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Introduction: In the rapidly advancing field of ‘omics research, there is an 
increasing demand for sophisticated bioinformatic tools to enable efficient 
and consistent data analysis. As biological datasets, particularly metabolomics, 
become larger and more complex, innovative strategies are essential for 
deciphering the intricate molecular and cellular networks.

Methods: We introduce a pioneering analytical approach that combines 
Principal Component Analysis (PCA) with Graphical Lasso (GLASSO). This 
method is designed to reduce the dimensionality of large datasets while 
preserving significant variance. For the first time, we applied the PCA-GLASSO 
algorithm (i.e., MetaboLINK) to metabolomics data derived from Nuclear 
Magnetic Resonance (NMR) spectroscopy performed on neural cells at various 
developmental stages, from human embryonic stem cells to neurons.

Results: The MetaboLINK analysis of longitudinal metabolomics data has 
revealed distinct pathways related to amino acids, lipids, and energy metabolism, 
uniquely associated with specific cell progenies. These findings suggest that 
different metabolic pathways play a critical role at different stages of cellular 
development, each contributing to diverse cellular functions.

Discussion: Our study demonstrates the efficacy of the MetaboLINK approach 
in analyzing NMR-based longitudinal metabolomic datasets, highlighting key 
metabolic shifts during cellular transitions. We  share the methodology and 
the code to advance general ‘omics research, providing a powerful tool for 
dissecting large datasets in neurobiology and other fields.
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1 Introduction

Recent advancements in high-throughput technologies have 
significantly expanded the volume of biological datasets, transforming 
the landscape of network analysis in ‘omics research. As the omics 
field grows, there is an urgent need for robust and statistically reliable 
models to decode the complexities of big data. This need is especially 
critical in the rapidly evolving field of metabolomics, where 
comprehensive and precise analytical tools are essential for uncovering 
intricate metabolic networks.

Metabolomics, employing mass spectrometry (MS) or nuclear 
magnetic resonance spectroscopy (NMR), has emerged as a high-
throughput tool crucial for obtaining a comprehensive perspective on 
cellular metabolic function both in vitro and in vivo (Maletic-Savatic 
et al., 2008; Tang et al., 2018; Arnold et al., 2015; Choi et al., 2018; 
Vingara et al., 2013; Bonomo et al., 2020). The rich and complex data 
often result in high-dimensional datasets that pose significant 
challenges in analysis and interpretation, especially in longitudinal 
studies. Traditional statistical methods frequently struggle with these 
complexities, making it challenging to identify, reproduce, and 
validate biomarkers or to elucidate relevant metabolic pathways. These 
challenges are particularly pronounced in longitudinal studies, where 
the need to track changes over time adds an additional layer of 
complexity. Recent advancements in analytical algorithms have 
addressed some of these challenges. For instance, advanced 
dimensionality reduction techniques like T-Distributed Stochastic 
Neighbor Embedding (TSNE) and Uniform Manifold Approximation 
and Projection (UMAP) have enhanced the visualization and 
interpretation of complex data (Yang et al., 2021). However, while 
useful, these methods still require careful application to avoid 
oversimplification and loss of critical information (Narayan et al., 
2021; Zhai et al., 2022). For example, the inter-cluster distances and 
the long-range distance are difficult to interpret because of the 
adoption of the conditional probability by these methods. Two clusters 
close under UMAP or TSNE coordinates maybe be far apart in the 
original dimensions, which introduces challenges for populations with 
transitional functional states. Furthermore, the variance of clusters in 
UMAP and TSNE does not correlate with the actual variance. Instead, 
it is largely driven by the sample size and local density of data points. 
Consequently, interpreting the resulting UMAP becomes challenging, 
as it remains unclear whether the observed patterns represent a 
biological process of interest, a confounding biological factor, or a 
technical artifact.

Here, we  introduce an innovative approach for longitudinal 
metabolomics data analysis, addressing a standardized and unbiased 
dimensionality reduction, variable selection, and data integration. 
Our method seamlessly combines principal component analysis 
(PCA) loadings with the graphical lasso (GLASSO) to reveal 
subnetworks in metabolomics datasets (Allen and Maletić-Savatić, 
2011; Allen et al., 2013; Peterson et al., 2013; Gewers et al., 2022; 
Friedman et al., 2010). We validated the effectiveness of PCA-GLASSO 
(referred to as MetaboLINK from now on) for metabolomics analysis 
of human embryonic stem cell (hESC)-derived neural cell 
populations. We chose to focus on neural cells because of the critical 
role metabolism plays in proliferation and differentiation of these cells 
(Fawal and Davy, 2018; Erceg et al., 2008; Heiden et al., 2009; Iwata 
et  al., 2023). Also, dysregulation of metabolic pathways has been 
implicated in various neurodevelopmental disorders, autism 

spectrum disorder, attention deficit hyperactivity disorder, and 
intellectual disabilities (Khaliulin et  al., 2024). Furthermore, 
neurological symptoms (intellectual disability, epilepsy) occur in 
more than 50% of patients affected by inborn errors of metabolism 
(Žigman et  al., 2021), supporting the concept that metabolic 
impairment can derail neural cell functioning. Understanding how 
metabolic changes influence neural metabolism is vital for unraveling 
the underlying mechanisms of these conditions and for identifying 
potential biomarkers and therapeutic targets (Urbán and 
Guillemot, 2014).

Designed for clear interpretation, MetaboLINK simplifies the 
exploration and pattern recognition of complex data. By applying 
MetaboLINK, we have identified cell type biomarkers across various 
neural developmental stages. Beyond neuro-metabolomics, 
MetaboLINK holds potential for analyzing large-scale, high-
dimensional datasets in diverse fields and applications, including 
cancer research, pharmacometabolomics, cardiovascular disease, 
genetics, and environmental exposure studies. Its versatility makes 
MetaboLINK a significant advancement, by offering unique 
capabilities for revealing dynamic network patterns over time.

2 Methods

2.1 Neural fate commitment of human 
embryonic stem cells (hESCs)

To decipher a catalogue of metabolic biomarkers pertinent to 
glutamatergic neuronal commitment, without the interference of 
complex genetic background diversity, we used hESC (H9) line. hESCs 
were maintained in an established feeder-free culture system in vitro 
prior to neuro-ectodermal lineage commitment (Szczerbinska et al., 
2019). The stage-specific differentiation to glutamatergic neurons is 
comprised of four distinct stages “hESCs-to-Embryonic Bodies (EBs)-
to-Rosettes-to-human Neuroprogenitors (hNPCs)-to-Neuron.” These 
stages were established in vitro using modified protocols (Cho et al., 
2008; Boisvert et al., 2013). To attain these stages, we prepared four 
different combinations of media for sequential progression of neural 
commitment: namely, neural induction medium (NIM), neural 
proliferation media 1 and 2 (NPM1, NPM2), and terminal 
differentiation media (TDM). We  used NIM to induce neuro-
ectodermal lineage specification, marked by formation of EBs on 4th 
day in vitro (DIV). During induction and the early stage of neural 
rosette formation, we  used both BMP/TGF inhibitors. To block 
non-neuronal lineages, we used Dorsomorphin (4 μM) + SB431542 
(10 μM) combination. Following induction, we  used NPM1 with 
bFGF/EGF (20 ng/mL) and Cyclopamine (1 μM) to induce 
proliferation of neural rosettes. Rosettes were dissociated into a single 
cell suspension with Accutase (Gibco) and seeded directly onto freshly 
prepared poly-L-ornithine (PLO, 10 mg/mL) and Laminin (LN, 1 mg/
mL)-coated culture plates in NPM1 to develop hNPCs. Dorsal 
patterning of hNPCs was continued using NPM2 with a specialized 
cocktail of growth factors IGF+ BDNF+ GDNF (all 10 ng/mL) along 
with Cyclopamine (1 μM) for inhibiting ventral patterning into 
GABAergic neurons. Committed dorsally patterned hNPCs were 
seeded onto new PLO/LN coated culture dishes (100 mg/mL and 
10 mg/mL respectively) and were driven to maturation using TDM 
with IGF, BDNF, and GDNF (all 10 ng/mL), and cAMP (100 μM). To 
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prevent clumping of mature neurons in culture, we used 2 μg of LN in 
the media.

2.2 Flow cytometry of hESC-derived neural 
cell populations

To characterize stage-specific populations, we  employed flow 
cytometry (BD Bioscience) (Yuan et al., 2011). We used cell specific 
markers to examine cell population purity at each stage: CD24 for EBs, 
ZO-1 for Rosettes, Nestin for hNPCs, and MAP2 and vGLUT1 for 
neurons. We  used two markers for neurons to establish the 
glutamatergic neuron population in our cultures. Flow cytometry data 
were analyzed using FlowJo software.

2.3 Immunocytochemistry of hESC-derived 
neural cell populations

We validated hESCs and their guided neural progeny in vitro 
using primary antibodies against stage-specific markers such as 
CD184 (Anti-CD184 Mouse, Invitrogen) and CD24 (Anti-CD24 Rat, 
Invitrogen) for EBs; Pax6 (Anti-Pax6, Avain, Santa Cruz) and ZO-1 
(Anti-ZO-1 Rabbit, Invitrogen) for Rosettes; Nestin (Millipore) for 
hNPCs; VGLUT1(Anti-VGlut1 rabbit, Invitrogen), MAP2 (Anti-
Map2 Mouse, Invitrogen), and PSD95 (Anti-PSD95 rabbit, Invitrogen) 
for neurons. To identify the stages, we plated the cells onto German 
cover slips (18 mm) coated with appropriate substrates (Cho et al., 
2011). Approximately 5×104 cells were plated per coverslip at each 
stage for immunofluorescent analysis. 4% paraformaldehyde 
(5–10 min) was used for fixation, followed by 1X phosphate-buffered 
saline (PBS) washes. Fixed cultures were kept for 1 h at room 
temperature in freshly prepared blocking solution in 1X PBS with 1% 
(w/v) bovine serum albumin (BSA; 0.3% (v/v) Triton X-100 and 
0.05%) sodium azide and then treated with stage-specific primary 
antibodies prepared in the blocking buffer, overnight at 4°C. Next, 
secondary antibodies were applied at 1:500 dilution for 60 min at 
room temperature in the dark. A 1 mg/mL 4′,6-diamidino-2-
phenylindole (DAPI, Life Tech, 62,248) stock solution was diluted in 
PBS (1:1,000) before adding to the wells to stain the nuclei. After 
10 min, the solution was washed off twice with PBS before mounting 
the coverslips on glass slides with the anti-fading reagent (Molecular 
probes, P36930). The cells were visualized at 20x magnification using 
Zeiss inverted fluorescence microscope (Zeiss 710 microscope).

2.4 Nuclear magnetic resonance 
spectroscopy (NMR)

Proton NMR spectra (1H-NMR) were generated for each cell 
type using the 800 MHz NMR spectrometer with cryoprobe (Avance; 
Bruker, Inc.) to assess specific metabolome profiles in differentiating 
cells. NMR was acquired on 1,000,000 cells for each population. Cells 
were washed with PBS and spinned down at 1,000 g for 1–2 min at 
4°C to remove the remnant culture media (Ma et al., 2011). The pellet 
was resuspended in 450 μL of PBS, pH 7.0, in D2O and 50 μL of 
50 mM internal standard 2,2-dimethyl-2-silapentane-5-sulfonate 
(DSS) in D2O. To examine the cell metabolome, samples were 

sonicated and kept at 4°C if data acquisition was within 3–4 h or at 
−80°C if data acquisition was later. Sonication breaks up the cells and 
allows the metabolites to exit into the PBS, increasing their mobility 
in the NMR field (Singh et al., 2023; Mielko et al., 2021; Leibel et al., 
2022). All experiments were done in triplicate within the same culture 
(i.e., on the same day) to ensure reproducibility, and with 3–8 
biological replicates for specificity. 1H-NMR 1D spectra were 
acquired for 30 min at 25°C. Before Fourier transform, FIDs were 
line-broadened to 1.0 Hz with an exponential weighting function, 
phase and baseline corrected for distortions and referenced to DSS 
chemical shift. To identify the J-coupled peaks that belong to the 
same molecule, 2D NMR was acquired for 24 h. 2D, 1H-1H NMR 
spectra (Total Correlation Spectroscopy (TOCSY)) was collected at 
25°C. The pulse sequence dipsi2esgpph (homonuclear Hartman-
Hahn transfer) was selected. Excitation sculpting with gradients was 
applied for water suppression. The spectral width was 13.95 ppm and 
the number of scans was 24. Spectra were pre-processed using 
TopSpin (Bruker, Inc.) and uploaded to Chenomx, Inc. software 
(Chenomx Inc., Edmonton, Canada) for peak identification. 
Chenomx has an 800 MHz library consisting of 380 metabolites, 
which is manually queried for each sample. We cross-referenced the 
spectral signature of each metabolite to the Biological Magnetic 
Resonance Bank (BMRB) public database.

(BMRB) public database. Upon complete query, a list of small 
molecules in the sample and their estimated concentration (based on 
the integrated area under the peaks) was derived (n  = 90) 
(Supplementary Table S1). The identities of molecules were cross 
validated using 2D NMR data (Arnold et al., 2015).

2.5 Computational methods and software 
package

As copious biological network data continues to be gathered in 
various omics domains, standardized methods which process complex 
network information into interpretable and visualizable 
representations can help to turn diverse datasets into novel insights. 
Toward this goal, we have used the combination of PCA analysis and 
GLASSO to analyze the relative contribution of all features in the 
NMR datasets and infer their relative networks. PCA is a statistical 
method that reduces the dimensionality of a dataset by calculating 
linear combinations of features which maximally capture the variance 
of the dataset (Gewers et al., 2022). The few dimensions that explain 
most of the variance (the principal components) are frequently 
isolated and used to cluster the data in a visualizable lower-
dimensional space. Analyzing the relative contribution of each feature 
towards each PCA dimension can suggest a relationship between the 
features and samples which score highly along that dimension. When 
run over the full dataset, with samples from each of the five neural cell 
populations, PCA clearly separates the cell types in an unsupervised 
manner, but due to the five-dimensional classification of cell types, it 
is unclear how to associate even the most outlying features with 
specific cell types. By instead running PCA multiple times over each 
sequential cell-type pair, we produce a binary classification setup that 
allows the association of individual features (metabolites) with one of 
the two cell types. However, the PCA scores of most features cluster 
tightly around 0, and only the most outlying of the metabolites can 
be confidently associated.
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In turn, GLASSO applies L1-regularization to the covariance 
matrix to produce a sparse covariance matrix. Producing a sparse 
matrix is especially valuable in higher-dimensional settings, like those 
of metabolomics, where a naive covariance matrix would yield too 
many connections to be easily interpretable. We used GLASSO on the 
full dataset (agnostic of cell type) to generate a sparse covariance 
network that reduces the noise of metabolome data, yielding a visually 
interpretable network of feature correlations revealing metabolome 
structure (Friedman et al., 2008; Mazumder and Hastie, 2012). This 
method captures both positive and negative correlations, while leaving 
some features with no edges removed from the graph.

Overlaying the GLASSO network with PCA scores allows the 
PCA scores of individual features to be placed within the context of 
the feature covariance relationships.

We use the PCA and GLASSO implementations from scikit-learn,1 
found in the sklearn.covariance packages, respectively. All plotting is 
done using matplotlib,2 and data I/O makes use of pandas.3 All code is 
run with python version 3.7.12. The class ‘pca_bundle’ runs PCA and 
allows the easy visualization of PCA-related graphs, showing loadings, 
scores, and explained variance. All plotting functionality leverages the 
matplotlib package.

2.6 Implementation

We ran PCA over the mean- and stddev-normalized dataset to 
produce 10 components, of which we use the first three. When applied 
to the entire dataset, GLASSO is run with an alpha selected by cross-
validation via the sklearn.covariance.GraphLassoCV implementation 
(alpha = 0.56, 250 iterations), using the default values for the cross-
validation procedure. When applying GLASSO to each cell-transition 
pair, we set the alpha to 0.9, as the truncated datasets for each pair are 
small and thus unstable under cross-validation.

2.7 Code

The MetaboLINK code is publicly available.4 Additionally, 
we make publicly available an interactive python notebook through 
Google Colab, which walks through the application of PCA and 
GLASSO as well as their various visualizations. We hope this will 
facilitate the easy use of MetaboLINK for novel applications.

2.8 Metabolomic pathway analysis

The metabolic maps and pathways derived from MetaboLINK 
analysis were manually generated by combining existing KEGG 
metabolic pathways (KEGG, n.d.) and cross-matching HMDB 
database (Human Metabolome Database, n.d.). MetaboAnalyst 
software (Xia and Wishart, 2016)5 has also been used for correlation 

1 https://scikit-learn.org/stable/version.0.22.2.post1

2 https://matplotlib.org/version.3.2.2

3 https://pandas.pydata.org/version.1.1.5

4 https://github.com/jlichtarge/pcaGLASSO

5 https://www.metaboanalyst.ca/MetaboAnalyst/

analysis, Partial Least Squares—Discriminant Analysis (PLS-DA) and 
Pattern Hunter studies. Correlation analysis was used to visualize the 
overall correlations between different features. With PLS-DA, 
we calculated the Variable Importance in Projection (VIP) that is a 
weighted sum of squares of the PLS loadings considering the amount 
of explained Y-variation in each dimension. Furthermore, Pattern 
Hunter functionality in MetaboAnalyst was applied to enable the 
identification of metabolites that follow a predefined pattern of 
concentration changes. We applied this module to identify patterns 
for all metabolites across different developmental stages. The pattern 
to be tested needs to be specified as a series of numbers separated by 
“-” where each number describes the expected relative concentration 
change at the corresponding sampling point. Thus, a pattern 
designated as “1–2–3-4-5” would search for metabolites with linearly 
increasing values across the five corresponding sampling points 
(hESC-EB-Rosettes-hNPC-Neurons), whereas a pattern defined as 
“2–1–1-1-1” and “1–1–1-1-2” would describe a specific increase and 
decrease in just hESC and neurons, respectively.

3 Results

3.1 PCA-GLASSO identifies diverse 
metabolites in distinct neural lineages

To integrate multivariate data analysis, such as PCA, with the 
statistical network visualization conferred by GLASSO, we designed a 
new algorithm combining the two analytical approaches, 
PCA-GLASSO (Figure  1A). The algorithm processes high-
dimensional datasets, including longitudinal metabolome data. To test 
the algorithm, we  used hESCs that underwent induction and 
differentiation into four distinct neural lineages: EBs, rosettes, hNPCs, 
and neurons (Figure 1B). To ensure cell type specificity prior to NMR 
metabolomics profiling, we performed flow cytometry to examine cell 
type purity at each stage of differentiation (Figure 1B). For EBs and 
rosettes, we used surface markers such as CD24 and ZO-1, respectively. 
For neuroprogenitors, we used nestin, an intracellular marker, and for 
neurons, we  used both MAP2 and vGLUT1 to ensure we  had 
glutamatergic neurons in the culture (Figure 1B). Based on the flow 
cytometry data, we sorted EBs and plated sorted cells to induce their 
differentiation into rosettes. No other cell types were sorted, but at 
different stages we dissociated and plated onto new coverslips/wells to 
move forward along the differentiation cascade to neurons. Based on 
flow cytometry data, EB and hNPCs were least pure, thus containing 
a mixture of cells, and rosettes and neurons were mostly pure. In 
addition to flow cytometry, at each stage we  performed 
immunocytochemistry to determine the expression of cell type-
specific markers (Figure 1B).

At each stage of differentiation, we collected 1 million cells and 
performed NMR. The biologically different hESC-derived neural 
progenies had very different NMR spectra (Supplementary Figure S1), 
pointing at the unique metabolome at each lineage. Chenomx analysis 
(Chenomx, Inc.), a widely used software to identify metabolites in the 
NMR spectra, detected a total of 90 metabolites among the cell types. 
Interestingly, we could separate each cell stage based on the abundance 
of metabolites (Figure  2A), even though our EB and hNPC 
populations were not completely pure (Figure 1B). Globally, in hESCs 
we identified high abundance of glutamate-derived metabolites while 
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FIGURE 1

The principle behind the design of the PCA-GLASSO analysis method applied to complex metabolic human neuronal differentiation data. (A) Analysis 
of the metabolome data. Proton NMR spectra generated for any given sample are organized into a corresponding matrix of samples and features. The 
matrix is employed in either PCA or GLASSO analysis, where each technique provides a level of insight into the metabolome at hand (PCA: identifies 
sample subtypes with ranked differentiation features; GLASSO: identifies network of samples and features). Combined PCA-GLASSO analysis identifies 
differentiating subnetworks in PCA-clustered samples. (B) Schematic representation of human neuronal differentiation from hESCs. The cascade of cell 
types includes embryonic bodies (EBs), human neural progenitors (hNPCs), and neurons. Cell-type specific markers were used to identify each one of 
the cell types. The purity of stage-specific lineages was evaluated by flow cytometry. Immunocytochemistry was performed to characterize each stage 
of differentiation. PCA: principal component analysis, GLASSO: graphical lasso, hESC: human embryonic stem cells; NMR: nuclear magnetic resonance 
spectroscopy. Figure created using Biorender.
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FIGURE 2

Different cell types along the neuronal differentiation cascade have distinct metabolic signatures. (A) Heat map of the metabolite normalized 
abundance identified by NMR analysis. Each cell type is enriched in a specific set of metabolites. (B) Selected examples of pattern hunter profiles 

(Continued)
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glutathione, ATP, and NAD+ were more abundant in the neuronal 
cluster (Figure  2B). We  observed direct linear reduction across 
different neural stages for ADP, AMP, adenosine, and carnitine 
(Figure 2B, Supplementary Figure S2A), with high concordance with 
nicotinamide-related metabolites (Supplementary Figure S2B). 
Among all the metabolites identified, amino acids represented 25% of 
the metabolites, while bioenergetics, peptides, and carbohydrates 
accounted for 18.2, 18.2, and 11.4%, respectively (Figure 2C).

To identify and rank differentiating features, we used PCA on 
detected metabolites from the developing neural cell lineages. This 
was followed by GLASSO analysis to generate a sparse feature 
covariance matrix and visualize feature networks. The PCA confirmed 
the distinct cell populations by clustering each cell lineage separately 
(Figure 2D). GLASSO, in turn, revealed a distinct network of sample 
features identifying clusters and sub-clusters among the samples 
analyzed (Figure 2E). While GLASSO alone revealed the structure of 
the metabolomics network, it did not provide insights into the 
relationships between individual metabolites and cell types. Therefore, 
we combined PCA with GLASSO to assess the relative contributions 
of all features in our longitudinal metabolomics dataset and to infer 
complex, interrelated networks among features (metabolites) 
(Figures 1A, 3). Subsequently, the metabolite nodes in the GLASSO 
network were colored based on PCA loading scores associated with 
cell-type transitions (see Figures  2D, 3 top panel). Each node 
represents a chemical compound, while the edges (lines) signify the 
set of reactions linking these metabolites. The network is depicted 
using solid lines indicating positive correlations and dashed lines 
representing negative correlations; the thickness of these lines reflects 
the strength of the interactions. Transition-specific PCA scores and 
the GLASSO network for each of the four cell-type transitions are 
overlaid on the full GLASSO network, shown in grey background 
(Figures 3A–D). The transition-specific networks are color coded per 
cell type, and the most significant metabolites are labeled for clarity. 
Node sizes indicate the magnitude of concentration changes for each 
metabolite during the transition, while the color intensity reflects the 
magnitude of the PCA scores. The color itself denotes the specific cell 
type with which the metabolite is associated. This visualization yields 
a graphic with a straightforward interpretation: similarly colored 
metabolites that cluster within the network are highlighted as 
functionally related sub-networks. This comprehensive visualization 
seamlessly integrates the overall network structure with individual 
transition scores and variations in metabolite concentrations. By 
doing so, it effectively highlights which metabolites and their 
associated subnetworks are implicated in each cell transition. The 
overarching network structure, presented in a neutral grey, establishes 
a reference framework that allows for easy comparison against the 
transition-specific networks, which are distinctly color-coded to 
represent their unique characteristics. This color distinction not only 

facilitates identification of the different transitions but also illustrates 
the specific cell types linked to each metabolite as well as functionally 
related sub-networks, enhancing interpretability and clarity.

By integrating insights from PCA with the metabolite network 
structure derived from GLASSO into a unified algorithm, 
MetaboLINK, this approach facilitates a network-level analysis of 
transitions between paired cell types. Notably, we  identify key 
metabolites such as glutamate, 4-aminobutyrate, and 
2-phosphoglycerate as components of the predicted subnetwork 
involved in the transition from hESCs to EBs (Figure  3A). These 
findings highlight the central role these metabolites may play in 
facilitating the transition process from hESCs to EBs, and potentially 
uncovering underlying metabolic shifts and differential cell-specific 
metabolic demand.

In the subsequent section, we focus on validating the biological 
significance of the networks highlighted by the MetaboLINK strategy, 
further exploring the functional implications of these key metabolites 
and their interactions within the metabolic landscape. This validation 
will enhance our understanding of how these networks contribute to 
cellular transitions and their broader biological contexts.

3.2 Amino acids, lipids, and bioenergetic 
pathways distinguish different stages of 
neural cell differentiation

To navigate and interpret the intricate metabolic landscape of the 
neural cell types identified by the MetaboLINK for a deeper 
understanding of neural development and function, we  highlight 
several biologically significant pathways that have emerged from 
the data.

First, MetaboLINK analysis of the NMR-identified metabolome 
of neural cells found higher abundance of glutamate and GABA in 
hESCs compared to other committed lineages (Figure  4A and 
Supplementary Figure S5). Glutamate and its related metabolite 
GABA are essential for brain function and neural development 
through several key mechanisms. Glutamate is a precursor in 
glutathione synthesis that contributes to maintaining cellular redox 
balance by influencing glutathione levels. Glutathione maintains 
neural redox balance, influencing reactive oxygen species (ROS) levels 
and progenitor cell proliferation (Renault et al., 2009). Additionally, 
glutamate serves as an energy source; it is metabolized to 
α-ketoglutarate by glutamate dehydrogenase, participating in the citric 
acid cycle and thereby aiding ATP synthesis, which is crucial for 
neuronal cell fate and mitochondrial function (Homem et al., 2014; 
Tohyama et al., 2016; Watkins, 2000). Mutations in genes associated 
with glutamate metabolism play a role in developmental disorders 
such as developmental and epileptic encephalopathy (MIM: 618328, 

represent metabolites and their match with the tested pattern. Each dataset shows both positively correlated (pink) and negatively correlated (blue) 
metabolites with pattern group 2–1–1-1-1 (hESC-EB-Rosette-hNPC-Neuron) or pattern group 1–1–1-1-2 (hESC-EB-Rosette-hNPC-Neuron) show the 
metabolites following higher distribution in hESCs and neurons, respectively. Bottom panel: metabolites with linearly increasing values across the five 
corresponding sampling clusters negatively correlate for a pattern 1–2–3-4-5, except for the NAD+ (pink). (C) Pie chart of all metabolites shows 
distribution of 8 classes of metabolites in all samples, with the largest contribution from amino acids. (D) 3D plot of the first three components of the 
PCA shows clear separation of the cell types. Each circle is a sample. (E) GLASSO-generated sparse covariance network shows positive (solid) and 
negative (dashed) correlations between metabolites. PCA: principal component analysis, GLASSO: graphical lasso, hESCs: human embryonic stem 
cells; EB: embryonic bodies, hNPCs: human neuroprogenitors; NMR: nuclear magnetic resonance spectroscopy.
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FIGURE 3

Integration of PCA-GLASSO analyses identifies metabolic pathways specific for each differentiation stage. The full GLASSO network for all samples 
(same as Figure 2E). GLASSO alone identifies the structure of the metabolomic network but offers no insight into any relationship between individual 

(Continued)
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618,412), underscoring the critical role of maintaining proper 
glutamate levels for normal brain function (Neuray et al., 2020). The 
increased glutamate signaling in hESCs may result from enhanced 
uptake or reduced degradation. Undifferentiated hESCs exhibit highly 
efficient glutamine-to-glutamate conversion regulated by highly 
expressed mitochondrial glutaminase (GLS2) (Marsboom et al., 2016; 
Hensley et  al., 2013). The efficient conversion of glutamine to 
glutamate by GLS2 in hESCs declines upon differentiation (Marsboom 
et al., 2016), and this may contribute to the highest glutamate level 
observed in hESCs.

Additionally, rosettes exhibited elevated levels of glycerol and 
serine, which are key components of phospholipids (Figure  4B). 
Glycerol serves as the backbone for phospholipid molecules, while 
serine contributes to the synthesis of phosphatidylserine and other 
essential phospholipids. The increased presence of these metabolites 
in rosettes highlights their critical role in membrane biosynthesis and 
cellular structure within these neural cell aggregates, as previously 
suggested (Arai et al., 2015; Sánchez-Ramírez et al., 2024).

In turn, hNPCs showed higher concentrations of branched-chain 
amino acids (BCAA) valine and leucine, supporting adaptive changes 
in BCAA metabolism for an energy shift (Figure  4C, 
Supplementary Figure S4) (Bifari et al., 2020; Abdi et al., 2022). BCAA 
metabolism is critical for learning and memory, hippocampal 
neurogenesis, and neuronal differentiation, underscoring its critical 
role in cognitive function and neural development (Abdi et al., 2022). 
Furthermore, hNPCs had increased content of arginine and related 
metabolites compared to other neural cell types (Geiger et al., 2016). 
Arginine induces a metabolic switch from glycolysis to oxidative 
phosphorylation (OXPHOS), which is highly relevant for neurogenesis 
(Iwata et al., 2023; Kondoh et al., 2010).

Finally, neurons exhibited higher levels of specific lipids, such as 
sn-glycerol-3-phosphocholine, crucial for membrane build-up and 
signaling compared to other cell types (Figure  4D and 
Supplementary Figure S6). Sn-glycerol-3-phosphocholine, an 
intermediate in glycerophosphocholines-derived phospholipids like 
phosphatidylcholine, is significantly abundant in mature neurons. 
Beyond their structural role in membranes, these lipids act as bioactive 
molecules, impacting prostaglandin pathways, peroxisome 
proliferator-activated receptors responses, and more generally, lipid 
metabolism (Furse and de Kroon, 2015). The pro-neurogenic effect of 
phosphatidylcholine (Magaquian et al., 2021; Kuge et al., 2014) aligns 
with our findings, emphasizing the necessity of precise control over 
mature neurons membrane composition. Furthermore, ethanolamine, 
a phospholipid component, was higher in neurons compared to other 
cell types, potentially influencing neurogenesis especially under 
inflammatory stress (Montaner et al., 2018; Magaquian et al., 2021) 
(Figure 4D). Finally, neurons exhibited elevated levels of glutathione 
and myo-inositol (Figure 4D and Supplementary Figure S2C), both 
known as ROS scavengers, supporting their role to counterbalance 

ROS generated during OXPHOS-ATP production (O’Brien 
et al., 2015).

Among the various metabolic hallmarks, a notable shift in 
bioenergetics was observed as cells transitioned from hESCs to mature 
neurons (Supplementary Figure S3). The metabolic fate of 
neuroprogenitors is intricately linked to a metabolic rheostat 
governing mitochondrial dynamics, an evolutionary conserved 
phenomenon from flies to humans (Bonnefont and Vanderhaeghen, 
2021; Iwata and Vanderhaeghen, 2021). ATP generation pathways, 
such as glycolysis and mitochondrial OXPHOS, play a critical role in 
fulfilling the distinct energetic demands of hESCs versus the needs of 
differentiating progenies (Folmes et  al., 2012; Becker et  al., 2010; 
Birket et  al., 2011; Zhang et  al., 2014). Glycolysis, although less 
ATP-efficient than OXPHOS, is faster and suitable for scenarios 
demanding quick energy bursts, making it advantageous for immature 
or rapidly proliferating cells like hNPCs (Seo et al., 2018; Tohyama 
et al., 2016; Armstrong et al., 2010). Additionally, glycolysis supports 
overall cellular growth and proliferation. Conversely, mitochondria 
respiration through OXPHOS stands out as the most efficient pathway 
for ATP generation, which is the preferred mechanism for cells with 
high energy demands such as neurons (O’Brien et al., 2015; Lange 
et  al., 2016; Ito and Suda, 2014; Roy et  al., 2018; Iwata and 
Vanderhaeghen, 2021). The balance between these pathways is crucial 
in mitigating mitochondrial ROS production (Stacpoole et al., 2011) 
and meeting cell-specific energy demands across different 
developmental stages. We observed higher concentrations of AMP, 
ADP, lactate, pyruvate, and alanine in hESCs. Conversely, neurons 
displayed the highest levels of ATP and NAD+, indicating a transition 
towards OXPHOS activity (Figure 2A and Supplementary Figure S2A, 
S3). Increase in NAD+ (oxidized form of NADH) to NADH ratio 
activates a NAD + -dependent deacetylase to inhibit hNPC vs NPC 
self-renewal and promote their differentiation (Hisahara et al., 2008). 
Our data support a model in which glycolysis sustains stemness, while 
the transition to OXPHOS is closely linked to neuronal differentiation 
(Agathocleous et al., 2012; Zheng et al., 2016; Bifari et al., 2020).

4 Discussion

Neurogenesis, a pivotal event in neural development, marks the 
transition of neuroprogenitor cells from self-renewing entities to post-
mitotic neurons. While intrinsic and extrinsic cues play a central role 
in guiding cellular transitions (Iwata and Vanderhaeghen, 2021; 
O’Neill et al., 2016), the involvement of metabolic pathways remains 
less explored. In this context, metabolomics emerges as a high-
throughput and sensitive platform offering a unique lens to 
understand how metabolism governs undifferentiated progenitors and 
their differentiated neural progenies. Navigating the complex ‘omics 
datasets demands sophisticated bioinformatic tools and metabolomics 

metabolites and different cell types. (A–D) Integrated PCA-GLASSO (i.e., MetaboLINK) applied to different cell transitions identifies metabolic hubs 
within the global metabolic network map that selectively dominate a given transition. The node sizes reflect the magnitude of change in concentration 
of each metabolite over the transition. The color intensity of each node reflects the magnitude of the PCA score for that metabolite, and the color itself 
shows which cell type the metabolite is associated with. Overall, this combined information of the total network structure with the individual transition 
GLASSO network, PCA scores, and change in concentrations, makes it clear which metabolites and subnetworks of metabolites are implicated in each 
cell transition. PCA: principal component analysis, hESCs: human embryonic stem cells, EB: embryonic bodies, hNPC: human neuroprogenitors.
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FIGURE 4

The metabolic pathways identified by MetaboLINK show prevalent networks at cellular transition states to neurons. The enzymes associated with the 
conversion of key metabolites are showed in red along with the associated human disease. (A) The principal metabolic shift, occurring in the transition 

(Continued)
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is no exception. Indeed, metabolomic analysis is often hindered by the 
lack of efficient tools for identifying key metabolic hallmarks and 
understanding complex biological networks.

To address these issues, we  introduce a novel approach, 
MetaboLINK, to facilitate metabolite discovery that not only 
discriminates cell types—identified by PCA clustering—but also 
contributes to functional networks when visualized through 
GLASSO. Overlaying the GLASSO network with PCA scores allows 
the PCA scores of individual features to be placed within the context 
of the feature covariance relationships. This integration can reveal 
subnetworks within the data that might remain hidden while using 
PCA or GLASSO analysis separately. It also provides insightful 
interpretations for the majority of PCA scores, which might otherwise 
be too subtle to interpret clearly on their own. Thus, insights from 
PCA that highlight individual metabolites are integrated with the 
metabolite network structure derived from GLASSO, facilitating a 
network-level analysis of the transitions between paired cell types. 
This combined approach allows for a deeper understanding of the 
metabolic changes and interactions occurring during these transitions. 
It allows us to understand how several metabolites belonging to the 
same pathway interact within a given cellular lineage, gain a more 
comprehensive view of metabolites roles across different cell types, 
and enhance our understanding of the overall metabolic landscape. 
MetaboLINK also effectively contextualizes low-scoring features, 
providing insights into underlying biological networks and supporting 
its applicability and feasibility in other big data analysis scenarios.

MetaboLINK identified specific metabolites and related hidden 
interrelationships across diverse neural stages. Validation of these 
metabolites and their related pathways through existing pathway 
databases ascertained the robustness of the uncovered networks and 
the biological significance of MetaboLINK-discovered enrichments. 
Namely, MetaboLINK analysis revealed distinct hallmarks in glutamate, 
lipid, and energy metabolism in specific neural developmental stages, 
which aligned to specific cellular functions. For instance, changes in 
glutamate metabolism in hESCs reflect adjustments in ROS balance 
and oxidative stress to maintain redox equilibrium during maturation. 
Fluctuations in lipid metabolism in hNPCs and neurons could 
be linked to alterations in cellular membrane composition and signaling 
pathways. Additionally, variations in energy metabolism in neurons 
highlight shifts in bioenergetic demands as neuronal cells mature.

The identification of novel metabolic signatures along the 
neuronal differentiation cascade through MetaboLINK could advance 
our understanding of neurodevelopmental disorders. For example, 
when we  queried MetaboLINK pathways-related enzymes 
we identified already well-known human neurodevelopmental and 
neurological disorders. Disruptions in the enzymes associated with 
glutamate, lipid, and bioenergetics, as identified by MetaboLINK, 

underscore the essential role of these pathways in developing brain. 
Imbalances in glutamate-related enzymes affect neurotransmission, 
and this may contribute to autism spectrum disorders and intellectual 
disabilities (Montanari et al., 2022). Abnormalities in enzymes of lipid 
metabolism can affect neuronal membrane integrity and signaling, 
contributing to disorders such as multiple sclerosis (López-Muguruza 
and Matute, 2023). Similarly, disruptions in enzymes involved in ATP 
generation—impairing cellular energy homeostasis—can lead to 
mitochondrial diseases and related neurodevelopmental diseases 
(Clemente-Suárez et al., 2023). These signatures might reveal new 
pathways and mechanisms involved in disease onset and progression, 
thereby offering fresh perspectives on the underlying causes of such 
disorders and potentially leading to more effective 
therapeutic interventions.

The application of MetaboLINK not only refines our 
comprehension of metabolomic landscapes in different stages of 
neurogenesis but also paves the way for strategies (metabolic or 
pharmacological interventions) aimed at modulating stem cell fate 
and consequently brain development and functionality. A deeper 
understanding of specific metabolic signatures in distinct cell 
populations is essential for targeted in vitro/in vivo approaches to 
direct undifferentiated stem cells towards desired cellular phenotypes 
(Martano et al., 2019). Supplementation with antioxidants, BCAAs, 
and phosphatidylcholine might hold promise for enhancing 
neuronal maturation.

MetaboLINK analysis of omics datasets adds structure to complex 
biological data, aiding data interpretation and hypothesis generation with 
clarity. Its applicability stretches beyond the boundaries of metabolomics, 
as it can be modified for any domain dealing with complex network 
information, be  it biological or otherwise. To catalyze the broader 
adoption of the MetaboLINK analytical algorithm, we contribute the 
code employed in this study to the public domain, fostering collaboration 
and accelerating advancements in diverse scientific disciplines.
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from hESCs to EBs, is in glutamate-derived metabolism. The dotted arrow shows potential novel enzymatic conversion. (B) In Rosettes, the highest 
concentration of glycerol and serine, the main components of phosphatidylserines, as well as arginine-related metabolites are significant drivers. (C) In 
hNPCs, principal modifications are dibasic and branched chain amino acids. (D) In neurons, key components of glycerophospholipids metabolism and 
scavengers showed significantly higher values. The gene encoding enzymes associated to diseases are reported below: Glutamate decarboxylase, 
GAD1, Developmental and epileptic encephalopathy 89 (AR, #OMIM 619124); 2-hydroxyglutarate dehydrogenase, L2HGDH, L-2-hydroxyglutaric 
aciduria (AR, #OMIM 236792); Alanine aminotransferase 2, GPT2, Neurodevelopmental disorder with microcephaly and spastic paraplegia (AR, #OMIM 
616281); Argininosuccinate lyase, ASL, Argininosuccinic aciduria (AR, #OMIM 207900); Glutathione synthetase, GSS, Glutathione synthetase deficiency 
(AR, #OMIM 266130). hESCs: human embryonic stem cells, EB: embryonic bodies, hNPCs: human neuroprogenitors. *p < 0.05, **p < 0.01, 
***p < 0.0001.
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SUPPLEMENTARY FIGURE S1

NMR spectra of different cell types along the differentiation cascade from 
hESCs to neurons. Each cell type has a unique spectral signature that 
denotes different metabolome make up of these cells. NMR: nuclear 
magnetic resonance spectroscopy.

SUPPLEMENTARY FIGURE S2

(A) Important features identified by PLS-DA. The colored boxes on the right 
indicate the relative concentration of the corresponding metabolite in each 
group. (B) The overall correlation heatmap shows high correlation among 
purine-related metabolites (especially bioenergetic molecules) and 
nicotinamide-pathway related metabolites. (C) Specific distribution of 
glutathione across different cell-population shows higher abundance in 
neurons vs the rest of the samples.

SUPPLEMENTARY FIGURE S3

ATP levels are significantly higher in neurons supporting the high energy rate 
(and OXPHOS-dependence) in these cells.

SUPPLEMENTARY FIGURE S4

TCA-related metabolites are more abundant in hESCs and neurons vs the 
other clusters, potentially related to their high energetic demands and 
substrates. Also, hESCs show the highest level of lactate and pyruvate, 
proving the high glycolytic state for these cells.

SUPPLEMENTARY FIGURE S5

Glutamate-related metabolites are shown for all the different groups (hESCs, 
EBs, rosettes, hNPCs, and neurons). In particular, high levels of glutamate and 
GABA were identified in hESCs vs the other clusters, while glutathione and 
creatinine levels were more abundant in neurons.

SUPPLEMENTARY FIGURE S6

High levels of glycerophophocholine were identified in neurons, while 
intermediate substrates like phosphoethanolamine and phosphocholine are 
more abundant in early precursors.

SUPPLEMENTARY TABLE S1

Normalized abundance of 90 NMR-derived metabolites at each cellular stage 
is provided.
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