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Introduction:Wavelet thresholding techniques are crucial in mitigating noise in

data communication and storage systems. In image processing, particularly in

medical imaging like MRI, noise reduction is vital for improving visual quality and

accurate analysis. While existing methods o�er noise reduction, they often su�er

from limitations like edge and texture loss, poor smoothness, and the need for

manual parameter tuning.

Methods: This study introduces a novel adaptive wavelet thresholding technique

for noise reduction in brain MRI. The proposed method utilizes a linear

prediction factor to adjust the threshold adaptively. This factor leverages

temporal information and features from both the original and noisy images

to determine a weighted threshold. This dynamic thresholding approach aims

to selectively reduce or eliminate noise coe�cients while preserving essential

image features.

Results: The proposed method was rigorously evaluated against existing

state-of-the-art noise reduction techniques. Experimental results demonstrate

significant improvements in key performance metrics, including mean squared

error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index

(SSIM).

Discussion: The proposed adaptive thresholding technique e�ectively addresses

the limitations of existing methods by providing a more e�cient and accurate

noise reduction approach. By dynamically adjusting the threshold based on

image-specific characteristics, this method e�ectively preserves image details

while e�ectively suppressing noise. These findings highlight the potential of

the proposed method for enhancing the quality and interpretability of brain

MRI images.

KEYWORDS

wavelet transform, wavelet thresholding, image noise reduction, adaptive thresholding,

MSE, PSNR, SSIM

1 Introduction

Medical imaging plays a critical role in modern diagnostics, particularly magnetic

resonance imaging (MRI), which offers high-resolution and detailed imaging of the human

body (Chang et al., 2024). However, the noise introduced during the image acquisition

process can make it difficult for the specialist to accurately analyze and interpret these
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images, potentially compromising the quality of the diagnosis.

In this context, noise reduction in MRI becomes essential for

enhancing the accuracy and reliability of the diagnostic outcomes

(Mishro et al., 2022). One promising approach for reducing noise

in medical images is through the use of adaptive wavelets, which are

powerful tools in signal and image processing, particularly effective

for MRI noise reduction (Zhang et al., 2019; Golilarz et al., 2020;

Assam et al., 2021; Juneja et al., 2021; Sonia and Sumathi, 2022;

Benhassine et al., 2021).

To maximize the advantages of the wavelet transform and

mitigate noise effects, adaptive wavelet thresholding methods rely

on several parameters, including the standard deviation of the

noise, length of the processed signal, and decomposition level

of the wavelet transform, which estimate the signal’s properties

in the frequency domain (Sahoo et al., 2024). However, current

adaptive wavelet thresholding methods often fail to incorporate

readily available temporal information from the signal sequence.

This omission can lead to issues, especially when processing signals

with high motion intensity because these methods primarily target

signals with low to moderate motion intensity. Consequently,

current wavelet thresholding techniques lack parameters to exploit

the correlation between noisy and non-noisy coefficients, thus

making them less effective for noise elimination in the time domain.

The original wavelet thresholding method for noise reduction

was developed by Donoho and Johnstone (Donoho and Johnstone,

1994; Donoho, 1995; Donoho and Johnstone, 1995). Their research

produced several thresholding methods, the most notable being

the universal threshold, which provides an optimal estimate

to minimize errors in wavelet coefficient thresholding during

signal processing. This approach, also known as the VisuShrink

threshold estimator, is characterized by its simple and efficient

implementation. Building on the foundational work of Donoho

and his collaborators, Chang et al. (2000) proposed a threshold

derived from a Bayesian framework known as the BayesShrink.

The BayesShrink threshold is simple and adaptable to each wavelet

sub-band using data-based estimates, selecting parameters based

on the minimum description length criterion. This approach

significantly aids in noise reduction by employing a smooth wavelet

threshold. Many studies have shown the importance of wavelet-

based methods for noise reduction, particularly in brain MRI.

These studies focus on optimizing the choice of wavelets for noise

reduction, as well as the development of new threshold functions

and values to improve performance.

Sun et al. (2019) proposed a novel threshold function for

the wavelet transform based on the Gaussian Kernel function

combined with the soft threshold function. This approach utilizes

a squared exponential kernel, also known as radial basis function

or Gaussian kernel, providing enhanced flexibility and adaptability

over other thresholding techniques. The proposed function

establishes optimal threshold conditions that preserve image

details while minimizing noise. It offers significant advantages

over traditional methods like smooth thresholding by addressing

common issues such as discontinuity, edge loss, and inadequate

smoothness during image processing.

Zhang et al. (2019) proposed a noise reduction method for

brain MRI using a new threshold function that combines the

advantages of soft and hard thresholding, with adjustments made

through the parameter k. Their methods avoid the oscillation

phenomenon often introduced by noise reduction. By carefully

tuning α, the accuracy of threshold estimation improves: when

α is low, a high-frequency threshold is calculated, resulting in

a slightly higher threshold, whereas a high α yields a lower

frequency threshold.

Golilarz et al. (2019) utilized a nature-inspired Harris Hawks

Optimization (HHO) algorithm to optimize the parameters of the

threshold function. This optimization allows for the refinement of

wavelet coefficients before applying the inverse wavelet transform.

In addition, the authors introduced a threshold based on the

adaptive generalized Gaussian distribution (AGGD), a data-driven

function with an adaptive threshold value used to improve image

quality during the noise reduction process. The AGGD threshold

function, guided by a non-linear smooth function, enhances image

quality by ensuring that the function remains fully non-linear and

distinct from previous approaches. Golilarz et al. (2020) further

refined their work with a wavelet thresholding method based on

the enhanced AGGD from Golilarz et al. (2019) and specifically

designed for noise elimination in brain MRI. The enhanced AGGD

thresholding function focuses on Gaussian distribution, providing

a flexible, non-linear, data-based approach suitable for any image

type. Instead of setting coefficients to zero within the interval [-T,

T], the function adjusts non-relevant coefficients using the AGGD

threshold function, leading to improved noise reduction.

A state-of-the-art review of digital image processing

techniques, with an emphasis on artifact processing and

reconstruction approaches, some recent research has been

proposed, such as Yin and Chen (2024), has developed a noise

reduction network for hyperspectral images (HSI) based on a

new deep unfolding network inspired by CD-CSC (Content-

Dependent 3-D Convolutional Sparse Coding) called CD-CSCNet.

Deep unfolding is a viable way of improving the interpretability

of the deep network. In the proposal developed, the method

represents the spatial-spectral ensemble for reducing HSI noise,

mitigating the unpleasant effect of spectral distortion. Extensive

experimental results on the datasets demonstrate that CD-CSCNet

outperforms several recent pure data-driven and DU-based

networks quantitatively and visually. Rong et al. (2024) proposes

a two-stage super-resolution image reconstruction network

comprising encoding and decoding stages. To mitigate the

impact of these reconstruction artifacts, the study introduces the

Residual Dense Feature Aggregation Network (SR-RDFAN-LOG),

specifically designed to enhance the resolution of registration

images. By integrating deep and shallow features, the proposed

method improves image resolution and leverages implicit neural

representation to generate registration images at arbitrary

resolutions. Consequently, the method outperforms existing

techniques in terms of PSNR, SSIM, and LPIPS metrics for

registration image resolution enhancement. El-Shafai et al. (2024)

analyzes various noise reduction methods for medical images,

comparing traditional and deep learning (DL) techniques. The

study presents a comparative analysis to highlight the strengths

and weaknesses of each method. Experimental results demonstrate

that DL methods, particularly those utilizing convolutional neural

networks (CNNs), achieve optimal performance in noise reduction

for medical images.
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In noise reduction methods, selecting appropriate thresholds

and developing new threshold functions are important features.

In this work, a new threshold and threshold function for noise

reduction in brain MRI, are proposed, incorporating additional

parameters that account for wavelet decomposition levels and

especially, the addition of the linear prediction factor. This factor

represents a weighted estimate of the threshold minimizing the

prediction error derived from the time difference between the noisy

and original images. The method calculates a linear prediction

factor to reduce the average mean squared error (MSE) between

the noisy and original images. The key contributions of this study

are as follows: (1) A new threshold estimator and wavelet threshold

function are developed to improve brain MRI noise reduction

by leveraging the temporal information and characteristics of

the noisy and original images to reduce noise in the temporal

domain. (2) The threshold proposed in this work extends the

universal threshold, incorporating two innovative parameters: the

decomposition level j of the wavelet transform and the linear

prediction factor β . The j parameter controls the depth of the

multiresolution analysis, making it possible to adjust the separation

between the low and high-frequency components of the image.

The β factor, in turn, introduces a linear prediction mechanism

that aims to minimize the mean squared error (MSE) between the

original and noise image, adapting the threshold more precisely

to the specific characteristics of the image. (3) The new threshold

estimator adapts to the different sub-band characteristics of the

wavelet transform for each image, adjusting the wavelet coefficients

based on the noisy image conditions, considering the weighting of

the linear prediction factor and the level decomposition. (4) The

proposed adaptive wavelet thresholding method incorporates the

correlation between the noisy and original images to calculate a cost

function that minimizes the prediction error. This linear prediction

factor improves the accuracy of wavelet coefficient selection near

the threshold. 5. The new adaptive threshold function avoids the

limitations of the hard threshold (discontinuity), and the soft

threshold (loss of original signal characteristics and edges blurring

of image). It also minimizes oscillation effects, such as the pseudo-

Gibbs phenomenon, often associated with hard and soft thresholds.

2 Materials and methods

2.1 Noise reduction with wavelet threshold

The wavelet transform has prompted numerous applications

across various disciplines, predominantly due to its fundamental

wavelet functions and properties such as energy compaction and

localization in the time frequency domain. These properties are

highly beneficial in signal processing applications, including voice,

radar signals, images, and video (Shanthamallappa et al., 2024;

Taranenko and Oliinyk, 2024; Dizon and Hogan, 2024; Zhou

et al., 2023; Chen, 2024; Zhou et al., 2020; Li et al., 2024; Huang

and Dragotti, 2022; Li et al., 2022; Chen and Krzyzak, 2024).

The wavelet thresholding technique involves adjusting wavelet

coefficients to reduce or eliminate unwanted noise or interference

in communication systems, including computer applications

and digital storage. During signal processing, various forms of

interference can alter the information, and wavelet thresholding

helps mitigate these effects.

Wavelet thresholding is a simple technique with a wide range of

customizable options and parameters that can be adjusted to reduce

the probability of processing errors. Therefore, coefficients that are

irrelevant to the processed signal, often determined by a threshold,

are either reduced or nullified (Bnou et al., 2020). Different

thresholding methods have been proposed in the literature, as the

choice of threshold significantly impacts noise reduction and the

preservation of the signal’s visual characteristics. Donoho (1995)

proposed using of orthonormal wavelet basis functions to remove

signal noise, a procedure they called denoising. Their denoising

procedure takes advantage of the wavelet transform’s energy

concentration property, where the signal’s useful information is

represented by a small number of coefficients, whereas noise is

distributed across many of them. In the wavelet domain, the

noise-contaminated coefficients possess variances equal to the noise

present in time-domain signal samples. However, the signal energy

is confined to only a few coefficients. As a result, the noise level

can be reduced by zeroing out the expansion coefficients that fall

below a specific threshold, directly influencing the effectiveness of

the denoisingmethod. According to Donoho and Johnstone (1994),

when the threshold parameter is selected correctly, the method

can produce excellent results across various types of signals. In

addition, the choice of wavelet family is critical when applying

the wavelet transform. Several families of wavelet functions can be

used for decomposition, as long as they meet specific criteria. The

objective is to ensure that the selected wavelet family concentrates

the energy of the helpful signal into a few coefficients of expansion.

In this case, the higher the concentration, the more coefficients

can be eliminated during processing without causing significant

distortion, thus leading to effective noise reduction.

In the denoising process, the primary challenge is estimating

the original signal, such as an image {xij, i, j = 1,..., N}, from its

noisy observations {yij, i, j = 1,..., N}, expressed by Equation 1:

yij = xij + εij (1)

where {εij, i, j = 1,..., N} represents the noise modeled by

a stationary Gaussian stochastic process with zero mean and

variance σ 2, N(0, σ 2) (Al-azzawi, 2020; Yilmaz, 2020). The wavelet

denoising method involves applying the discrete wavelet transform

(DWT) to the noisy signal yij and processing the resulting

transform coefficients through a nonlinear filter. The amplitudes of

these coefficients are compared against a threshold T. The estimate

of the original signal xij, denoted by x̂ij, is obtained by performing

the inverse DWT of the threshold coefficients, as illustrated by the

block diagram in Figure 1.

In this diagram, ω represents the vector containing the DWT

coefficients of y, given by Equation 2:

ω = Wy (2)

where W is the two-dimensional linear operator responsible

for performing the dyadic orthogonal wavelet transformation.

Similarly, applying the operator W em x and ε yields the

wavelet coefficients Wx for the noiseless signal and Wε of the

noise, respectively. Because denoising procedures use orthonormal
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FIGURE 1

Block diagram of the wavelet threshold noise reduction method.

wavelet basis functions, we have the following relationship

(Equation 3):

W−1W = I (3)

where W−1 is the inverse wavelet transform operator, and I is

the identity matrix. The denoising method filters each coefficient

yij in the detail sub-bands using a threshold function to obtain xij.

Thus, the estimated signal x̂ in the wavelet denoising method is

given by Equation 4:

x̂ = W−1ω̂ (4)

According to Donoho and Johnstone (1994), two procedures

are proposed to modify the wavelet coefficients based on their

comparison with threshold T, denoted as ω̂ij. Therefore, the wavelet

coefficients ω̂ij are processed by the threshold functions, with

one approach using a hard threshold and the other using a soft

threshold. In the hard threshold method, coefficients greater than

or equal to the threshold are retained, while coefficients below the

threshold are discarded, as defined by Equation 5:

ω̂ij =

{

ωij, |ωij| ≥ T

0, |ωij| < T
(5)

In the soft threshold method, if a coefficient’s amplitude is

smaller than the threshold, it is set to zero. Otherwise, its amplitude

is reduced by an amount equal to the threshold, as defined by

Equation 6:

ω̂ij =

{

sgn(ωij)(|ωij| − T), |ωij| ≥ T

0, |ωij| < T
(6)

where sgn(.) denotes the sign function.

A third thresholding method introduces the parameter α,

which is between 0 and 1. This approach, called semi-soft

thresholding (Wang et al., 2021), calculates wavelet coefficients

based on a combination of the hard and soft thresholding methods,

as described (Equation 7):

ω̂ij =

{

sgn(ωij)(|ωij| − αT), |ωij| ≥ T

0, |ωij| < T
(7)

The performance of wavelet-based denoising techniques

depends chiefly on the threshold T and strategy for adjusting the

coefficients. Donoho and Johnstone (1994) and Donoho (1995),

proposed the universal threshold, which, according to the authors,

has been shown to deliver good performance across a range of

signals. The universal threshold is defined by Equation 8:

T = σ
√

2logN (8)

FIGURE 2

Comparison between hard, soft, semisoft, and the newly proposed

threshold functions.

where N is the length of the input signal and σ is the estimated

noise level. This noise level is typically estimated from the wavelet

coefficient data, as well as a robust estimator for σ , based on the

median of the wavelet coefficients at the finest decomposition level

(Donoho and Johnstone, 1994; Donoho, 1995), as expressed by

Equation 9:

σ =
median(|ωij|)

0.6745
(9)

where ωij is the HH1. HH1 represents the diagonal detail

coefficients at the first level of wavelet decomposition. The universal

threshold is designed to minimize the error associated with the

wavelet coefficient thresholding process. This method is known as

the VisuShrink threshold estimator, as described (Equation 8).

The work of Donoho and Johnstone (1994) has led to the

development of numerous denoising methods, with SureShrink

and BayesShrink being primary examples. The SureShrink method

was developed by Donoho and Johnstone (1995) and is based

on the Stein (1981)’s unbiased risk estimator (SURE), which

determines a sub-band adaptive threshold for wavelet coefficients

that minimizes noise while preserving signal details. Meanwhile,

BayesShrink (Chang et al., 2000), developed later, builds on an

adaptive thresholding approach, such as SureShrink, but with

a Bayesian framework. It assumes that the wavelet coefficients

follow a generalized Gaussian distribution. The threshold in the
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FIGURE 3

Original brain magnetic resonance images: (A) MRI Brain Image 1, (B) MRI Brain Image 2, (C) MRI Brain Image 3, (D) MRI Brain Image 4, (E) MRI Brain

Image 5, and (F) MRI Brain Image 6.

BayesShrink method is derived by minimizing the Bayesian risk,

balancing the trade-off between denoising and retaining image

details. Compared to SureShrink, BayesShrink performs better in

minimizing the MSE by applying a threshold that adapts to each

individual sub-band at a given image resolution level. BayesShrink’s

threshold is derived from risk minimization, and is given by

Equation 10:

T =
σ̂ 2

σ̂x
(10)

where σ̂ 2 is the variance of the estimated noise level for the

HH1 sub-band, calculated using Equation 9, and σ̂x is the standard

deviation of the wavelet coefficients, which is calculated using

Equation 11:

σ̂x =

√

max(σ̂y
2 − σ̂ 2, 0) (11)

where σ̂y
2 is the variance of the wavelet coefficients ωij

determined by means of Equation 12:

σ̂y
2 =

1

N2

K
∑

i,j=1

ω2
ij (12)

where N represents the number of wavelet coefficients in the

sub-band, and ωij are the individual wavelet coefficients.

BayesShrink is considered one of the most efficient denoising

methods for the processing of two-dimensional signals, such

as images and videos because it provides more efficient noise

reduction and retains more image detail. Given its performance

and the simplicity of its implementation, BayesShrink is widely

regarded as one of the most effective methods for reconstructing

2D signals (Chang et al., 2000).

2.2 Proposed threshold estimator

The threshold proposed in this work builds upon the universal

threshold by adding two additional parameters: the scale or

decomposition level of the wavelet transform and the linear

prediction factor, β . The linear prediction factor is included to

minimize theMSE between the noisy and original images. This new

threshold, when applied to the thresholding function, adjusts the

wavelet coefficients more effectively to reduce noise. The proposed
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TABLE 1 MSE, PSNR(dB), and SSIM results for all wavelet methods; MRI Brain Images 1 and 2.

Image MRI Brain Image 1 MRI Brain Image 2

Noise variance (σ ) 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05

MSE

Proposed 29 31 32 33 34 27 31 33 33 34

VisuShrink 259 415 571 726 868 235 391 543 692 839

BayesShrink 89 116 129 139 145 88 115 129 138 144

Gaussian Kernel 90 115 129 137 143 89 114 127 136 143

Improved Threshold 91 116 129 138 144 90 115 129 137 143

AGGD 32 35 36 37 38 32 35 37 38 39

PSNR(dB)

Proposed 33.55 33.12 33.01 32.93 32.86 33.74 33.21 33.00 32.97 32.88

VisuShrink 23.99 21.95 20.56 19.52 18.75 24.43 22.20 20.78 19.73 18.89

BayesShrink 28.62 27.49 27.01 26.71 26.50 28.71 27.54 27.03 26.75 26.54

Gaussian Kernel 28.59 27.53 27.03 26.77 26.57 28.65 27.55 27.08 26.79 26.59

Improved Threshold 28.53 27.47 27.01 26.73 26.55 28.61 27.52 27.03 26.77 26.59

AGGD 33.09 32.72 32.57 32.47 32.39 33.10 32.65 32.48 32.33 32.26

SSIM

Proposed 0.520 0.439 0.393 0.363 0.342 0.502 0.421 0.373 0.346 0.317

VisuShrink 0.476 0.390 0.339 0.306 0.284 0.451 0.363 0.317 0.285 0.263

BayesShrink 0.475 0.394 0.347 0.318 0.295 0.451 0.367 0.322 0.294 0.271

Gaussian Kernel 0.469 0.387 0.341 0.312 0.290 0.444 0.361 0.315 0.287 0.264

Improved Threshold 0.467 0.385 0.341 0.312 0.288 0.444 0.360 0.316 0.287 0.264

AGGD 0.444 0.366 0.321 0.291 0.271 0.416 0.337 0.296 0.267 0.244

The values in bold show better results compared to the other methods.

threshold is expressed in Equation 13:

T =
σ
√

2logN

log(1+ j)β
(13)

where σ is the noise standard deviation, N is the signal length,

j is the decomposition scale, and β is the linear prediction factor

determined by the prediction error, which represents the temporal

difference between the noisy image In[m, n, t2] and the original

image Io[m, n, t1]. The incorporation of the linear prediction factor

β , together with the decomposition level, enhances the efficiency

of the threshold T, resulting in more effective noise reduction at

different wavelet transform scales.

The threshold T is a central parameter in the wavelet

thresholding technique for noise reduction. It acts as a cut-off

value that distinguishes the relevant wavelet coefficients from

those attributed to noise. The effectiveness of this approach

depends on how the threshold is determined and applied

when filtering the coefficients. The main aim of estimating the

threshold T is to eliminate the wavelet coefficients considered

irrelevant to the signal representation, usually coefficients with

minimum values that are noise. This threshold parameter can

be adjusted according to various factors, which directly affect

the quality of the noise reduction and the preservation of the

original signal’s characteristics. In the present proposal, the main

factors are the linear prediction factor and the wavelet transform

decomposition level.

2.3 Linear prediction factor

The threshold estimator described in Equation 13 was

developed to estimate wavelet coefficients, as well as to adapt to

varying sub-band characteristics based on the conditions of both

the noisy and original images. The linear prediction factor, β , is

calculated by minimizing the MSE between the noisy and original

images. In this context, the prediction error represents the time

difference between the noisy image In[m, n, t2] and the original

image Io[m, n, t1], weighted by the factor β . The prediction error is

given by Equation 14:

eprediction[m, n] = In[m, n, t2]− βIo[m, n, t1] (14)

The linear prediction factor β is obtained by minimizing

the MSE between the noisy and original images, as expressed in

Equation 15:

β = minE{e2prediction[m, n]} (15)

By solving the differential equation with respect to β in

Equation 16 and setting the derivative equal to zero in Equation 17,
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TABLE 2 MSE, PSNR(dB), and SSIM results for all wavelet methods; MRI Brain Images 3 and 4.

Image MRI Brain Image 3 MRI Brain Image 4

Noise variance (σ ) 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05

MSE

Proposed 25 30 30 31 31 26 30 32 34 35

VisuShrink 219 375 528 676 826 220 380 535 685 829

BayesShrink 88 115 129 138 145 85 113 126 136 142

Gaussian Kernel 88 115 127 136 143 86 112 125 134 140

Improved Threshold 90 116 129 137 144 87 113 126 135 140

AGGD 30 34 36 37 38 31 37 39 40 42

PSNR(dB)

Proposed 34.09 33.43 33.30 33.21 33.16 34.05 33.21 33.03 32.83 32.69

VisuShrink 24.72 22.39 20.90 19.83 18.96 24.71 22.34 20.85 19.78 18.95

BayesShrink 28.69 27.52 27.02 26.72 26.52 28.85 27.61 27.12 26.80 26.62

Gaussian Kernel 28.69 27.54 27.09 26.78 26.58 28.78 27.62 27.15 26.87 26.66

Improved Threshold 28.59 27.50 27.04 26.75 26.56 28.76 27.60 27.12 26.84 26.67

AGGD 33.29 32.76 32.56 32.47 32.37 33.18 32.50 32.19 32.06 31.94

SSIM

Proposed 0.486 0.409 0.367 0.333 0.313 0.478 0.397 0.348 0.313 0.289

VisuShrink 0.430 0.346 0.300 0.271 0.247 0.412 0.319 0.272 0.241 0.220

BayesShrink 0.429 0.349 0.307 0.278 0.258 0.413 0.323 0.279 0.247 0.226

Gaussian Kernel 0.422 0.341 0.300 0.271 0.251 0.405 0.316 0.269 0.241 0.221

Improved Threshold 0.419 0.340 0.300 0.272 0.249 0.405 0.314 0.269 0.241 0.220

AGGD 0.395 0.319 0.279 0.253 0.232 0.375 0.290 0.247 0.220 0.202

The values in bold show better results compared to the other methods.

we obtain the linear prediction factor β :

∂E{e2
prediction

}

∂β
=

∂E{In[m, n, t2]− βIo[m, n, t1]}

∂β

2

(16)

2E{[(In[m, n, t2]− βIo[m, n, t1])](−Io[m, n, t1])} = 0 (17)

Thus, the β factor that minimizes the MSE between the noisy

and original images is given by Equation 18:

β∗ =
E{Io[m, n, t1]In[m, n, t2]}

E{Io
2[m, n, t1]}

(18)

Assuming that both the noisy and original images have non-

zero random means and their joint probability distribution is

unknown, the linear prediction factor β is given by Equation 19:

β =

∑M
m=1

∑N
n=1 Io[m, n, t1]In[m, n, t2]

∑M
m=1

∑N
n=1 Io

2[m, n, t1]
(19)

2.4 New adaptive thresholding function

In the classical thresholding methods proposed by

Donoho, both the hard and soft threshold functions exhibit

certain limitations. The hard threshold function preserves the

critical information from the original signal, but it introduces

discontinuities in the noise wavelet coefficients, causing visual

distortions in images due to the pseudo-Gibbs phenomenon.

Conversely, the soft threshold function, unlike the hard threshold,

ensures continuity by keeping the noise wavelet coefficients

proportional to the image coefficients, thereby reducing the

pseudo-Gibbs effect. However, when using soft thresholding for

noise reduction, the reconstructed signal often loses significant

features, such as sharp edges, resulting in blurred details. This

blurring occurs because the substantial noise wavelet coefficients

are overly attenuated when processed against the threshold. In

conventional thresholding methods, selecting an optimal threshold

is difficult. If the threshold is set too high, significant image details

are lost; if it is too low, residual noise remains. To overcome these

challenges and improve noise reduction while preserving crucial

image details and minimizing the pseudo-Gibbs phenomenon, this

work proposes a new adaptive thresholding function, as defined in

Equation 20:

ω̂ij =

{

sgn(ωij)(|ωij| − sin(π
2 (

T
|ωij|

)
β
T )T), |ωij| ≥ T

0, |ωij| < T
(20)

where ωij and T represent the wavelet coefficients of the noisy

image and threshold, respectively, and ω̂ij is the resulting coefficient
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TABLE 3 MSE, PSNR(dB), and SSIM results for all wavelet methods; MRI Brain Images 5 and 6.

Image MRI Brain Image 5 MRI Brain Image 6

Noise variance (σ ) 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05

MSE

Proposed 25 29 31 32 33 31 33 34 34 35

VisuShrink 216 373 525 681 812 239 390 536 680 818

BayesShrink 85 112 126 136 141 82 107 120 130 137

Gaussian Kernel 85 112 125 133 140 82 106 119 129 134

Improved Threshold 87 112 126 134 141 82 106 120 128 134

AGGD 31 36 38 40 41 38 43 45 46 47

PSNR(dB)

Proposed 34.11 33.45 33.24 33.06 32.89 33.24 32.92 32.85 32.77 32.69

VisuShrink 24.80 22.42 20.93 19.80 19.03 24.34 22.22 20.84 19.81 19.00

BayesShrink 28.85 27.63 27.12 26.80 26.63 29.00 27.85 27.33 27.00 26.78

Gaussian Kernel 28.83 27.64 27.16 26.88 26.67 28.98 27.86 27.37 27.04 26.84

Improved Threshold 28.72 27.63 27.13 26.86 26.63 29.01 27.87 27.34 27.06 26.85

AGGD 33.18 32.53 32.30 32.11 32.02 32.32 31.77 31.56 31.48 31.37

SSIM

Proposed 0.479 0.394 0.346 0.315 0.289 0.559 0.477 0.427 0.388 0.360

VisuShrink 0.411 0.317 0.267 0.234 0.216 0.498 0.407 0.350 0.311 0.283

BayesShrink 0.413 0.321 0.276 0.245 0.223 0.515 0.423 0.366 0.330 0.301

Gaussian Kernel 0.405 0.311 0.266 0.237 0.216 0.509 0.414 0.358 0.319 0.292

Improved Threshold 0.403 0.313 0.266 0.239 0.216 0.509 0.413 0.358 0.320 0.292

AGGD 0.374 0.286 0.245 0.217 0.195 0.480 0.384 0.330 0.293 0.265

The values in bold show better results compared to the other methods.

after processing with the new adaptive threshold function. The

term sgn(ωij) denotes the sign of ωij, whereas β is the linear

prediction factor.

Figure 2 illustrates the differences between hard, soft, semisoft,

and newly proposed threshold functions. As can be observed, the

hard threshold function shows discontinuity at the threshold T,

causing oscillations in the noisy image reconstruction. Unlike the

hard threshold, the soft threshold function avoids discontinuity.

However, the resulting reconstructed image may deviate from

the original owing to the excessive attenuation of the noise

wavelet coefficients.

In the proposed new threshold function, as |ωij| → T, the value

of ω̂ij progressively approaches zero, that is, ω̂ij → 0. Therefore,

the new threshold function maintains continuity at the threshold

T, helping to reduce the Gibbs phenomenon. Similarly, as |ωij|

→ ∞, ω̂ij converges to ωij, retaining the properties of the hard

threshold function. Consequently, the difference between ω̂ij and

ωij decreases significantly, minimizing the constant bias effect

observed in the soft threshold function.

The value of the β factor is adjusted based on the linear

prediction between the noisy and original images, allowing the new

threshold function to better adapt to the specific characteristics

of each image. As a result, the new threshold function overcomes

the limitations of both soft and hard thresholds, providing a

continuous and smooth function that effectively reduces Gibbs

oscillations and mitigates noise effects in the image.

3 Results

To evaluate the efficiency of the proposed adaptive thresholding

method, it was benchmarked against several established noise

reduction methods using six MRI brain images from the ethical

magnetic resonance brain images (Dataset, 2024; Figure 3). The

comparison involved introducing Gaussian white noise with

additive variance ranging from 0.01 to 0.05. The proposed method

was evaluated alongsideVisuShrink (Donoho and Johnstone, 1994),

BayesShrink (Chang et al., 2000), Gaussian Kernel (Sun et al., 2019),

Improved Threshold (Zhang et al., 2019), and AGGD (Golilarz

et al., 2020) utilizing the biorthogonal wavelet base bior3.9 with

three decomposition levels. All implementations and experiments

were carried out in MATLAB R2020a.

3.1 Quantitative assessment

The quantitative assessment employed three objective metrics:

(1) MSE, which represents the average squared difference between
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FIGURE 4

Comparison of noise reduction performance for MRI Brain Image 1 with noise variance of 0.01: (A) original image, (B) noisy image, (C) proposed

method, (D) VisuShrink, (E) BayesShrink, (F) Gaussian Kernel, (G) improved threshold, and (H) AGGD.

the original and reconstructed images and measures error severity;

(2) peak signal-to-noise ratio (PSNR), which measures the quality

of the reconstructed image about the original image (Chan and

Whiteman, 1983; Ferreira et al., 2024); and (3) structural similarity

index (SSIM), which is used to measure the similarity between

the original and processed images by analyzing important visual

properties such as brightness, contrast, and structure (Wang

et al., 2004; Bhatt et al., 2021). SSIM is considered a more

comprehensive method than PSNR and MSE, as it accounts for

essential characteristics of the human visual system (HSV). PSNR

is calculated as expressed in Equation 21 for an original image x

and a reconstructed image y of dimensionM x N.

PSNR (x,y) = 10 log10

[

L2

MSE

]

(21)

where L is the dynamic range of the image (e.g., L = 255 for an

8-bit image with 256 gray levels). MSE is defined in Equation 22:

MSE =
1

MxN

M
∑

m=1

N
∑

n=1

∣

∣x(m,n) − y(m,n)

∣

∣

2
(22)

SSIM, whichmeasures the similarity between the original image

x and reconstructed image y, can be calculated as in Equation 23:

SSIM (x,y) =

(

2µxµy + C1

) (

2σxy + C2

)

(

µ2
x + µ2

y + C1

) (

σ 2
x + σ 2

y + C2

) (23)

where µx and µy represent the means of x and y, σ 2
x and σ 2

y are

their variances, and σxy is the covariance of x and y. C1 and C2 x’are

constants used to stabilize the expression.

Table 1 presents the average MSE, PSNR, and SSIM values

obtained from the different noise reduction wavelet methods for

MRI Brain Image 1 and MRI Brain Image 2. According to the

results, the proposed noise reduction technique outperformed

other wavelet-based methods. By incorporating the linear

prediction factor β in the threshold estimator, the method

efficiently reduces image noise, yielding superior MSE, PSNR, and

SSIM values compared to those obtained with the other methods.

As observed in Table 1, for MRI Brain Image 1, the MSE

value was approximately 32, corresponding to noise variances

between 0.01 and 0.05. The proposed method demonstrated better

performance, with a difference of less than 11% in the MSE relative

to the second-best method, the AGGD, which presented an average

MSE of 36. Regarding the PSNR, the proposed technique achieved

an average of 33.10 dB, the highest among all methods tested. For

SSIM, the proposed method also showed superior visual quality,

with an average score of 0.411, indicating a significantly better

image quality, contrasted with other techniques. Therefore, the

method based on the linear prediction factor β effectively preserves

the structure of the processed image while reducing noise.

Based on the analysis of the MSE results presented in Table 1,

for MRI Brain Image 2, it was observed that the proposed

method is quite effective in reducing noise. The average MSE value

was approximately 32,11%, lower than that of the second-best
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FIGURE 5

Comparison of noise reduction performance for MRI Brain Image 2 with noise variance of 0.03: (A) original image, (B) noisy image, (C) proposed

method, (D) VisuShrink, (E) BayesShrink, (F) Gaussian Kernel, (G) improved threshold, and (H) AGGD.

method, AGGD. Regarding the PSNR, the proposed method also

achieved the best results, with an average value of approximately

33.16 dB, superior to that of the other techniques. Regarding the

SSIM, the average value across all noise levels was approximately

0.392. This value is considerably higher than those obtained using

the different methods, further evidencing the superiority of the

proposed approach in reducing noise.

Table 2 presents the performance results concerning the MSE,

PSNR, and SSIM for MRI Brain Images 3 and 4 using different

noise reduction methods based on adaptive wavelet thresholds. The

data indicate that the proposed method outperforms all competing

techniques across the metrics evaluated. In general, a combination

of the linear prediction factor with the wavelet decomposition

scale, as proposed in this study, proved to be more efficient than

alternative techniques, especially at higher noise levels.

According to the values presented in Table 2, for MRI Brain

Image 3, the average MSE obtained was 29 for the technique

proposed, which is approximately 17% lower than that achieved

with the AGGD method, the second-best performing technique.

The proposed method also recorded an average PSNR of 33.44 dB

and an SSIM of 0.382, the highest among the methods tested.

For MRI Brain Image 4, the proposed method achieved an

average MSE of 31, reflecting an 18% reduction compared to that of

the second-best method, AGGD. Regarding the PSNR, the average

value was 33.16 dB, showing an improvement of 0.80 dB over

the second-best result. SSIM averaged 0.365 with noise variations

between 0.01 and 0.05, representing an improvement of 0.100

over the value of the AGGD method, the worst performer in this

case. These results demonstrate the effectiveness of the proposed

technique in reducing noise across different images and noise levels.

The results for the MSE, PSNR, and SSIM techniques for MRI

Brain Images 5 and 6 are presented in Table 3. ForMRI Brain Image

5, the proposed method achieved an average MSE of approximately

30,19%, lower than that obtained with the second-best method,

AGGD. Concerning the PSNR, the proposed method recorded an

average value of about 33.40 dB, an improvement of around 1 dB

over that of AGGD. Regarding the SSIM, the proposed technique

also yielded the best result, with an average value of 0.365, which

represents an improvement of 0.102 compared to that obtained in

the worst case, the AGGD method. For MRI Brain Image 6, the

proposed method achieved an average MSE of 33,25%, lower than

that of AGGD, the second-best technique. About the PSNR metric,

the average value for the proposedmethodwas approximately 32.90

dB, an improvement of around 1.20 dB over the value achieved with

AGGD. For SSIM, the proposed method recorded an average of

0.442, outperforming the AGGDmethod by approximately 0.100.

3.2 Qualitative assessment

The qualitative assessment of visual effects for the proposed

noise reduction method and the other analyzed methods,

VisuShrink (Donoho and Johnstone, 1994), BayesShrink (Chang
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FIGURE 6

Comparison of noise reduction performance for MRI Brain Image 6 with noise variance of 0.05: (A) original image, (B) noisy image, (C) proposed

method, (D) VisuShrink, (E) BayesShrink, (F) Gaussian Kernel, (G) improved threshold, and (H) AGGD.

et al., 2000), Gaussian Kernel (Sun et al., 2019), Improved

Threshold (Zhang et al., 2019), and AGGD (Golilarz et al., 2020),

comparing the original and noisy images, is shown in Figure 4 for

MRI Brain Image 1 with Gaussian noise variance of 0.01, Figure 5

for MRI Brain Image 2 with Gaussian noise variance of 0.03, and

Figure 6 for MRI Brain Image 6 with Gaussian white noise variance

of 0.05.

Figures 4C–H present the qualitative results of the processed

images using the wavelet transform with the biorthogonal

wavelet base bior3.9. The proposed method, based on the

linear prediction factor β , exhibits superior visual quality

compared to the other methods. This is supported by the

SSIM score of 0.520, which reflects excellent visual quality

and is significantly higher than that achieved by the another

techniques. In contrast, the AGGD method, which yielded the

lowest SSIM score of 0.444, falls approximately 15%, inferior

to the proposed method. The proposed approach effectively

reduces noise in the reconstructed image, which is also evident

in the MSE and PSNR metrics. The proposed method achieved

an MSE of 29, the lowest across all methods. Furthermore,

its PSNR was 33.55 dB, the best result compared to those of

the other techniques. Therefore, the proposed method better

preserves the structure and details of the processed image while

reducing noise.

Similar observations were made for MRI Brain Images

2 and 6, illustrated in Figures 5C–H, 6C–H, respectively. In

Figure 5C, MRI Brain Image 2, the proposed method again

demonstrates superior visual quality, achieving an SSIM score

of 0.373, approximately 21% higher than that of the AGGD

method, which presented the lowest SSIM value of 0.296. For

MRI Brain Image 6, as shown in Figure 6C, the proposed

method achieved an SSIM value of 0.360, approximately

26% higher than that of AGGD, which yielded an SSIM

of 0.265.

To compare the computational efficiency of the analyzed

methods, we measured the processing time for each technique

on a brain MRI image with a noise variance of 0.01. All

noise reduction methods exhibited similar processing times:

The proposed method was 0.72 seconds, the VisuShrink

was 0.71 seconds, the BayesShrink was 0.71 seconds, the

Gaussian Kernel was 0.78 seconds, the Improved Threshold

was 0.85 seconds, and the AGGD was 0.75 seconds. While

the processing times are comparable, the proposed method

stands out due to its use of a linear prediction factor that

analyzes both the original and noise images. This approach

yields superior results in objective metrics and quantitative, and

qualitative assessment.

The results presented demonstrate the strong performance of

the proposed method for noise reduction in magnetic resonance

brain images (Figure 3), even with variations in white Gaussian

noise. The visual quality of the processed images, combined with

the SSIMmetric, highlights the method’s ability to enhance texture,

borders, and smooth regions, significantly outperforming the other

evaluated methods.
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4 Discussion and conclusion

In this paper, a noise reduction method for magnetic resonance

brain imaging based on a linear prediction factor was developed

to estimate the wavelet transform coefficients. Both quantitative

and qualitative evaluations demonstrated the importance of

using wavelet transforms in this context. The study provided

an in-depth analysis of wavelet theory and its application in

image noise reduction, focusing on adaptive wavelet thresholding

techniques with a biorthogonal wavelet base. It emphasized the

significance of these methods in reducing noise in magnetic

resonance brain imaging and highlighted how this technology can

significantly benefit medical applications by yielding conclusive

results. By enhancing image clarity, the technique promotes better

detection and more detailed visualization, which are essential

for accurate diagnoses. The advanced exploration of wavelet

transforms underscores their value as a fundamental tool for signal

and image compression, as well as data processing, offering a more

precise analysis of noise decomposition in images and facilitating

improved visualization.

The proposed technique, which utilizes the linear prediction

factor β , demonstrated superior performance across various

metrics, achieving notable results in terms of averages and

decomposition levels. This was particularly evident in the improved

visual quality of the images, as reflected in the SSIM results. The

proposed technique yielded the best outcomes for the biorthogonal

wavelet base bior3.9, as highlighted by its top performance in SSIM,

MSE, and PSNR evaluations. The proposedmethod enhances visual

perception across all evaluation techniques, as evidenced in the

experimental results, which show notable improvements in edge

regions, smooth areas, and image texture.

For future work, there is potential to enhance the technique

further by integrating adaptive filters, bilateral filtration, joint

bilateral filtration, and the Wiener filter. These filters, especially

adaptive filtering, integrated into the proposed method will make

it possible to perform non-linear filtering that preserves image

edges while smoothing noise, as they combine spatial and intensity

similarity information, as well as the Wiener filter, which presents

filtering based on decrease the mean squared error between the

original and noise image, as it is inspired by on a statistical

model of the original and noise signal in terms of mean, variance,

and autocorrelation.
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