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Using cortical organoids to 
understand the pathogenesis of 
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Malformations of cortical development encompass a broad range of disorders 
associated with abnormalities in corticogenesis. Widespread abnormalities in 
neuronal formation or migration can lead to small head size or microcephaly 
with disorganized placement of cell types. Specific, localized malformations are 
termed focal cortical dysplasias (FCD). Neurodevelopmental disorders are common 
in all types of malformations of cortical development with the most prominent 
being refractory epilepsy, behavioral disorders such as autism spectrum disorder 
(ASD), and learning disorders. Several genetic pathways have been associated 
with these disorders from control of cell cycle and cytoskeletal dynamics in 
global malformations to variants in growth factor signaling pathways, especially 
those interacting with the mechanistic target of rapamycin (mTOR), in FCDs. 
Despite advances in understanding these disorders, the underlying developmental 
pathways that lead to lesion formation and mechanisms through which defects 
in cortical development cause specific neurological symptoms often remains 
unclear. One limitation is the difficulty in modeling these disorders, as animal 
models frequently do not faithfully mirror the human phenotype. To circumvent 
this obstacle, many investigators have turned to three-dimensional human stem 
cell models of the brain, known as organoids, because they recapitulate early 
neurodevelopmental processes. High throughput analysis of these organoids 
presents a promising opportunity to model pathophysiological processes across 
the breadth of malformations of cortical development. In this review, we highlight 
advances in understanding the pathophysiology of brain malformations using 
organoid models.
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Introduction

Malformations of cortical development include a variety of abnormalities from widespread 
migration defects to highly restricted areas of cerebral dysgenesis (Barkovich et al., 2012; 
Desikan and Barkovich, 2016). Early head growth is dependent on the expansion of the brain, 
and therefore, global defects in the coordination of neural development cause reduced head 
size or microcephaly. There has been substantial progress in understanding the genetic 
underpinnings of these disorders, which has implicated several molecular processes involved 
in specific patterns of abnormal cortical development. For example, several genes associated 
with mitotic spindle formation and cell division—such as ASPM and CENPJ—have been 
linked to microcephaly, which is thought to be due to defects in neurogenesis (Thornton and 
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Woods, 2009; Degrassi et  al., 2019). The microtubule network is 
critically involved in regulating cellular morphology, and impaired 
migration of neural progenitors or immature neurons leads to 
disorganized cortical layering (Kato and Dobyns, 2003; Moon and 
Wynshaw-Boris, 2013). These disorders can also display various 
patterns of abnormalities in gyration and cortical thickness on brain 
imaging. Some migration disorders such as periventricular nodular 
heterotopia caused by variants in FLNA are associated with the 
presence of unmigrated cortical tissue in the ventricular zone and 
multiple neurological symptoms (Loft Nagel et al., 2022). In addition, 
there is growing appreciation of other cellular processes such as the 
role of the endoplasmic reticulum in neuronal migration, highlighted 
by the identification of genes such as LNPK. The encoded protein, 
lunapark, stabilizes ER junctions, and LNPK mutations are linked to 
a variety of neurological conditions with symptoms including 
hypoplasia of the corpus callosum and epilepsy (Accogli et al., 2023). 
While these disorders typically lead to broad involvement of the 
cortex, several other genetic variants cause developmental 
abnormalities only in specific areas.

This subset of cortical malformations, known as focal cortical 
dysplasias (FCDs), often only involves localized areas of the cortex. 
Clinically, FCDs have been classified into three broad categories: FCD 
type I and III, which are often associated with secondary disorders 
such as injury and tumors, and FCD type II, which has been linked to 
several genetic disorders (Najm et al., 2022). More specifically, FCD 
type II is associated with abnormalities in regulation of the 
mechanistic target of rapamycin (mTOR), a central kinase involved in 
cell growth and proliferation (Ljungberg et al., 2006). One disorder 
associated with both FCD and mTOR signaling is Tuberous Sclerosis 
Complex (TSC), an autosomal dominant genetic disorder caused by 
variants in the TSC1 or TSC2 genes (Salussolia et al., 2019). These 
genes encode the proteins hamartin and tuberin, which form a 
complex to negatively regulate mTOR (Switon et al., 2017). In addition 
to its symptomatology, TSC exemplifies a common feature of 
FCD-associated disorders – the difficulty of modeling them faithfully 
in animals. Patients with TSC carry heterozygous variants in TSC1 or 
TSC2, yet heterozygous animal models display subtle or no phenotypes 
(Uhlmann et al., 2002; Kirschstein, 2012; Yuan et al., 2012). Among 
TSC animal models that do develop FCD-like brain lesions, most do 
not exhibit a seizure phenotype or distinct behavioral symptoms, 
which mitigates their translational utility (Way et al., 2009; Feliciano 
et al., 2012). Unfortunately, these results are relatively common among 
several malformations of cortical development, which implies that 
their pathogenesis arises from dysfunction of human-predominant 
processes in brain development.

Thus far, the study of human brain development has been limited 
by the lack of access to fetal tissue. However, with recent improvements 
in stem cell technologies, human pluripotent stem cells can now 
be used to study early developmental processes (Saha and Jaenisch, 
2009). Significant progress made in reprogramming and gene editing 
techniques that allow for generation of induced pluripotent stem cells 
(iPSCs) from patients carrying specific genetic variants (Soldner and 
Jaenisch, 2018). These iPSCs, in turn, can be  differentiated into 
neurons in culture. This technique enables researchers to study the 
effects of highly specific genetic alterations on neuronal differentiation 
and function in vitro. Currently, investigators use either 2-dimensional 
or 3-dimensional cell culture systems for their studies (Engle et al., 

2018). 2-dimensional systems are typically more accessible for certain 
experimental questions, but they lack the complexity, organization, 
and cell–cell interactions seen in the living brain. Therefore, in recent 
years, researchers have prioritized developing 3-dimensional cell 
culture systems, commonly known as organoids, to recapitulate early 
human brain development (Lancaster et al., 2013; Pasca et al., 2015; 
Qian et al., 2016; Quadrato et al., 2017; Pasca, 2018; Velasco et al., 
2019). Well-established protocols allow researchers to generate region-
specific organoids, which mirror developmental patterning seen in the 
developing brain (Pasca et al., 2015; Gordon et al., 2021). Furthermore, 
fusing differently patterned organoids into “assembloids” may 
elucidate complex interactions between disparate brain regions (Pasca, 
2019). These emerging technologies present a promising opportunity 
to understand mechanisms of early brain development (Di Lullo and 
Kriegstein, 2017; Qian et al., 2019). This review will explore recent 
advancements in organoid technology and the utility of 3-dimensional 
systems for exploring the mechanisms of malformations of 
cortical development.

Organoid models and brain 
development

Self-organizing three-dimensional aggregates of pluripotent stem 
cells have become to be known as organoids (Pasca et al., 2022). Early 
organoid technologies allowed stem cells to aggregate and differentiate 
spontaneously with minimal direction (Kadoshima et  al., 2013; 
Lancaster et  al., 2013; Quadrato et  al., 2017). These organoids 
developed a myriad of cell fates, including neurons and glia that 
showed variable levels of maturity, as well as non-neural tissue. 
Remarkably, neurons within these organoids were spontaneously 
active, demonstrated functional connections, and were responsive to 
physiological stimuli (Lancaster et al., 2013; Quadrato et al., 2017). 
Following these initial protocols, numerous techniques have since 
been published which make use of patterning factors to drive specific, 
regionalized cell fates (Muguruma et  al., 2015; Pasca et  al., 2015; 
Sakaguchi et al., 2015; Qian et al., 2016; Velasco et al., 2019). This 
strategy reduces variability between organoids, making them a more 
reproducible model system (Velasco et  al., 2019). Emerging 
technologies using microfluidics to mimic growth factor gradients 
may be able to further refine organoid models by inducing patterning 
along rostral-caudal or dorsal-ventral axes (Rifes et  al., 2020; 
Pallavicini et al., 2024; Xue et al., 2024). Furthermore, organoids have 
been shown to display signatures at the DNA, RNA, and protein levels 
that correlate with human cortical development. Transition mapping 
of RNA sequencing data from cortical organoids and human cortex 
samples has shown that gene expression changes seen in vitro align 
with both prenatal and postnatal stages of human cortical development 
(Gordon et al., 2021). Additionally, single-cell RNA sequencing has 
revealed transcriptomic similarities between fetal cortical tissue and 
cortical organoids, specifically, significant overlap in transcripts 
related to extracellular matrix gene expression, transcription 
regulation, glial delamination, and neurite outgrowth (Camp et al., 
2015). Organoids also bear epigenetic similarities to human tissue 
(Zenk et al., 2024). Cortical organoids and fetal brain tissue showed 
overlapping methylation signatures that corresponded to super-
enhancers (Luo et al., 2016). However, organoids and brain samples 
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demonstrated distinct clusters of methylation, suggesting persistent 
differences between in  vitro and in  vivo tissue (Luo et  al., 2016). 
Despite these methylome differences, cortical organoids bear 
similarity to the fetal brain in regard to the activity of histone 
modifiers, which suggests these model systems may yet be used to 
understand epigenetic control of development (Gordon et al., 2021). 
Finally, mass spectrometry has revealed a 40% overlap in proteomic 
identity between 45-day-old cortical organoids and fetal brain tissue 
ranging from gestational weeks 16–20 (Nascimento et  al., 2019). 
Enriched pathways included metabolic processes, cell–cell adhesion, 
cortex development, cytoskeleton, axonal transport and outgrowth, 
and neuron projection development. Improvements to existing 
protocols will ideally increase the overlap between the genomic and 
proteomic profiles of organoids and fetal tissue. However, even with 
their present validity, organoid methods present a promising 
opportunity to address questions related to fetal brain development.

Organoid models of microcephaly and 
associated cortical defects

Many genes have been associated with microcephaly, and 
microcephalic patients may or may not have other abnormalities in 
cortical development. Primary microcephaly is typically observed at 
birth, and genetics studies have demonstrated that a majority of the 
genes associated with this disorder are associated with centriole 
biogenesis (Jayaraman et al., 2018). The centriole is a barrel-shaped 
protein complex that is necessary for mitotic spindle formation during 
replication and localizes to the primary cilium during quiescence 
(Bornens, 2012). Studies in animal models have demonstrated that 
several genes associated with primary microcephaly cause instability 
or reduced number of centrosomes, which leads to impairments in 
neurogenesis (Barrera et al., 2010; Jayaraman et al., 2016). However, 
the degree of microcephaly and the cognitive phenotypes associated 
with disruption of these genes are far less than what is observed in 
human patients (Pulvers et al., 2010; Fujimori et al., 2014). These data 
suggest that while primary microcephaly genes participate in similar 
cellular pathways in animal models, human brain development utilizes 
these processes differently from rodent brain development and is 
substantially more susceptible to their disruption. Therefore, 
investigators have begun using organoid models to understand the 
interactions between centriole biology and the pathogenic 
mechanisms in abnormal brain development.

Organoids generated from stem cells carrying pathogenic 
variants in several primary microcephaly genes, including ASPM, 
CDK5RAP2, CENPJ, CIT, KATNB1, and WDR62, have been shown 
to be smaller, consistent with the human phenotype (Lancaster et al., 
2013; Jin et al., 2017; Li et al., 2017; An et al., 2022; Dell'Amico et al., 
2023; Pallavicini et al., 2024). As in studies of other cell types, the 
affected proteins were typically localized to the centrosome within 
organoids, and CENPJ variants were found to cause reduced distance 
between centrioles (An et  al., 2022). The decreased size of these 
organoids has been attributed to both reduced cell proliferation and 
increased cell death, and increased dsDNA breaks and P53 activation 
have been reported, suggesting potential disease mechanisms (An 
et al., 2022; Pallavicini et al., 2024). There are typically decreased 
numbers of neuroprogenitors and immature neurons (Lancaster 

et al., 2013; Jin et al., 2017; Li et al., 2017; An et al., 2022). Finally, 
neurons from these organoids have been shown to have decreased 
spontaneous activity (Li et  al., 2017). These data demonstrate 
impairments in the molecular coordination of cell division lead to 
global defects in the formation of the cerebral cortex. However, 
further studies are necessary to explain why human brain 
development is more sensitive to centrosomal abnormalities than 
many model organisms.

Neuronal migration defects have often been implicated in 
microcephaly, as well as other disorders such as lissencephaly, 
polymicrogyria, and periventricular nodular heterotopia. Studies of 
genes associated with lissencephalies have identified several potential 
mechanisms (Romero et al., 2018). The best studied gene, Pafah1b1, 
has been shown to play a critical role in nuclear and centrosomal 
movement through its interaction with dynein during cellular 
migration (Tsai et  al., 2007). Humans with heterozygous loss of 
function variants in PAFAH1B1 display an abnormal four layered 
cortex with the presence of under-migrated neurons (Friocourt et al., 
2011). However, most Pafah1b heterozygous animals do not show any 
cortical abnormalities, although disruption of the second allele of 
Pafah1b1 does interfere with neuronal migration (Hirotsune et al., 
1998; Cahana et al., 2001). In contrast, there are examples such as the 
homeobox transcription factor, ARX, where loss in both humans and 
mice leads to alterations in cortical development and epilepsy (Kato 
et al., 2004; Colasante et al., 2015). These data suggest that human 
brain development is more sensitive to haploinsufficiency in genes 
involved in neuronal migration than mouse brain development, 
although some genetic defects result in similar phenotypes 
across species.

In contrast to the centrosome-associated disorders above, deficits 
in radial glia positioning and orientation are frequently observed due 
to disruption of genes associated with lissencephaly, suggesting that 
this population of cells is particularly affected (Bershteyn et al., 2017; 
Iefremova et al., 2017; Klaus et al., 2019; Fair et al., 2023; Wang et al., 
2023; Geng et al., 2024; Werren et al., 2024). One characteristic feature 
of cortical organoids is the formation of rosettes with a layer of 
neuroprogenitors, similar to the ventricular zone in the developing 
brain. Radial glia typically extend fibers perpendicular to this structure 
that serve as scaffolds for migration, and these projections have been 
shown to be disorganized or absent due to several genetic variants 
(Bershteyn et al., 2017; Iefremova et al., 2017; Klaus et al., 2019; Wang 
et al., 2023). In addition, studies have demonstrated abnormalities in 
cell division of neuroprogenitors (Iefremova et al., 2017; Werren et al., 
2024), as well as impaired migration of immature neurons (Bershteyn 
et al., 2017; Klaus et al., 2019). Outer radial glia (oRG) are a population 
of progenitors that are dramatically expanded in human brain 
development, and studies have developed methods to reliably study 
this cell type in organoids (Watanabe et al., 2017; Andrews et al., 2023; 
Walsh et al., 2024). Remarkably, one study demonstrated that oRG are 
particularly affected in organoids with deletion of PAFAH1B1, 
suggesting an explanation why animal models may not recapitulate 
phenotypes observed in patients (Bershteyn et al., 2017). Interestingly, 
abnormalities in Wnt/B-catenin signaling have been found to 
be associated with multiple genetic variants, although there have been 
some conflicting observations regarding directionality of the changes 
(Iefremova et al., 2017; Fair et al., 2023; Geng et al., 2024). Taken 
together, these studies suggest primary involvement of radial glia, with 
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potential specificity for the human-enriched oRG, in malformation 
disorders that are caused by abnormalities in neuronal migration. 
Further studies are needed to understand whether the sensitivity of 
human cells to haploinsufficiency of these genes is due to role of these 
proteins in specific cell types such as oRG or complex regulatory 
mechanisms that require the presence of both alleles for full expression.

Organoid studies have also provided some new perspectives 
on mechanisms involved in brain malformations. For example, a 
screen for genes involved in brain organoid growth identified 
IER3IP1, which is predicted to be localized to the endoplasmic 
reticulum. In organoids with IER3IP1 deletion, there was increased 
ER stress and abnormal ER morphology (Esk et  al., 2020). A 
second study was searching for genes involved in interneuron 
migration using assembloids, and the investigators identified 
LNPK as a key mediator of this process. Further studies 
demonstrated that this protein was critically involved in ER 
movement that precedes saltatory migration of immature 
inhibitory neurons (Meng et  al., 2023). In addition, metabolic 
processes have also been implicated in cortical development. 
Organoids with variants in PNPLA8, which encodes a lipid 
phosphatase, also showed impairments in oRG. In addition, these 
organoids demonstrated alterations in lipid composition, and 
supplementation with one of these components could partially 
rescue some of the cellular phenotypes (Nakamura et al., 2024). 
Another gene involved in lipid metabolism, FASN, also showed 
radial glia abnormalities (Gonzalez-Bohorquez et al., 2022). These 
data highlight the possibility for identifying novel mechanisms of 
malformations of cortical development primarily using 
human models.

Organoid models of focal cortical 
dysplasias

mTOR is a central kinase that is involved in regulation of cellular 
metabolism and growth in response to multiple metabolites, growth 
factors, and other inputs. Multiple upstream proteins have been shown 
to regulate mTOR, and dysfunction of several of these factors has been 
shown to play a role in the formation of FCD type II (Winden et al., 
2015). TSC is prototypical among these disorders and leads to the 
formation of cortical tubers in most patients. Pathologically, cortical 
tubers are identical to focal cortical dysplasia type IIb, which are 
characterized by dyslamination, presence of abnormal cell types, and 
astrogliosis (Boer et al., 2008; Muhlebner et al., 2016). These lesions can 
be visualized on prenatal MRI demonstrating that they are inextricably 
linked to the development of the brain. In addition, while their 
appearance on imaging can change throughout the lifetime, these 
lesions do not demonstrate appreciable growth, distinguishing them 
from other tumors that occur in TSC (Peters et al., 2015). Heterozygous 
animal models of TSC typically display subtle or no neurological 
phenotypes, contrasting with the human disorder (Uhlmann et al., 2002; 
Kirschstein, 2012; Yuan et al., 2012). Despite this, molecular and cellular 
phenotypes such as mTOR hyperactivation, cytomegaly, and increased 
neurite branching are typically observed with deletion of the second 
allele of either Tsc1 or Tsc2 (Meikle et al., 2007; Way et al., 2009; Feliciano 
et al., 2012; Yuan et al., 2012). While lesions seen in these rodent models 
bear similarity to human cortical dysplasias, none have all of the features 

that define cortical tubers, suggesting the presence of other pathological 
mechanisms. These data are consistent with other brain malformation 
disorders discussed above where heterozygous humans are more 
susceptible to neural dysfunction compared to heterozygous rodents. 
However, the specific mechanism may not only involve sensitivity to 
haploinsufficiency but also somatic variants leading to loss of 
heterozygosity (Crino et al., 2010). Given the dramatically expanded size 
of the human cortex, it is possible that somatic variants may play a 
greater role in human disease compared to model organisms. These data 
have led investigators to examine both the heterozygous and 
homozygous loss of the TSC1 and TSC2 genes in human cells.

The first study of cortical organoids in TSC demonstrated that 
second hit mutations in either TSC1 or TSC2 were necessary for 
hyperactivation of mTOR signaling and led to impaired neurogenesis 
and increased gliogenesis (Blair et  al., 2018). In addition, they 
demonstrated that induced second hit mutations caused formation of 
cells that were similar to abnormal cells that are present in cortical 
tubers and FCD type IIb (Blair et al., 2018). A different study of TSC 
organoids found that heterozygous iPSCs formed organoids with 
increased prevalence of interneuron progenitors typically derived 
from the caudal ganglionic eminence, which are associated with 
increased EGFR signaling (Eichmuller et al., 2022). In addition, they 
proposed that these cells had similarities to both cortical tubers and 
subependymal nodules, which are precursors to astrocytomas, and 
they concluded that second hit mutations are not necessary for 
abnormalities in TSC (Eichmuller et al., 2022). It is unclear why these 
two studies arrived at directly contradictory interpretations of their 
data, but one important difference between these studies is that they 
used different patterning protocols, which may account for some of 
the discrepancies if they were evaluating different regions within 
the neuraxis.

PTEN is very similar to TSC1/2 in that it is also an upstream 
negative regulator of mTOR, and heterozygous variants lead to PTEN 
Hamartoma Tumor Syndrome (PHTS). PHTS encompasses a group 
of rare syndromes with similar clinical features, including Cowden’s 
syndrome, Bannayan-Riley-Ruvalcaba syndrome, Lhermitte-Duclos 
disease, and Proteus-like syndrome (Pilarski et al., 2013). As seen with 
TSC1/2 mutations, mutation of PTEN results in increased mTORC1 
activity and increases risk for certain cancers and hamartomas. 
Patients also often present with ASD and developmental delay 
(Winden et al., 2018). However, PHTS pathology diverges from TSC 
in regard to cortical malformations. PHTS is often associated with 
white matter abnormalities and general disorganized cortical 
development (i.e., heterotopia, polymicrogyria) rather than distinct 
tubers as seen in TSC (Shiohama et al., 2020; Shelkowitz et al., 2023). 
As seen in TSC, PTEN+/− animals demonstrate subtle changes (Page 
et al., 2009; Smith et al., 2016), while loss of the second allele leads to 
neuronal abnormalities and abnormal behavior (Kwon et al., 2006). 
Organoids with heterozygous PTEN variants have been shown to have 
deficits in generating mature cortical neurons, which is associated 
with increased numbers of outer radial glia (Pigoni et al., 2023; Kang 
et al., 2024). Radial glia were also abnormally oriented surrounding 
ventricular zone-like structures. Interestingly, deletion of the second 
allele of PTEN did not have a strong effect on differentiation. 
PTEN+/− organoids demonstrated spontaneous hyperactivity, 
consistent with its association with epilepsy and ASD (Dhaliwal et al., 
2024). In addition, PTEN+/− immature neurons displayed decreased 
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sodium current and Nav1.1 expression, suggesting a potential 
mechanism for the abnormalities in activity and providing a potential 
link between abnormal cellular development and seizure activity in 
PTHS (Kang et al., 2024).

Another example of FCD related to mTOR disinhibition is 
polyhydramnios, megalencephaly, symptomatic epilepsy (PMSE) 
syndrome secondary to biallelic loss of function of STRADA. STRADA 
forms a complex upstream of the TSC1/2 complex and loss of this 
pathway leads to unregulated mTOR activity. Interestingly, organoids 
with biallelic STRADA variants showed reduced cortical neurogenesis 
and increased out radial glia (Dang et al., 2021), suggestive of the 
phenotypes observed in TSC and PHTS described above. It is 
interesting to note that these disorders define a spectrum from highly 
localized pathology in TSC to broad involvement in PMSE with 
similar abnormalities in molecular and cellular pathogenic 
mechanisms. Together, these data show that the specific 
developmental window and fraction of cells affected by mTOR 
disinhibition is critical for understanding the consequences for 
brain development.

Future directions

These studies provide an exciting foundation for understanding 
the pathogenesis of malformations of cortical development using 
human 3D models. Unsurprisingly, many pathogenic mechanisms 
converge onto processes that occur early in development with 
neuroprogenitors and radial glial being the most commonly affected 
cell types. Given the differences in brain development between humans 
and other model organisms, there are several pathways that are 
functionally different in humans (Lui et al., 2014; Andrews et al., 2020). 
With advances in 3D human models, these mechanisms are becoming 
tractable experimentally. However, one difficulty with these models has 
been variability, which has contributions from several areas, but 
studies have shown that the initial state of the stem cell lines from 
which they are generated is critically important (Watanabe et al., 2022; 
Glass et al., 2024; Sandoval et al., 2024). As strategies for mitigating 
these sources of variability are identified, they will enable more detailed 
study of pathogenic changes in molecular and developmental 
pathways. For example, understanding the mechanisms that lead to 
formation of the diversity in radial glia will undoubtedly lead to new 
insights into these malformation disorders. Another limitation is that 
the lack of a vasculature system leads to poor nutrient distribution 
within the organoid, which can result in metabolic stress and impair 
cell type specification (Bhaduri et al., 2020; Uzquiano et al., 2022). 
Finally, the pace and level of maturity of these 3D models limits study 
of mature neuronal networks. Most studies examine organoids 
corresponding to mid-fetal brain development, but most neurological 
disorders do not present prenatally. Even in the malformation 
syndromes discussed above that cause early defects in brain 
development, many symptoms that contribute to morbidity in these 
disorders do not present until later. Therefore, studying more mature 
neuronal networks will be imperative to furthering insights into these 
disorders. iPSC-derived neuron transplantation into rodent models 
has been demonstrated to substantially facilitate neuronal maturation, 
and therefore, this technique could be invaluable to understanding 
these processes that occur later in development (Linaro et al., 2019; 

Revah et al., 2022). In addition, it has been shown that epigenetic 
maturation is slower in human neurons compared to other species and 
that strategies to increase the rate of epigenetic change facilitate 
neuronal maturation (Ciceri et al., 2024; Hergenreder et al., 2024). 
Metabolic maturation is also slower in human neurons, and facilitating 
this process led to increased dendritic complexity and enhanced 
activity dependent responses, characteristic of increased neuronal 
maturity (Iwata et  al., 2023). These and other techniques will aid 
understanding pathogenic mechanisms in brain development, which 
will provide platforms to identify novel therapeutic strategies for 
these disorders.
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