activities

Patch clamping has the highest spatial and temporal resolution
among the four assays. Due to the nature of the technique,
patch clamping characterizes the subcellular features, such as ion
channel functions, action potential waveforms, and subthreshold
current changes in real-time (Table 1). Therefore, it has been the
benchmark for other functional assays. It is a great tool for studying
NDDs associated with channelopathy (e.g., SCN gene family
for sodium channel; KCN gene family for potassium channel)
(Quraishi et al., 2019; Qu et al., 2024). In addition, because of the
high temporal resolution, it can be used to measure the acute drug
effect on the cells a few minutes after administration (Sharma et al.,
2023). However, patch clamping rarely reports network function
from a population of cells due to technical constraints of the low
throughput assay.

LD-MEA has the lowest spatial resolution among the assays,
but higher temporal resolution than the imaging-based approaches.
It reports the functional activity at each electrode and network
activities of the whole well, but it does not support measuring
activities from individual cells. Studies utilize LD-MEA to examine
the firing patterns (e.g., burst frequency, burst duration, etc.;
Table 2) as well as the firing synchronization. On the other hand,
HD-MEA has high spatial resolutions that can be used for axon
tracing, dendrite measurements, and signal propagation recording.
In general, MEA has largely been utilized to study network activities
in NDDs, such as TSC (Winden et al., 2019; Winden et al., 2023),
RTT (Pradeepan et al., 2024), and MEF2C deficiency (Mohajeri
et al., 2022; Table 2) and remains a popular method for measuring
electrophysiological activities.

Optical methods (i.e., voltage and calcium imaging) have
the second-highest spatial resolution with genetically encoded
indicators to target specific cell types. They measure neuronal
activity (e.g., amplitude, frequency, etc.) at the single-cell level
and network activity (e.g., synchrony) at the population level
(Marchetto et al., 2010; Saber et al., 2018; Tables 3, 4). Between
the two methods, voltage imaging has a higher spatial resolution
than calcium imaging because the former measures the synaptic
input from the dendrite and can record subthreshold membrane
potential changes. On the other hand, calcium imaging measures
the output of an action potential but fails to detect non-spike-
evoked calcium events (Antic et al., 2016; Zhang et al., 2023a).
An additional advantage of fluorescence-based assays is that they
can conveniently measure the morphological difference between
the proband and wild-type cultures. Furthermore, calcium imaging
also reports information about calcium homeostasis, an important
factor in synaptic plasticity and network formation and dysfunction
(Avazzadeh et al., 2019; Parnell et al., 2023).

In general, imaging-based assays have lower temporal
resolution than electrophysiology assays because the
conformational change required for fluorescent proteins to
emit light introduces delays to the recording time, but voltage
imaging responds to an AP event faster than calcium imaging
(Figure 2E; Gonzalez M. A. et al., 2021; Zhu et al., 2021).
However, newly developed voltage and calcium indicators with
more rapid and sensitive kinetics are emerging, making them
more desirable functional assay options (Zhang et al., 2023a;
Evans et al., 2023). Although there is undoubtably room for
improvement, imaging-based functional assays have contributed
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TABLE 5 Comparison of functional assays for hiPSC-based disease study.

Functional
assays

Reported
applications
of hiPSC
formats

Available
plate-format

Allow
long-term
study

Spatial resolution Temporal resolution Skills required (besides
cell culture)

Minimum equipment
required

Patch Clamping 2D, 3D, co-culture 60mm dish with a
coverslip

Possible but
difficult

Highest (subcellular level) Highest (sensitive to each change
in voltage or current)

Preparation: High (prepare
pipette, samples, and solution)
Acquisition: high (locate cells and
form appropriate contacts with
the cells)

DIC microscope, patch pipets,
patch clamping stations

LD-MEA 2D, 3D, co-culture 6-, 12-, 24-, 48-,
96-well

yes Lowest (population) High (detect each firing event
from electrodes)

Preparation: None
Acquisition: low (adjust
parameters)

MEA plates and compatible MEA
machine

HD-MEA 2D 1 or 6 wells yes High (single-cell, subcellular) High (detect each firing event as
well as signal propagation along
axons)

Preparation: None
Acquisition: low (adjust
parameters)

MEA plates and compatible
machine/software

Voltage imaging 2D Common plate
formats: 96 or 384
well plates

yes High (single-cell) High (each action potential) Preparation: medium (load VIs or
express GEVIs)
Acquisition: medium (adjust
focus and find FOV)

High-speed camera with
fluorescence microscope

Calcium Imaging 2D, 3D, co-culture Common plate
formats: 96 or 384
well plates

yes High (single-cell) Low (delay in signal) Preparation: medium (load CIs or
express GECIs)
Acquisition: medium (adjust
focus)

Fluorescence microscope
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TABLE 6 Applications of each functional assay for drug screening.

Functional assay as
drug screening

Equipment Example Throughput Number of compounds
screened

Automated patch clamping PatcherBot (contact
authors)

Kolb et al., 2019 16 cells per hour N/A

Syncropatch 768 PE
(Nanion Technology)

Vanoye et al., 2022 384 cells at the same time Tested 39 epilepsy-associated KCNQ
variations, 9480 cells total

Qube 384 (Sophion
Bioscience)

Kilfoil et al., 2021 384 wells at the same time Tested 35 compounds on the ion channel
function of hiPSC-cardiomyocytes
compared to the clinical data

LD-MEA Axion Biosystems Bradley et al., 2018 48 wells at the same time Tested 20 seizurogenic compounds

Voltage imaging Firefly instrument
(Quiver Bioscience)

Williams et al., 2024 Screen over 500,000 neurons
plated on 96 well plates per day

Tested 29,250 compounds on∼300
96-well plates

Calcium imaging StemoniX Negraes et al., 2021 384 wells Tested 1112 compounds for neurologic
research on CDD spheroids

to the understanding of NDDs, such as RTT (Dong et al., 2018),
SSADHD (Afshar-Saber et al., 2024b), and FXS (Brighi et al., 2021;
Tables 3, 4).

3.4.1.2 Long-term recordings allow the investigation of
network development and maturation

An important part of NDD research is to understand the
effects of the disorder as the brain develops, which means
comparing the neuronal activity of the control and the
patient cell line as the culture matures over time in vitro.
Therefore, the functional assay should support long-term
monitoring of the growth and behavior of the cell culture.
Patch clamping is not suited for long-term studies. The
physical process of forming a seal and injecting intracellular
solutions compromises cell viability. Setting up a recording
session is also time-consuming and hard to execute repeatedly,
thus often limiting experimental sample size. Consequently,
patch clamping is usually complemented with MEA or
calcium imaging for long-term data collection. For example,
Sundberg et al. (2021) utilized both patch clamping and HD-
MEA to demonstrate that 16p11.2 deletion in hiPSCs-derived
dopaminergic neurons have a hyperexcitable phenotype compared
to controls and 16p11.2 duplication cells, which was consistent
over 4 weeks.

On the other hand, MEA and imaging-based assays are both
non-invasive and viable options for longitudinal studies of the
hiPSC cultures. Setting up a recording session for either assay
is relatively straightforward, so they can be repeated multiple
times throughout the day if needed. Studies using the MEA
usually last for 3 weeks (Table 2), and calcium imaging can
record from over 15-week-old cultures (Fink et al., 2017).
However, there are things to be cautious of when conducting
long-term studies using either assay. For example, monolayer
cultures often start to peel off at the edge of the wells as
the cells mature due to routine media change. In MEA, the
peeling around the electrodes could affect the measurement and
downstream data analysis. In imaging-based assays, the effect of
peeling can be mediated by choosing a different field of views
in the well, but this may introduce selection bias. In addition,
phototoxicity is a common issue specific to fluorescence-based
methods, but it can be minimized by implementing several

strategies described in other review papers (Tosheva et al., 2020;
Kiepas et al., 2020).

3.4.2 Drug screening platform
The purpose of drug screening in vitro is to identify the effective

compounds that can rescue the disease phenotypes without causing
neurotoxicity or compromising cellular function. As discussed in
the previous sections, hiPSCs provide a promising model system
for early-stage drug discovery and development. Choosing the
appropriate functional assays for the hiPSC model while achieving
the goal of drug screening is critical and should be: (1) suitable
for high throughput screening (HTS), and (2) cost-efficient for
human labor, time, and equipment. HTS, within the context of
hiPSC research, mainly refers to screening a large number of drug
candidates in a relatively short amount of time. Common HTS
plate formats include 384, 1586, or greater number of wells on a
single plate. The goal for a HTS is to identify the hit compounds
and effective dose among hundreds or thousands of potential
candidates at different concentrations within a week or a day.
Therefore, the functional assays not only need to support a large
plate format, but they also should be capable of running data
acquisition and analysis at a rapid speed.

Traditional patch clamping is not feasible for drug screening
due to its aforementioned shortcomings, but APC has the potential
to perform as an excellent platform. Many efforts have been put
into increasing the throughput of APC while decreasing human
labor, such as the patcherBotPharma, which is an automated robotic
patch-clamping system (Kolb et al., 2019; Perszyk et al., 2021),
the Qube384 fixed 384-well APC system (i.e., plates with open
chambers at the bottom of each well to form seals for patch
clamping (Sophion Bioscience) (Seibertz et al., 2022), or APC with
multiple pipettes (Yip et al., 2024). However, each of these methods
has drawbacks, and the throughput is not satisfying. The main
limitation of APC, and patch clamping in general, is that it requires
direct contact with single cells to obtain the data, and cell detection
and pipet attachment can take up a significant amount of time.
Among the attempts, Vanoye et al. (2022) successfully performed
APC on 9480 cells from a 384 well plate (Nanion Technologies) to
characterize the electrophysiology of different epilepsy-associated
KCNQ2 variants and tested the effect of retigabine on all the cells,
which is promising for APC to work as a HTS platform. Yet,
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high-throughput APC requires additional or specialized equipment
to achieve full automation, which can be a financial hurdle for
academic research groups.

On the other hand, commercially available LD-MEA supports
up to 96 wells (e.g., Axion Biosystems) on a plate due to
restrictions of surface area and the number of electrodes in
one well necessary for sufficient data collection. Nonetheless,
each electrode serves as a recording probe, accumulating a large
volume of data from one plate. In addition, LD-MEA allows
simultaneous recordings from all the wells, and the recording
time for one plate typically takes a relatively short amount
of time. Therefore, it is possible to record multiple plates in
a day to make up for the fewer wells, without purchasing
separate equipment for high-content screening. For instance,
Bradley et al. (2018) used a 48-well MEA plate to test 20
compounds on seizurogenic and neurotoxic effects with 15-min
recordings for baseline and treatment, and they established several
parameters for future screening. Groups have also turned to
personally customizing MEA plates with higher throughput (Smith
et al., 2020). Hence, MEA is a viable option for HTS of drug
candidates.

Imaging-based assays are by far the most popular HTS
platform. The methods are not limited by the physical contact
with the culture as patch clamping or MEA do, so they support
plates with 96, 384, or even more wells. In one study, Negraes
et al. (2021) tested 1112 compounds on cortical organoids
of CDD using calcium imaging with FLIPR Calcium 6 Dye
(Molecular Devices) in a 384-well plate and identified four
that rescued the hypersynchronous phenotype. Williams et al.
(2024) utilized voltage imaging as the HTS platform on TSC2-
deficient hiPSC-derived neurons and identified 434 out of 29250
small molecules that could alter the diseased phenotype. Another
interesting method is to combine voltage imaging with calcium
imaging. Nguyen et al. (2019) described a system where both
voltage traces and calcium traces can be recorded at the same
time, adding more data output and potential compounds to
test. While using a regular fluorescence microscope is sufficient
for conducting HTS in 2D cultures, various platforms with
additional features, such as automated liquid handling (DuBreuil
et al., 2021) or an ultra-widefield microscope (Werley et al.,
2017), have been reported, and some are suitable for screening
cortical organoids (Sirenko et al., 2019; Sakaguchi et al., 2019;
Lu et al., 2023). Notably, while some high-content imaging-
based platforms only support recording from one well at a
time, which increases the recording time as the number of
wells scales up, other platforms, such as Hamamatsu, provide
simultaneous whole-plate recording at the cost of the single-cell
level resolution.

4 Harnessing the power of machine
learning for neurodevelopmental
disorder research

Artificial Intelligence (AI) is a set of computer algorithms that
can perform advanced tasks, such as vision, language processing,
and reasoning. In recent years, AI has experienced rapid and
exciting advancements, boosting revolutions in fields outside of

computer science including biology and biomedicine. Machine
learning (ML) is a subset of AI that is trained on collected
data (i.e., learning) to produce outputs, such as classification and
predictions, on a whole new dataset. If trained properly, ML can
identify patterns from a large dataset with high accuracy that might
not otherwise be obvious to researchers or physicians (Bejnordi
et al., 2017; Hekler et al., 2019). A variety of ML methods, such
as K-means clustering, logistic regression, and artificial neural
networks (ANN), have been utilized in research in several fields of
neuroscience, including Alzheimer’s Disease (Klöppel et al., 2008;
Levakov et al., 2020), pain studies (Zhang Z. et al., 2022), and
connectomic studies (Shapson-Coe et al., 2024).

NDDs remain critical health problems worldwide, with at least
4.7% of the global population affected by one NDD (Francés
et al., 2022). However, the current understanding of the NDDs
is not sufficient for developing effective treatment or establishing
thorough and objective evaluation for diagnoses. Given the recent
advancements, ML has the potential to address the challenges
(Figure 3). Clinically, ML can integrate and analyze different types
of test data, such as fMRI, EEG, and behavioral scoring, and provide
a suggestive diagnosis to assist physicians in NDD assessment and
patient outcomes (Movaghar et al., 2022). The clinical applications
of various ML algorithms in NDDs are discussed in other review
papers (Song et al., 2022; Moreau et al., 2023). Preclinically, ML
can speed up disease research and drug screening in vitro. As
discussed previously, a significant amount of information can be
extracted from experiments using hiPSC models, where ML can
provide meaningful support or be trained to make predictions. In
the following section, we focused on the possible ways that ML can
assist functional assays and other biological studies using hiPSC
models to better understand NDDs, as well as the limitations and
pitfalls to avoid.

4.1 ML accelerates the data acquisition
and analysis process

Manual patch clamping suffers from the laborious pre-
recording setups and technical requirements, but various ML
algorithms were developed to assist the process, such as target
cell identification (Koos et al., 2021; Yip et al., 2021) and pipet
correction (Gonzalez M. M. et al., 2021). The incorporation
of ML makes patch clamping less time-consuming and more
accessible to researchers, meanwhile enabling sequential recordings
on multiple cells without extensive human operations. Automated
cell detection in the APC system can increase the throughput
of recording from neurons in intact brain organoids to obtain
insightful information about neuronal activity and network
formation from a more in vivo-like model. Furthermore, ML
methods have been used in patch clamping data analysis to study
ion channel functions (Celik et al., 2020) and synaptic signaling
(Seeman et al., 2018). For example, Richter-Laskowska et al. (2021)
utilized k-nearest neighbor (KNN) (i.e., a supervised classifier to
group data) and autoencoder neural network (i.e., an unsupervised
ANN to recreate the input data) to distinguish different cell
types and cell lines based on voltage-gated and calcium-gated
potassium channel activities in patch clamping data with decent
accuracy. Their results demonstrated the potential applications of
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FIGURE 3

Experiment designs with the combination of hiPSC models, functional assays, and machine learning for NDD disease mechanism study and drug
development process. Each hiPSC model format offers unique advantages of studying NDD in vitro. The functional assays provide opportunities to
examine the functional properties of cell cultures at various levels and for different purposes. Finally, the high-quality data collected from the
experiments can be used to build in silico platforms for future investigations to advance NDD research.

ML-powered analysis in identifying patterns or abnormalities of ion
channel functions in patch clamping data that might otherwise be
overlooked.

Additionally, ML can assist in interpreting the inter-neuronal
connectivity and development measured by MEA assays. For
example, Cabrera-Garcia et al. (2021) applied K-means clustering
and a self-organizing map to identify characteristics of firing
activities from MEA data in mouse cortical neurons at an early
developmental stage. The researchers then trained three different
ML models on the firing patterns to predict the mature electrical
activities, and the models showed high accuracy with the MEA
recording, suggesting that early firing activity could predict the
development trajectory. Furthermore, ML-based spike sorting
algorithms (Hilgen et al., 2017; Chaure et al., 2018) can assist
in the data analysis to distinguish different cell types (Buccino
et al., 2018). For example, Habibey et al. (2022) employed spike
sorting algorithms in HD-MEA data to investigate the maturation
of hiPSC-derived 2D neurons and the effect of GABAergic neurons
on network activity. In addition, a trained ML model can be used
to classify disease states based on MEA data. Matsuda et al. (2022)
trained a model to predict the seizure-liability of drugs from MEA
raster plots. This model classified the compounds with almost
perfect accuracy, included dose effects in the output, and identified

the mechanism of action, making MEA a more appealing option for
high-throughput drug screening.

In terms of optical assays, retrieving single-cell level
information requires labeling the cells, which is a critical yet
time-consuming task and is prone to human errors and biases.
Thankfully, various cell segmentation algorithms using ML, such
as convolutional neural network (CNN), accelerate the image
processing step and increase the efficiency of the assay (Stringer
and Pachitariu, 2019; Berg et al., 2019; Pachitariu and Stringer,
2022; Zhang et al., 2023b). Several calcium imaging analysis
programs have incorporated ML-based cell segmentation in their
pipeline (Pachitariu et al., 2016; Kolar et al., 2021). Liu et al.
(2024) generated hiPSC-derived cortical organoids of Huntington’s
disease and found altered neurogenesis and corticogenesis. In the
follow-up calcium imaging where they applied Mesmerize, an
ML-powered calcium imaging analysis system (Kolar et al., 2021),
the authors detected a decreased calcium activity amplitude and
frequency in the proband organoids compared to the control group,
suggesting that the observed aberrant organoid development could
disrupt the neuronal network. The other challenge for data analysis
in optical methods is identifying the signal peaks, and several ML
algorithms have been trained to detect peaks in the recording
(Sebastian et al., 2021; Zhou et al., 2023).
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4.2 Building ML-powered in silico models
for NDDs

Another exciting possibility about ML is building in silico
models based on the large volume of functional data collected
in vitro. The recent advancement of AlphaFold models, which
are AI systems that can predict protein structures based on given
amino acid sequences (Jumper et al., 2021; Varadi et al., 2022;
Abramson et al., 2024), proves that ML can utilize complicated
rules to predict a biologically plausible outcome and has been
applied to NDDs (Herbst et al., 2024). Currently, most in silico
models for NDDs are mathematics-based (El Ghaleb et al., 2021;
Doorn et al., 2023), but with ML, such models can achieve
more. Trujillo et al. (2019) employed a linear regression model,
ElasticNet, that was trained on electroencephalogram (EEG) data
from preterm infants to predict the organoid development time
in vitro based on the MEA recording. The model prediction showed
a significant and positive correlation between prenatal EEG and
organoid MEA recordings, suggesting that ML algorithms can
be applied to model developmental trajectories. Alternatively, the
ML-based in silico model can be applied as a drug development
tool. In another study, Trujillo et al. (2021) built an ANN
based on the published data from hiPSC-derived neurons with
MeCP2 mutations to parameterize synaptic properties. The model
predicted that treating synaptic defects was sufficient to rescue the
decreased network activity in the MeCP2-mutated cells and the
in vitro administrations of Nefiracetam and PHA543613, two drugs
that increase synaptogenesis, were found to rescue the cellular
activity and the MEA spike frequency in the MeCP2-KO neuronal
cultures, which validated the model prediction.

In addition, several emerging ANN structures present
possibilities for building biologically plausible, data-constrained
computational simulations of population-level cellular behavior.
Two examples are spiking neural network (SNN) and recurrent
neural network (RNN). SNN is inspired by the brain circuit
and mimics how biological neurons receive a train of spikes
with frequency and inter-spike intervals, rather than discrete
values, as input and output signals to other connected neurons
(Yamazaki et al., 2022). SNN models based on different brain
regions, including cerebellum (Vijayan and Diwakar, 2022), visual
cortex (Fu et al., 2012), and basal ganglia (Girard et al., 2021),
have contributed to the understanding of neural circuitry and have
the potential to model neurological disorders for studying the
circuit-level dysfunction. Yamaura et al. (2020) built a human-scale
cerebellar SNN model with 68 billion artificial neurons based
on electrical and anatomical data and simulated similar firing
patterns observed in animal experiments. Although the computing
time is significantly slower than biological time, it showcases the
potential of constructing a model to computationally reproduce
brain activity in the disease state across multiple regions.

On the other hand, RNN require time-series but not event-
driven data, and the artificial neurons, or nodes, in the model
receive and generate signals from each other in a connected circuit.
The advantage of RNN is that the prediction is constrained by
the experimental training data and can be used to study the
underlying dynamics in the network that might be otherwise hard
to assess (Perich and Rajan, 2020). For example, Andalman et al.
(2019) trained an RNN model on single-cell level calcium imaging

data from larval zebrafish and identified a potential mechanism
of habenula neurons recruitment when the animals experience
high level of stress. Several brain functions, such as memory
(Fisher et al., 2013) and movement (Sussillo et al., 2015), have
been simulated by RNN models and other new advancements,
such as Current-based Decomposition (CURBD) (Perich et al.,
2021), which connects multiple RNN models to simulate inter-
region connections. Constructing an RNN model for NDDs
using functional data of various cell populations obtained with
hiPSC models could potentially reveal disease mechanisms between
different cell types and brain regions, providing information for
future research directions.

4.3 Limitations and pitfalls of ML
application for NDD research

Although ML presents promising opportunities to advance the
understanding of NDDs, it has limitations and pitfalls to be aware
of before being utilized. First, quantity and quality of the training
data are essential for an accurate and reliable model performance
because the input into an ML model determines the output. The
quantity of data refers to the sample size. A small sample size often
results in low effect size and data overfitting, and the model often
fails to detect the true effects (Rajput et al., 2023). Notably, the
accuracy of model prediction is found to increase as the sample
size increases (Chu et al., 2012; Cui and Gong, 2018). Rajput
et al. (2023) proposed two criteria for determining the sufficient
sample size based on the model prediction accuracy and effect size,
but they also pointed out that the beneficial effects of increased
sample size plateaued after reaching a certain number. However,
the sample size needed for each ML method might vary with the
complexity of the model. Infante et al. (2023) estimated that a
Random Forest requires at least 150% larger sample size than other
traditional regression models, and a deep learning neural network
might require more than 200% than the minimum size to achieve
the same performance level as statistical methods.

Nonetheless, the quality of data is equally important as the
quantity. One important factor that can decrease the data quality is
data bias, which includes selection bias, framing bias, and label bias
(Fabbrizzi et al., 2024). For example, when using CNN for image
segmentation, accurate labeling in the training data is essential
for achieving the desired model performance. Precautions should
also be taken when designing the experiments to include correct
experimental controls and conditions to establish the baseline. In
addition, data inconsistency and incompleteness also decrease the
quality of data, resulting in unreliable model output. Low-quality
training data often leads to decreased model performance and
misleading output, so careful evaluation steps of the dataset before
training have been suggested and are beneficial for studies using ML
methods (Norori et al., 2021; Gong et al., 2023).

Furthermore, output explainability and interpretation are also
worth noting as challenges when using ML in research. ML,
especially ANN, is usually referred to as a ‘black box’ because the
models produce output without an explanation on the process.
Therefore, it is essential to check the model prediction, conduct
cross-validations, and validate the results using in vitro or in vivo
experiments when necessary. One recommendation is to use an
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ML-based in silico model as a hypothesis-generating platform and
conduct biological experiments to test the idea. In addition, an ML
model represents the pattern observed from the given data, so the
scope of its application is limited (Williamson et al., 2019). A more
precise in silico model of NDD would require the consideration
of non-genetic factors, such as environment, nutrient, and social
interactions, which are difficult to quantify and simulate.

Another important consideration is whether it is necessary to
use ML in NDD studies. For example, for peak detection in calcium
imaging data, besides spike detection ML algorithms, there are also
mathematical methods that require less computing power and no
training effort, and yet label the peaks with sufficient accuracy (Jang
and Nam, 2015; Artimovich et al., 2017). Additionally, the potential
financial cost for high-quality and sufficient datasets as well as
computing power could outweigh the benefits of ML. Thus, one
needs to determine the suitable approach by examining different
methods. After all, ML is one of the many useful up-and-coming
tools that can help researchers with experiments, and an informed
decision based on the careful evaluation of the advantages and
limitations will save time and energy to achieve accurate results.

5 Discussion

In this review, we provided a comprehensive overview of how
functional assays and ML algorithms support and advance the study
of NDD mechanisms and drug development using hiPSC-based
models (Figure 3). We first compared 2D and 3D formats, and
we discussed the applications of functional assays–patch clamping,
MEA, and imaging-based approaches–in different hiPSC culture
formats for NDD disease studies and drug screening. Finally, we
explored the implementations of ML in various aspects of the
NDD research process. The combination of hiPSC-based disease
models, functional assays, and ML offers meaningful insights and
an advanced understanding of NDDs and neuroscience (Chen et al.,
2014; Russo et al., 2018; Trujillo et al., 2019; Winden et al., 2023;
Afshar-Saber et al., 2024b).

Animal models have played a crucial role in enhancing our
comprehension of disease mechanisms and historically, success in
animal models has served as a prerequisite for advancing to clinical
trials. However, their effectiveness in preclinical testing and clinical
trial have shown the limitations of such models and unsuccessful
clinical outcomes has raised questions about their applicability
as a predictive framework for human diseases (Pankevich et al.,
2014). Additionally, although human ex vivo brain slice efficiently
recapitulates features of the human brain in health and disease,
including some not observed in rodent brains or 2D cultures
hiPSC cultures (Schwarz et al., 2019; Barth et al., 2021), this
model present an important limitation of tissue availability (Jones
et al., 2016). Regarding the hiPSC model, choosing a suitable
differentiation protocol for hiPSC and understanding its limitations
are essential for the experiment design and result interpretations.
For example, using NGN2-overexpression method for generating
2D cultures has been reported to generate a mixed population of
peripheral and CNS neurons, which can confound the experiments
focused on a specific cell type (Chen et al., 2020; Lin et al., 2021).
However, the addition of small-molecule patterning produces a
more homogenous and mature population of cortical excitatory

neurons (Nehme et al., 2018). Therefore, it is important to conduct
quality control on the hiPSC-derived culture to validate the disease
model. Another key question emerging in in vitro NDD research
is whether 3D organoids can fully replace 2D models. While
cerebral organoids offer notable advantages over 2D monolayer
culture, including development of an in-vivo-like neural diversity
and network (Jensen and Teng, 2020), they also present challenges.
For example, cortical organoids are reported to show abnormal
chronic stress that may affect the developmental process and
cellular properties, such as functional activity and gene expression
(Bhaduri et al., 2020). Additionally, generating organoids usually
takes a longer time, compared to 2D culture. As Porciúncula et al.
(2021) summarized, it takes at least a month for organoids to have
detectable spontaneous activity and a few more months to have
matured network activity, which is a substantial investment of time
before data collection. Whereas in 2D cultures, for example in
NGN2 neurons, spontaneous activities can be detected as early as
around 10 days, with neural circuits formed after 5 weeks (Shan
et al., 2024). In this case, 2D culture could provide preliminary
data, while 3D organoids can be utilized for detailed network study.
Moreover, as discussed previously, current functional assays are not
yet fully compatible with the 3D structure to obtain the information
encapsulated by the organoids. Nonetheless, ongoing research
is focused on improving the long-term culturing of the brain
organoid model (Giandomenico et al., 2021), cryopreservation
(Xue et al., 2024), reproducibility (Glass et al., 2023; Sandoval
et al., 2024) and recording technologies (Yang et al., 2024), showing
promises for the extensive application of 3D organoids in NDD
research in the future.

Notably, hiPSC models, including co-culture and organoids,
do not capture the complexity of a biological organism, such as
inclusion of the blood-brain-barrier and interactions with other
organ systems, which hinders the direct application of laboratory
findings to clinics. In one study (Tidball et al., 2020), three
patients with SCN8A-related epilepsy were suggested to take
riluzole to treating seizures based on the hiPSC results. Two
patients had reduced seizure frequency during the administration
but experienced various side effects, while the other did not
benefit from the treatment despite the increased dosage, urging
the need for more studies on variant-specific intervention as well
as a better model system for understanding potential side effects.
Advanced hiPSC cultures, such as assembloids (Birey et al., 2017)
and gastruloids (Rossi et al., 2022), can potentially address some
of the limitations. Humanized animal models (i.e., animal model
with transplanted cortical organoids) could also be one solution
for drug safety and efficacy tests in an in vivo environment, but
these approaches have been accompanied by some ethical concerns.
Therefore, more efforts are needed in bridging the translational
gaps between hiPSC data and clinical applications.

Nonetheless, hiPSC models have provided opportunities to
investigate the disease mechanisms of NDDs, especially rare and
ultra-rare ones with limited patient samples or lacking established
animal models (Banfi et al., 2021; Williams et al., 2022). The models
also worked as an excellent platform for testing drug candidates
and gene-base therapies such as ASOs or short interfering RNAs
(siRNAs), thanks to the human genetic background (Chen et al.,
2024). In one study, Elamin et al. (2023) administered ASO
treatment to normalize UBE3A levels in hiPSC-derived neurons
modeling chromosome 15q11-q13 duplication syndrome at an
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early and a late timepoint. They found that the earlier timepoint
treatment rescued more phenotypes than the later administration,
suggesting either an early intervention or longer treatment is
necessary. Other examples of hiPSC-based drug testing include
mTORC1 inhibition for TSC (Winden et al., 2019), IGF-1 treatment
for RTT (Tang et al., 2016) and protein kinase inhibitor in FXS (Das
Sharma et al., 2020).

This review paper also discussed four functional assays, each
shedding light on the unique properties of the neuronal activities
in the hiPSC culture. The methods give useful insights into the
NDDs ranging from the subcellular level (e.g., ion channels) to the
circuit level (e.g., network formation). We focused on comparing
the assays separately in terms of their applications to NDD disease
studies and drug screening, but the assays also complement each
other effectively. Researchers often employ multiple assays to
gain a comprehensive understanding of the research questions.
Sandoval et al. (2024) recommend conducting complementary
functional assays for characterizing organoids robustly, along
with other suggested practices for analyzing data and reporting
results. There are also a few noteworthy advancements that are
expanding the hiPSC NDD field, although not addressed in
this review. Optogenetics (Emiliani et al., 2022) is a tool often
coupled with image-based recordings or electrophysiology, which
enables selective, non-invasive stimulation of neurons via light-
gated ion channels. Furthermore, non-functional assays, such as
omics studies (Burke et al., 2020; Brooks et al., 2022) and Cell
Painting (Bray et al., 2016), provide additional information on the
cellular and molecular profiles of hiPSC-derived disease models.

In recent years, ML has gained prominence and impacted
multiple areas of NDD research, particularly in data acquisition
and analysis. Besides working with functional assays, ML methods
can benefit multi-omics studies, which generate extensive data from
hiPSC samples. ML can also enhance data analysis, integrate diverse
omics datasets, and potentially identify biomarkers (Costello and
Martin, 2018; Reel et al., 2021; Feldner-Busztin et al., 2023),
shedding light on the developmental trajectory or dysregulated
gene expression associated with the disorders (Zhu et al., 2023;
Tian et al., 2024). Importantly, we discussed the limitations of using
ML methods, especially neural networks, due to the requirement
on high-quality data, limited applications, and potential financial
costs. Nonetheless, as more studies reveal distinct mechanisms
of each NDD using hiPSC models, a centralized and organized
data collection platform for each NDD will help train accurate
ML models as well as support scientists in sharing, reviewing,
understanding, and planning for future research on the disorders
(Winden et al., 2019; Birey et al., 2022; Sharma et al., 2023;
Afshar-Saber et al., 2024b). The Blue Brain Project by École
Polytechnique Fédérale de Lausanne, Allen Brain Atlas, and the
NIH-funded NeuroLINCS project for neurodegenerative disorders
are examples of how such a platform can benefit the broad
neuroscience and neurodevelopment community by increasing
scientific communication and transparency.
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