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Mapping the structure of 
biomarkers in autism spectrum 
disorder: a review of the most 
influential studies
Fang Jin  and Zhidan Wang *

School of Education Science, Jiangsu Normal University, Xuzhou, China

Background: Autism spectrum disorder is a distinctive developmental 
condition which is caused by an interaction between genetic vulnerability 
and environmental factors. Biomarkers play a crucial role in understanding 
disease characteristics for diagnosis, prognosis, and treatment. This study 
employs bibliometric analysis to identify and review the 100 top-cited articles’ 
characteristics, current research hotspots and future directions of autism 
biomarkers.

Methods: A comprehensive search of autism biomarkers studies was retrieved 
from the Web of Science Core Collection database with a combined keyword 
search strategy. A comprehensive analysis of the top 100 articles was conducted 
with CiteSpace, VOSviewer, and Excel, including citations, countries, authors, 
and keywords.

Results: The top  100 cited studies were published between 1988 and 2021, 
with the United States led in productivity. Core biomarkers such as genetics, 
children, oxidative stress, and mitochondrial dysfunction are well-established. 
Potential trends for future research may include brain studies, metabolomics, 
and associations with other psychiatric disorders.

Conclusion: This pioneering bibliometric analysis provides a comprehensive 
compilation of the 100 most-cited studies on autism, which not only offers 
a valuable resource for doctors, and researchers but shedding insights into 
current shortcomings and future endeavors. Future research should prioritize 
the application of emerging technologies for biomarkers, longitudinal study of 
biomarkers, and specificity of autism biomarkers to advance the precision of 
ASD diagnosis and treatment.
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1 Introduction

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder defined by 
difficulties with social interaction and communication, as well as patterns of restricted, 
repetitive behaviors. According to the Centers for Disease Control and Prevention (CDC), the 
prevalence of ASD has risen from 1 in 150 by 2000 to 1 in 36 by 2020, indicating a notable 
increase over recent decades. ASD can profoundly effects on cognitive abilities, adaptive skills, 
and psychological functioning throughout an individual’s life (Cai et  al., 2019; Leader 
et al., 2021).
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Given the clinical diversity of ASD, researchers and clinicians have 
focused on identifying markers to improve diagnosis, classification, 
and treatment prediction. Markers—indicators of disease states or 
treatment responses—are valuable tools in ASD research (Lord et al., 
2018). Current studies have made considerable strides in identifying 
behavioral, psychological, and biological markers, each providing 
unique insights into ASD (Baron-Cohen et al., 1996; Tager-Flusberg, 
1999; Bishop et al., 2017; Micai et al., 2020; Shen et al., 2020; Hiremath 
et al., 2021).

Behavioral markers are essential for diagnosing ASD, as they are 
visible in daily life and guide intervention strategies. Research has 
shown that social interaction and communication challenges, along 
with repetitive behaviors, and restricted interests, are key behavioral 
markers of ASD (Lord et  al., 2000; Tager-Flusberg et  al., 2005; 
Georgiades et al., 2013). Many individuals with ASD struggle to make 
eye contact or interpret social cues such as facial expressions, gestures, 
and tone of voice. They also exhibit significant communication 
deficits, including delayed language development and difficulties with 
nonverbal communication (gestures and body language; Mundy et al., 
1986; Tager-Flusberg et al., 2005). Additionally, repetitive behaviors in 
autism are characterized by stereotyped movements with objects, a 
strong and persistent interest in specific topics or objects, and high 
levels of focus in activities (Richler et al., 2010; Leekam et al., 2011). 
Based on these markers, diagnostic tools such as the Modified 
Checklist for Autism in Toddlers (M-CHAT), have been developed, 
alongside interventions like Applied Behavior Analysis (ABA), Early 
Intensive Behavioral Intervention (EIBI), and social skills training, 
which helps improve communication and social engagement (Robins 
et al., 2001; Reichow et al., 2012; Smith and Iadarola, 2015).

Psychological markers further highlight ASD’s impact, revealing 
distinct patterns in language comprehension, theory of mind, and 
executive function that shape the autistic experience. Many individuals 
with autism show delayed language development, often struggling 
with complex sentences, metaphors, and implied meanings, making 
communication more challenging (Tager-Flusberg, 2000; Eigsti et al., 
2011). A key psychological feature of ASD is a deficit in theory of 
mind—the ability to comprehend others’ thoughts, beliefs, and 
intentions—which can hinder social interactions (Happé, 1995; Tager-
Flusberg, 2007; Cerullo et al., 2021). Additionally, those with ASD 
show difficulties in executive function, such as working memory, 
cognitive flexibility, and planning abilities. Studies have documented 
reduced short-term memory capacity in individuals with ASD, 
including challenges in digit span and visuospatial tasks (Habib et al., 
2019). They also have significant trouble switching tasks and adapting 
to new environments, as assessments using the Stroop task and other 
task-switching tests have demonstrated slower response times and 
higher error rates in this population (Stoet and López, 2011; Leung 
and Zakzanis, 2014; Demetriou et al., 2018).

Biomarkers provide a unique and objective foundation for 
understanding ASD, focusing on measurable biological indicators that 
could clarify its causes, improve diagnostic accuracy, and support 
treatment development (Ecker et al., 2013; Chen et al., 2024). Unlike 
behavioral and psychological markers, biological markers can provide 
consistent, quantifiable measurements, which help reduce diagnostic 
variability and enhance the consistency of ASD assessments across 
different clinical settings. This consistency is key to establishing 
standardized diagnostic criteria internationally. Biological markers, 
such as genetic mutations, specific metabolites, and brain imaging 

features, can often be identified in early childhood or even prenatally, 
enhancing the potential for earlier diagnosis and intervention. For 
instance, non-invasive testing of biological samples, such as blood, 
urine, or saliva, may help identify high-risk individuals before 
behavioral symptoms emerge, streamlining the diagnostic process and 
reducing costs associated with extended behavioral assessments.

In recent years, autism biomarker research has rapidly expanded, 
driven by advancements in neuroimaging, genetics, and biochemistry 
(Frazier et  al., 2014; Charman et  al., 2017). Genetic studies have 
identified specific mutations and variations that are closely associated 
with ASD, providing insights into its genetic foundations. Mutations 
in genes such as CHD8, SHANK3, and SCN2A have shown strong 
links to ASD (Durand et al., 2007; Schaaf and Zoghbi, 2011; Sanders 
et al., 2012; Bernier et al., 2014). Additionally, copy number variations 
(CNVs) such as the 15q11-13 duplication and 16p11.2 deletion, are 
strongly correlated with ASD (Marshall et al., 2008; Weiss et al., 2008; 
Kumar and Christian, 2009; Pinto et al., 2010; Schaaf and Zoghbi, 
2011). Large-scale genome-wide association studies (GWAS) and 
whole-genome sequencing continue to unravel ASD’s complex genetic 
landscape, revealing rare, high-impact genetic variants that appear to 
influence autism development significantly, with certain genes like 
DYRK1A and ADNP linked to more severe ASD phenotypes (De 
Rubeis et al., 2014).

In neuroimaging, MRI and fMRI are widely used to examine brain 
structure and function in ASD (Ecker et al., 2010; Philip et al., 2012). 
Findings reveal distinct structural and functional connectivity 
abnormalities, particularly in brain areas like the frontal and temporal 
cortex, amygdala, and hippocampus—regions associated with social 
behavior and emotional regulation (Stigler et al., 2011; Haar et al., 
2016). Diffusion tensor imaging (DTI) further indicates abnormalities 
in the integrity and connectivity of white matter tracts, potentially 
underlying challenges in information processing and cognitive 
functions in ASD (Brito et al., 2009; Travers et al., 2012).

Biochemical markers, such as neurotransmitter levels, metabolites, 
and immune responses, also offer valuable insights. Individuals with 
autism often show atypical levels of metabolites in serum, urine, and 
cerebrospinal fluid. For instance, shifts in oxidative stress markers, 
inflammatory factors, and amino acids are thought to relate to ASD’s 
pathology. Neurotransmitter research shows that imbalances in 
glutamate and γ-aminobutyric acid (GABA) may significantly affect 
ASD’s neural mechanisms (Pizzarelli and Cherubini, 2011). 
Additionally, abnormal immune responses, including the presence of 
autoantibodies and altered cytokine levels, suggest an immunological 
dimension to autism (Vargas et al., 2005; Masi et al., 2017).

However, ASD biomarker research faces several challenges, 
including fragmented efforts, difficulty in tracking emerging 
research trends, and the complexity of integrating diverse findings. 
Considering the expanding output and dynamic evolution of 
autism biomarkers research, it is increasingly essential to use 
quantitative methods to assess and analyze the existing body of 
work. Bibliometrics, a statistical analysis method, is key in 
identifying influential papers, emerging trends, and research 
hotspots through co-word and co-citation analyses within specific 
fields (Van Raan, 2014). Citation analysis, a central component of 
bibliometric analyses, is a valuable tool for assessing the impact of 
articles and tracking the evolution of a research domain (Garfield, 
1972). By examining the most cited studies, particularly the 
top 100 cited studies, are often seminal works that have significantly 
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influenced the field. Highlighting these contributions offers a clear 
picture of the key developments in autism biomarker research. 
However, there is a notable absence of focused studies on 
autism biomarkers.

Therefore, this study aims to bridge this gap by conducting a 
comprehensive bibliometric analysis of autism biomarkers research, 
focusing on identifying and characterizing the 100 most cited studies 
in this field. The analysis encompasses a thorough investigation into 
the bibliometric characteristics of these articles. It will provide an 
interdisciplinary perspective on the characteristics of autism 
biomarkers research, offering a detailed exploration of currently 
highly cited articles. Furthermore, the thorough examination of 
keywords will help identify emerging trends and research hotspots in 
autism biomarkers, shedding light on the future directions of the field. 
These findings will serve as a valuable resource for a wide range of 
professionals, including epidemiologists, pediatricians, rehabilitation 
therapists, and caregivers, all of whom are working to advance their 
understanding and practice in relation to autism spectrum disorder.

2 Materials and methods

2.1 Search strategy

On June 8th, 2024, a comprehensive search was conducted in the 
Web of Science Core Collection (WoSCC) database, hosted by 
Clarivate Analytics.1 The Web of Science was chosen for its 
multidisciplinary scope, offering access to both current and 
retrospective data dating back to 1900.

Despite the Diagnostic and Statistical Manual of Mental Disorders 
(Fifth Edition; DSM-5) broadening the definition of “autism spectrum 
disorder” (ASD) and discontinuing subdivisions like “pervasive 
developmental disorder not otherwise specified,” “autistic disorder,” 
and “Asperger syndrome,” these terms remain prevalent in clinical 
practice and research (Kim et al., 2014). For this study, the search 
strategy was: [TS = (autistic OR autism OR ASD OR Asperger OR 
Heller’s syndrome OR pervasive developmental disorder OR dementia 
infantilis OR disintegrative disorder OR Kanner’s syndrome)] AND 
[TS = (biomarker* OR marker*)].

Articles were retrieved based on total citation count in descending 
order, with more recent articles prioritized in cases of identical 
citation counts.

2.2 Data exaction

Articles included in the analysis were sourced from indexed 
journals and specifically focused on autism biomarkers. Only original 
research articles and reviews were considered, while editorials, letters, 
conference proceedings, meeting reports, books, book chapters, and 
documents of undefined types were excluded.

To ensure relevance to this study’s objectives, the results were 
meticulously reviewed. Subsequently, the top 100 most cited papers 
were selected for detailed analysis.

1 www.webofscience.com

Data extracted from each paper included the title, total citation 
count, authorship, institution, country, language, publication year, 
journal title, document type, journal impact factor, and Web of 
Science subject category. Journal impact factors (IF) were determined 
using the 2022 Journal Citation Reports.2

2.3 Statistical analysis

Data analysis and visualization were carried out using MS Excel 
(version 16.0), SPSS (version 26), CiteSpace (version 6.2.4), and 
VOSviewer (version 1.6.15).

MS Excel was utilized for quantitative data analysis and basic 
visualizations to display trends and statistics. SPSS was employed to 
analyze the relationships, such as the correlation between study count 
and journal impact factors.CiteSapce, a scientometrics tool, visualizes 
the structure and trends of scientific knowledge, generating 
“knowledge maps” to reflect the field’s progress (Xiao et al., 2023). It 
was used to analyze keyword timelines, burst keywords, and clusters 
of countries, institutions, authors, and keywords. VOSviewer, another 
bibliometric tool, creates and visualizes networks based on citations, 
co-citation, bibliographic coupling, or co-authorship (Xiao et  al., 
2023). Nodes represent elements like countries, institutions, and 
keywords, with node size indicating publication volume and link 
width showing collaboration strength (Zhang et al., 2022). This study 
utilized VOSviewer to analyze collaboration networks and 
keyword overlays.

3 Results

3.1 Basic characteristics of the 100 
top-cited studies

The 100 top-cited articles are listed in Supplementary Table 1. The 
100 top-cited studies on autism biomarkers were all published in 
English, spanning from 1988 (by Courchesne et  al.) to 2021 (by 
Maynard et al.). Nearly 50% (53 articles) of these studies published 
since the year 2010. The most productive years were 2011 and 2012, 
each contributing 10 articles. Among these, 2011 stood out not only 
for the highest total citation count but also for having the highest 
average citation count per study, with an average of 432.8 citations per 
article (see Figure 1).

These articles were cited ranging from 180 to 2,088 times. The 
article with the highest number of citations “Identification of risk loci 
with shared effects on five major psychiatric disorders: A genome-
wide analysis” written by Smoller was published in the Lancet in 2013 
(Table 1).

Meanwhile, the 100 top-cited studies on autism biomarkers were 
published in 61 different journals, with the most frequent being 
“Molecular Psychiatry” (n = 9) and “American Journal of Human 
Genetics” (n = 9). Table  2 displays the journals hosting the 100 
top-cited studies on autism biomarkers along with their associated 
impact factors. The journal impact factors of the 100 top-cited studies 

2 https://JCR.Clarivate.com/
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on autism biomarkers ranged from 2.3 to 168.9. However, no 
significant relationship was observed between the number of studies 
published in a journal and its impact factor.

3.2 Contributions of countries and 
organizations

In total, 29 countries contribute to the 100 top-cited publications. 
The three most productive countries were the United States (n = 69), 
England (n = 15), and Australia (n  = 9). The US collaborated 
extensively with England, Canada, Netherlands, Finland, Australia, 
and France, highlighting their significant involvement in this field. 
Figure 2 illustrates the co-authorship map of these countries.

A total of 36 institutes contributed more than two publications 
each (see Table  3). The most prolific institutes were the Harvard 
University and the University of California, Los Angeles. Close behind 
was the University of Chicago and Columbia University in the city of 
New York. Notably, most of the top-cited institutions belong to the 
United States, demonstrating the authority and significance of the 
country in the field.

3.3 Most contributing authors

The 100 studies involved 979 authors, among whom 17 authors 
contributed to at least 3 articles. Seven articles were authored individually.

Among the most productive authors, Lord, C. led with 7 papers, 
followed by Courchesne, E. with 6 papers, and Adams, J.B. and Frye, 
R.E. with 4 papers each. Courchesne, E. accrued the highest total 
citations (n = 2,387), while Devlin, B.’s article had the highest average 
number of citations (n = 1184.67; see Figure 3). Meanwhile, Rossignol, 
D.A. led with the most T100 articles (n = 4) as the first author.

Figure 4 depicts the author collaboration network, highlighting 
Devlin, B. with the highest Total Structural Loss (TLS = 257) and 
collaborations with 233 authors. Notably, Devlin, B. closely 
collaborated with Sutcliffe, J.S., Wassink, T.H., Glessner, J.T., Coon, H., 
and Kolevzon, A.

3.4 Analysis of keywords

Keywords serve as concise summaries of topics discussed in an 
article, with high-frequency keywords indicating popular topics in a 
research field. The most frequent keywords were “children” (n = 27), 
“brain” (n = 16), “association” (n = 15), “schizophrenia” (n = 13), and 
“oxidative stress” (n = 12; see Figure 5).

A cluster analysis of co-occurring keywords was conducted using 
CiteSpace resulting in the classification of keywords into eleven 
distinct clusters based on their correlations. Figure 6 displays the top 
five largest clusters after removing non-exact clustering were “gene,” 
“bipolar disorder” “brain,” “cognitive control,” and “coherence”.

To gain deeper insight into the evolution of these clusters, 
we visualized the keyword cluster timeline. Figure 7 illustrates this 

FIGURE 1

Annual number of publications of autism biomarkers research.
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TABLE 1 The 10 top-cited articles in autism biomarkers, ordered by number of citations.

Rank Title First author Journal Publication 
year

Total 
citations

Citation per 
year

1

Identification of risk 

loci with shared effects 

on five major 

psychiatric disorders: 

A genome-wide 

analysis

Smoller, J. W. Lancet 2013 2088 189.82

2

Consensus statement: 

Chromosomal 

microarray is a first-

tier clinical diagnostic 

test for individuals 

with developmental 

disabilities or 

congenital anomalies

Miller, D. T.
American Journal of Human 

Genetics
2010 1883 134.50

3

Transcriptomic 

analysis of autistic 

brain reveals 

convergent molecular 

pathology

Voineagu, I. Nature 2011 1,316 101.23

4

Autism genome-wide 

copy number variation 

reveals ubiquitin and 

neuronal genes

Glessner, J. T. Nature 2009 1,020 68.00

5 The genetics of autism Muhle, R. Pediatrics 2004 812 40.60

6

Hypoplasia of 

cerebellar vermal 

lobule VI and VII in 

autism

Courchesne, E. New England Journal of Medicine 1988 795 22.08

7

Using Support Vector 

Machine to identify 

imaging biomarkers of 

neurological and 

psychiatric disease: A 

critical review

Orrù, G.
Neuroscience and Biobehavioral 

Reviews
2012 717 59.75

8

Metabolic biomarkers 

of increased oxidative 

stress and impaired 

methylation capacity 

in children with 

autism

James, S. J.
American Journal of Clinical 

Nutrition
2004 663 33.15

9

Gastrointestinal flora 

and gastrointestinal 

status in children with 

autism-comparisons 

to typical children and 

correlation with 

autism severity

Adams, J. B. BMC Gastroenterology 2011 652 50.15

10

Oxidative stress in 

psychiatric disorders: 

evidence base and 

therapeutic 

implications

Ng, F.
International Journal of 

Neuropsychopharmacology
2008 625 39.06
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timeline, analyzing the occurrence and duration of main keywords 
to uncover research hotspots in this field across different periods. 
Early studies predominantly focused on keywords such as “gene” 
(#0), “croi” (#8), and “coherence” (#6). Topics like “cognitive 
control” (#5), “Bayley Scales of Infant Development” (#9), 
“independent component analysis” (#11), and “endophenotype” 
(#13) were transient. In contrast, “bipolar disorder” (#1), “brain” 

(#2), “human brain” (#3), and “metabolomics” (#10) consistently 
remained prominent research topics and trends.

Finally, burst keywords were analyzed to identify keywords that 
garnered considerable attention over time. Figure 8 visualizes the 
top 16 keywords with the strongest bursts. The analysis revealed that 
keywords such as “region,” “gene,” “complex traits,” and “twin” 
exhibited early bursts, sustaining high-intensity interest from 1991 to 

TABLE 2 Top Journals of the 100 top-cited studies.

Journal Number of studies Citations IF

Molecular Psychiatry 9 4,690 11

American Journal of Human Genetics 9 2,741 9.8

New England Journal of Medicine 3 768 158.5

Nature 3 659 64.8

Proceedings of the National Academy of 

Sciences of the United States of America
3 1,175 11.1

Biological Psychiatry 3 970 10.6

Translational Psychiatry 3 1,173 6.8

Human Molecular Genetics 3 1,225 3.5

FIGURE 2

Cooperation network between countries.
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2007. Subsequently, keywords such as “linkage analysis,” “genomic 
screen,” and “linkage disequilibrium” gained prominence.

Since 2007, there has been a shift in focus toward keywords 
has shifted toward terms related to specific biochemical processes 
in the brains of children with autism. Notably, terms like 
“association,” “prevalence,” “children,” “brain,” “oxidative stress,” 
and “mitochondrial dysfunction” indicate a dedicated exploration 
of autism biomarkers through epidemiological characteristics.

4 Discussion

As the prevalence of autism spectrum disorder (ASD) continues 
to rise, the number of affected individuals has steadily increased, 
underscoring the growing impact of this condition on society 
(Maenner, 2021). Although there is no unified consensus on its exact 
mechanisms, factors such as genetics, brain function, and metabolites 
have all been implicated in autism’s development. Biomarkers, serving 

TABLE 3 Institutes that published at least five in the top 100 most-cited publications.

Institute Number of studies Citations

Harvard University 9 4,495

University of California, Los Angeles 9 4,031

The University of Chicago 7 3,675

Columbia University in the City of New York 7 1794

Massachusetts General Hospital 6 2,865

University of California, San Diego 6 2,387

The University of Utah 5 4,112

University of Pennsylvania 5 4,097

Johns Hopkins University 5 3,161

Vanderbilt University 5 2,342

Stanford University 5 2096

University of Oxford 5 1953

University of Arkansas for Medical Sciences 5 1917

University of Cambridge 5 1,517

FIGURE 3

Authors who participated in at least two articles in the top 100 most-cited publications.
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FIGURE 4

Co-authorship overlay visualization map of authors.

FIGURE 5

Map of keywords clustering in autism biomarkers research.
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as indicators of biological processes or states, hold significant potential 
for diagnostic, therapeutic, and prognostic applications in the context 
of autism (Jensen et al., 2022).

This analysis of the 100 top-cited studies on autism biomarkers 
provides valuable insights for the research community. It offers a 
historical overview of the most influential studies, showcasing key 

FIGURE 6

The cluster map of keywords.

FIGURE 7

The timeline of the keyword cluster.
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trends and advancements. Additionally, it contributes to a deeper 
understanding of the landscape of autism biomarkers, which can aid 
researchers, clinicians, and policymakers in advancing interventions 
for autism spectrum disorders.

Beyond analyzing the basic characteristics of these articles, 
we conducted an in-depth examination of the highly cited studies to 
uncover the current state of autism biomarker research and identify 
emerging trends, providing our perspectives on the field’s development.

4.1 Basic characteristics of the 100 
top-cited autism biomarkers researches

We analyzed the key characteristics of the 100 most-cited articles, 
including publication year, country, and leading authors, to provide 
insights for journals interested in identifying experienced authors and 
relevant research contributions in this field.

The growing number of articles on autism biomarkers reflects 
society’s increasing demand for greater attention and treatment of 
autism. International collaboration and the use of technology present 
promising opportunities to tackle this issue.

The growing trend of global collaboration in this field is both 
encouraging and promising. Collaborative initiatives bring together 
diverse expertise and resources, accelerating progress in ASD 
biomarker research. What we see is a growing cooperation between 
countries, with authors increasingly collaborating and forming 
networks of partnerships. Notably, the United  States plays a 
dominant role in both research productivity and citation impact, 
highlighting its global leadership in advancing our collective 

understanding of ASD. Beyond the collaboration with researchers 
from the developed countries, US scholars are also working with 
experts from developing nations, such as China, to establish a global 
network focused on autism biomarkers (Liu et al., 2001; Morrow 
et al., 2008; Voineagu et al., 2011).

In examining the basic characteristics of highly cited autism 
biomarker studies, we found that technology plays a pivotal role in 
advancing autism biomarker research. Our analysis reveals that the 
majority of influential articles were published between 2010 and 2020. 
Further examination reveals that since 2010, the introduction and 
advancement of technologies in neuroimaging, genomics, and 
molecular biology—such as high-resolution brain imaging, diffusion 
tensor imaging (DTI), magnetoencephalography (MEG), gene 
sequencing, and bioinformatics—have provided powerful tools for the 
in-depth exploration of autism biomarkers. The United States benefits 
from advanced technology, especially with its cutting-edge scientific 
institutions such as Harvard University and Massachusetts General 
Hospital, placing it in a leading position that clearly demonstrates 
this point.

4.2 Current research hotspots

In bibliometrics, keywords serve as highly generalized 
representations of an article, with high-frequency keywords 
specifically employed to identify focal points and cutting-edge areas 
in a research field. In this study, we conducted an in-depth analysis of 
the top keywords, exploring their clusters and tracing the evolution of 
these clusters over time. Through this process, we unveiled the current 

FIGURE 8

The top 16 keywords with the strongest citation bursts.

https://doi.org/10.3389/fnins.2024.1514678
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Jin and Wang 10.3389/fnins.2024.1514678

Frontiers in Neuroscience 11 frontiersin.org

progress in the field of autism biomarker research and identified 
potential future research trends.

Recent research on biomarkers for autism has mainly focused on 
four key areas: biomarkers in childhood, genetic markers of autism, 
oxidative stress markers, and mitochondrial dysfunction.

4.2.1 Biomarkers in childhood
The keyword “children” appears most frequently, indicating that 

researchers aim to investigate biomarkers from early childhood. 
Among the 100 most-cited articles, nearly 40% of the studies focused 
on the exploring the biomarkers in childhood. Studying autism 
biomarkers in early childhood may be due to several reasons. Autism 
typically manifests and is diagnosed during childhood, which is also 
when symptoms are most pronounced. Identifying biomarkers 
during this period can aid in early diagnosis (Chawarska et al., 2007; 
Ozonoff et al., 2011; Lord et al., 2018). Additionally, the complex 
etiology of autism, involving the interaction of genetic and 
environmental factors, makes it easier to obtain accurate data by 
studying childhood biomarkers, minimizing interference from other 
factors. This helps us better understand the origins, development, and 
trends of autism (Hallmayer et al., 2011; Gaugler et al., 2014; Sandin 
et al., 2014). Moreover, certain biomarkers may be more stable in 
childhood, as the nervous and physiological systems are not fully 
developed, making changes in biomarkers easier to detect. 
Researching childhood biomarkers can also reveal key pathways and 
targets in the pathophysiology of autism, enabling early intervention 
and treatment, and thereby reducing future burdens for individuals 
with autism.

The detection of biomarkers in childhood has become an effective 
way to predict autism in adulthood. Researches show that genetic, 
neuroimaging, and biochemical markers from childhood provide 
significant predictive accuracy for adult outcomes. For example, 
genetic variations such as FMR1 mutations or 16q11.2 copy number 
variations increase the likelihood of severe neurodevelopmental 
challenges in adulthood (Stessman et al., 2014; Sandin et al., 2017). 
Neuroimaging studies reveal weakened functional connectivity in the 
default mode network of autistic children, persisting into adulthood 
and predicting social difficulties. In summary, exploring childhood 
biomarkers is crucial for predicting adult autism severity and enabling 
early interventions.

4.2.2 Genetic biomarkers
Significant progress has been made in the genetic research of 

autism biomarkers, particularly in the fields of genes (keywords cluster 
#0), chromosomes, and cytogenetics (keywords cluster #8). Many 
studies on autism’s genetic causes have employed genome-wide 
screening to identify shared genetic markers within families. By 
analyzing genetic patterns in parents and siblings, researchers aim to 
uncover hereditary factors contributing to autism. Studies confirm a 
correlation between the incidence of autism and genetics, with family 
genetic loci and genes acting as hereditary factors in children with 
autism (Philippe et al., 1999; Risch et al., 1999; Muhle et al., 2004; 
Morrow et al., 2008; Anney et al., 2010). Many genes are associated 
with autism spectrum disorders, and copy number variations and rare 
gene mutations (e.g., SHANK3, NRXN1, CHD8, SCN2A) are closely 
linked to autism (Glessner et al., 2009). Regarding chromosomes, 
research shows that abnormalities such as duplications or deletions in 
the chromosomes of individuals with autism significantly increase the 

prevalence of the disorder, especially the duplication of chromosome 
15q11-13 (Cook et al., 1998; Philippe et al., 1999; Buxbaum et al., 
2002; Shen et  al., 2010). Furthermore, variations in susceptibility 
regions like 7q22-q31, 2q24.3-q31, and 11p12-p13 affect 
neurodevelopment through multiple mechanisms, increasing the risk 
of autism (Consortium I.M.G.S.o.A, 1998, 2001; Muhle et al., 2004; 
Vorstman et al., 2006).

Related studies also reveal a correlation between the 
occurrence of autism and the interaction of genetic and 
environmental factors, as well as interactions between genes. For 
instance, the review “The genetics of autism” indicates that 
interactions among multiple genes lead to idiopathic autism, while 
epigenetic factors and exposure to environmental modulators may 
contribute to the variable expression of autism-related traits 
(Muhle et  al., 2004; Rossignol and Frye, 2012b; Rossignol 
et al., 2014).

4.2.3 Oxidative stress markers
Among the 100 top-cited articles, 14 articles focus on clarifying 

the relationship between ASD and oxidative stress. Oxidative stress is 
a physiological state caused by an imbalance between the production 
and clearance of Reactive Oxygen Species (ROS) and Reactive 
Nitrogen Species (RNS) in the body (Chauhan and Chauhan, 2006; 
Frustaci et al., 2012). This imbalance is thought to be closely related 
to the pathological mechanisms of various 
neurodevelopmental disorders.

Glutathione is a crucial antioxidant in the human body, playing a 
significant role in maintaining cellular redox balance. Abnormal 
glutathione metabolism is considered an important component of the 
pathological mechanism of autism. Studies have found that the total 
amount of glutathione, including reduced glutathione (GSH) and 
oxidized glutathione (GSSG) in patients with autism is often reduced. 
Specifically, the level of GSH is significantly reduced, while the level 
of GSSG is relatively elevated. This results in a decreased GSH/GSSG 
ratio, reflecting an imbalance in the cellular redox state. Changes in 
this ratio are considered an important marker of oxidative stress 
(James et al., 2004; Frustaci et al., 2012; Rose et al., 2012). Research on 
glutathione-related enzymes, such as glutathione synthase (GSS), 
glutathione reductase (GR), and glutathione peroxidase (GPx), reveals 
their key roles in glutathione synthesis, regeneration, and functional 
maintenance (Frustaci et al., 2012; Rose et al., 2012; Gu et al., 2015). 
In autism patients, enzyme activities, such as reduced GPx and GR 
activities, are often abnormal, resulting in impaired GSH regeneration 
and exacerbated oxidative stress.

In terms of identifying and validating oxidative stress markers, 
researchers have identified markers that show significant changes in 
individuals with autism (Chauhan et  al., 2012). These specific 
biomolecules, including Malondialdehyde (MDA), 4-hydroxynonenal 
(4-HNE), and protein carbonyl, indicate the degree of lipid 
peroxidation and protein oxidation, respectively. Changes in the 
concentrations of these markers in blood, urine, and cerebrospinal 
fluid are thought to reflect the oxidative stress status of individuals 
with autism, providing important indicators for clinical diagnosis and 
disease assessment (Frustaci et al., 2012). Advanced technologies such 
as High-Performance Liquid Chromatography (HPLC), Gas 
Chromatography–Mass Spectrometry (GC–MS), and Enzyme-Linked 
Immunosorbent Assay (ELISA) have made the quantitative detection 
of these markers more accurate and sensitive, providing reliable data 
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for studying oxidative stress in autism (Yao et al., 2006; Chauhan et al., 
2012; El-Ansary and Al-Ayadhi, 2012).

Evaluating antioxidant enzyme activity is another critical aspect. 
Antioxidant enzymes, including Superoxide Dismutase (SOD), 
Catalase (CAT), and Glutathione Peroxidase (GPx), play a crucial role 
in scavenging reactive oxygen species and maintaining redox balance 
in the body (Chauhan et al., 2012; Frustaci et al., 2012). Studies have 
found that the activity of these enzymes often changes in individuals 
with autism, manifesting as either decreased or abnormally increased 
activity. Assessing changes in antioxidant enzyme activity provide 
further insights into the oxidative stress status of individuals 
with autism.

4.2.4 Mitochondrial dysfunction
Mitochondrial dysfunction leads to energy metabolism disorders 

and excessive production of reactive oxygen species, triggering 
oxidative stress (Rossignol and Frye, 2012a; Rossignol and Frye, 
2014). In autistic patients, research on mitochondrial dysfunction 
focuses on mitochondrial DNA, bioenergetics, and 
mitochondrial autophagy.

Mitochondria have a genome independent of nuclear DNA and 
are more susceptible to mutations. Many studies have found multiple 
mutations and variations in mitochondrial DNA in individuals with 
autism, affecting mitochondrial function and leading to energy 
metabolism disorders. Studies have validated that point mutations, 
deletions, and copy number variations in mtDNA are all associated 
with the severity of autism symptoms (Giulivi et al., 2010; Rossignol 
and Frye, 2012a).

Additionally, mitochondria in autistic individuals often exhibit 
abnormalities in ATP synthesis, redox response, and electron 
transport chain (ETC) function. Studies on mitochondrial function in 
cells and tissues of autistic individuals have found significant 
differences in oxidative phosphorylation efficiency, membrane 
potential, and ROS production. These dysfunctions may lead to 
insufficient energy supply to nerve cells, affecting neurodevelopment 
and function, thereby increasing the risk of autism (Giulivi et al., 2010; 
Rossignol and Frye, 2012a).

The relationship between mitochondria and autophagy has also 
garnered research attention. Autophagy is a crucial process for cells to 
clear damaged mitochondria and maintain intracellular stability. 
Numerous studies have found that autophagy function in autistic 
individuals may be  impaired, resulting in the accumulation of 
damaged mitochondria, which produce more ROS and exacerbate 
oxidative stress (Tang et al., 2014).

4.3 Potential research trends

Based on the evolution of keyword clustering, we believe that 
future research directions for autism biomarkers may focus on brain 
studies, the comorbidity of autism with other psychiatric disorders, 
and metabolic markers.

4.3.1 Further brain research
The keyword “brain” has become the second most prominent 

keyword and the second-largest cluster. The timeline of keyword 
clustering shows that this is currently the hottest topic, indicating that 
brain-related research will undoubtedly continue to be a major focus 

in the future. Current research on the brain mechanisms of autism 
primarily employs techniques such as functional magnetic resonance 
imaging (fMRI), structural magnetic resonance imaging (sMRI), 
electroencephalography (EEG), magnetoencephalography (MEG) and 
event-related potentials (ERP) to uncover neuroimaging biomarkers 
for autism (Calhoun et al., 2008; Schumann et al., 2010; Abraham 
et al., 2017; Gilmore et al., 2018). These methods will continue to 
evolve, enhancing our understanding of both the structure and 
function of the autistic brain.

Brain research may be developed from several aspects, including 
deepening our understanding of brain structure, with an emphasis on 
connectivity and functional integration within brain networks. Most 
importantly, it will aim to establish a multimodal model to 
comprehensively examine the brain mechanisms in individuals 
with autism.

Current neuroimaging research has provided a substantial amount 
of preliminary data on the brain structure and function of autism 
patients, which still needs to be expanded. Using structural magnetic 
resonance imaging (sMRI), voxel-based morphometric analysis has 
found that individuals with autism exhibit increased white matter 
volume in the temporal and frontal lobes, as well as enlarged gray 
matter volumes in regions such as the postcentral gyrus and superior 
temporal gyrus. Cortical folding analysis suggests an initial increase 
in cortical folds in some brain areas, which decreases with age (Jiao 
et al., 2010; Ecker et al., 2015). Functional MRI (fMRI) reveals that 
autistic individuals show heightened activity in brain regions related 
to visual perception and pattern recognition, but lower activity in 
areas related to social and emotional processing (Di Martino et al., 
2009; Schipul et al., 2011). Additionally, resting-state fMRI analysis of 
striatal connectivity reveals changes, such as decreased connectivity 
between the striatum and prefrontal cortex, potentially disrupting 
normal neural communication (Yerys et al., 2015). While there have 
been significant findings regarding the brain regions involved in 
autism, the brain remains a complex and mysterious organ. 
Investigating the potential underlying brain mechanisms in 
individuals with autism is an ongoing challenge and an exciting area 
of research. Understanding these mechanisms could provide deeper 
insights into the condition and open new avenues for more effective 
treatments and interventions. This remains a key interest for 
researchers in the field.

However, a major unresolved issue is that current research 
primarily relies on single techniques, each providing only a partial 
view of the brain. The challenge lies in integrating multimodal data 
and combining different technologies to more comprehensively and 
accurately reveal the neurobiological mechanisms of autism. 
Differences in the spatial and temporal resolution, as well as 
measurement indicators, between modalities highlight the need for 
new data analysis methods and models to achieve this integration. 
Developing such approaches will be a crucial breakthrough in autism 
brain research.

4.3.2 Comorbidity of autism and other psychiatric 
disorders

Autism does not exist in isolation; many autism patients also 
suffer from other psychiatric disorders such as attention deficit 
hyperactivity disorder (ADHD), anxiety disorders, depression, and 
epilepsy (Gillberg and Billstedt, 2000; Simonoff et al., 2008; Joshi et al., 
2013; Lai et  al., 2019). This comorbidity phenomenon not only 
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increases the complexity of diagnosis and treatment but also poses 
greater challenges for patients and their families. Therefore, studying 
the comorbidity of autism with other psychiatric disorders is 
important for understanding the pathological mechanisms of autism 
and developing effective treatment strategies.

The most cited article “Identification of risk loci with shared 
effects on five major psychiatric disorders: A genome-wide analysis,” 
explores specific genetic variants’ effects on autism, attention deficit 
disorder, bipolar disorder, major depression, and schizophrenia. It 
identifies chromosome 3p21 and10q24, along with single nucleotide 
polymorphisms (SNPs) within two L-type voltage-gated calcium 
channel subunits, CACNA1C and CACNB2, as potential biomarkers 
for these disorders (Consortium C.-D.G.o.t.P.G, 2013). This 
underscores the research focus on common biomarkers across 
different psychiatric conditions. Therefore investigating shared 
biomarkers of autism in conjunction with other psychiatric 
disorders represents a significant research trend and hotspot 
moving forward.

The presence of multiple comorbid conditions makes accurate 
diagnosis challenging. For instance, when autism co-occurs with 
Attention Deficit Hyperactivity Disorder (ADHD), the typical ADHD 
symptoms of inattention, hyperactivity, and impulsivity can overlap 
and become confounded with autism’s own traits, such as distractibility 
and stereotyped behaviors. This overlap makes it difficult for clinicians 
to distinguish between the two based solely on external behavioral 
manifestations, often necessitating more comprehensive and in-depth 
assessment methods for accurate diagnosis. The high prevalence of 
comorbidity between autism and other psychiatric disorders suggests 
that these disorders may share common pathological bases. For 
example, both autism and ADHD involve brain function 
abnormalities, particularly in executive function, attention, and 
behavioral control (Castellanos and Proal, 2012). By studying these 
comorbidity phenomena, current research has begun to explore 
common neurobiological mechanisms between autism and other 
psychiatric disorders (Crespi et al., 2010; Consortium C.-D.G.o.t.P.G, 
2013; Smaga et al., 2015).

Additionally, the challenges posed by comorbidities are even more 
pronounced in treatment. The comorbidity research can improve the 
diagnosis and treatment of autism. For patients with both autism and 
other psychiatric disorders, single-treatment methods are often 
ineffective. Understanding the comorbidity mechanisms of these 
disorders allows doctors to develop multi-level and multi-target 
treatment strategies, enhancing treatment efficacy (Matson and 
Goldin, 2013; Vasa and Mazurek, 2015).

Future research on autism biomarkers will focus on the 
comorbidity of autism with other psychiatric disorders, revealing 
common pathological mechanisms and promoting the development 
of new diagnostic and therapeutic methods, improving early detection 
and intervention capabilities for these complex disorders. Through 
comorbidity research, we  hope to better understand and address 
autism and its associated psychiatric disorders (Loth et al., 2016; Frye 
et al., 2019).

4.3.3 Metabolic markers
In recent years, an increasing number of studies have found 

metabolic abnormalities in autism patients (Adams et  al., 2011a; 
Adams et al., 2011b; Kang et al., 2018). These abnormalities involve 
various metabolic pathways, including energy metabolism, amino acid 

metabolism, lipid metabolism, and oxidative stress (Rossignol and 
Frye, 2014; Frye et al., 2019).

Although genetic factors play a significant role in the development 
of autism, the impact of environmental factors cannot be overlooked. 
Metabolic processes act as a crucial interface between genes and the 
environment. Investigating metabolic biomarkers in children with 
autism provides deeper insights into the condition’s pathogenesis. For 
example, metabolic biomarkers can reveal abnormalities in processes 
such as cellular energy metabolism and neurotransmitter synthesis. 
These disruptions may serve as potential underlying causes of 
impaired brain development in children with autism.

As mentioned above, some studies have found mitochondrial 
dysfunction in autism patients, leading to energy metabolism 
disorders (Rossignol and Frye, 2012b; Morris and Berk, 2015); other 
studies have shown elevated oxidative stress levels in autism patients, 
which may be related to neuronal damage (James et al., 2004; Ng et al., 
2008; Frustaci et  al., 2012). By studying these metabolic markers, 
scientists can better understand the biological basis of autism. 
Metabolic marker research provides an objective biological testing 
method, improving diagnostic accuracy and early detection 
capabilities. For instance, scientists can analyze metabolite levels in the 
blood, urine, or other body fluids of autism patients to find specific 
metabolic markers, assisting in the diagnosis of autism and providing 
targeted treatment (Gabriele et al., 2014; Rossignol and Frye, 2014).

4.4 Critical insights and reflections of 
potential trend

We conducted an in-depth analysis of each article, carefully 
evaluating the current state and trends in research as discussed above. 
Based on this, we  offer our critical insights and reflections on 
biomarker studies in autism accordingly. We believe these analyses 
will help advance the field further and offer new perspectives for the 
diagnosis and treatment of autism.

4.4.1 Application of emerging technologies for 
autism biomarkers

In analyzing the top  100 highly-cited studies, we  found that 
autism biomarker research, especially concerning genetic and 
neuroimaging biomarkers in autism patients, heavily relies on the 
advancement and application of cutting-edge technologies. Current 
autism biomarker detection predominantly involves established 
techniques like fMRI, sMRI, EEG, and MEG (Calhoun et al., 2008; 
Schumann et al., 2010; Abraham et al., 2017; Gilmore et al., 2018). 
With innovations in artificial intelligence and machine learning 
technologies, we  believe the application of new technologies is a 
promising direction, particularly in the research of the diagnosis of 
autism biomarkers.

Artificial intelligence (AI) and machine learning demonstrate 
considerable application value in the diagnosis of autism biomarkers. 
Based on the precision and automation of AI and machine learning, 
these technologies can be  applied to large-scale whole genome 
sequencing data to uncover complex genetic variation patterns 
associated with autism (Nisar and Haris, 2023; Maqsood et al., 2024). 
They can also be used to process vast amounts of MRI and fMRI data 
to capture and analyze complex relationships in brain structural data. 
These approaches are far more challenging with traditional manual 
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methods, but AI and machine learning not only save time and effort 
but also provide higher accuracy (do Rêgo and Araújo-Filho, 2024; 
Maqsood et al., 2024; Wankhede et al., 2024).

Regarding genetic biomarkers diagnosis, autism-related genes 
such as SHANK3, NRXN1, and CNTNAP2 exhibit significant 
complexity and variability, with mutations appearing as single 
nucleotide polymorphisms (SNPs), small insertions or deletions 
(Indels), and copy number variations (CNVs). Deep learning 
algorithms like Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) can automatically extract more 
refined features from large datasets, making them more efficient and 
accurate than manual analysis (Nisar and Haris, 2023; Maqsood et al., 
2024). From a brain structural perspective, AI and machine learning 
can analyze vast datasets through clustering methods to identify 
abnormalities in specific brain regions and autism-specific structural 
features (Khodatars et al., 2021; Bahathiq et al., 2022). For example, 
clustering analyses of gray matter volume data in autism patients and 
control groups can reveal the relationship between reduced frontal 
lobe gray matter volume and executive function deficits, as well as 
abnormal temporal lobe gray matter volume and social 
cognitive impairments.

Additionally, AI and machine learning provide the opportunity 
for dynamic tracking of biomarkers at different time points and stages, 
allowing for the creation of evolving pathways for biomarkers. By 
integrating data from other biological markers such as metabolic and 
genetic markers, the accuracy of disease diagnosis and prediction can 
be improved, providing a basis for timely adjustments to treatment 
plans and enhancing treatment outcomes for autism patients.Thus, 
we believe that the use of emerging technologies will undoubtedly 
become a focal point in future research.

4.4.2 Longitudinal study of autism biomarkers
We analyzed key areas of biomarker research in childhood autism, 

emphasizing its importance for early diagnosis, detection, and 
predictive studies. However, the continuous changes in autism 
biomarkers throughout development remain unclear. Current research 
often focuses on childhood and adulthood biomarkers separately, 
leaving gaps in understanding their evolution and longitudinal 
dynamics. Autism, as a lifelong neurodevelopmental disorder, involves 
symptoms and pathological characteristics that vary with age and 
developmental stage (Seltzer et al., 2004; Zwaigenbaum et al., 2013).

Longitudinal studies, which repeatedly measure the same group 
of individuals at multiple time points, can offer a more comprehensive 
and in-depth understanding. Through long-term tracking, researchers 
can observe changes in biomarkers during disease progression, 
understand their role in the disease course, and identify early 
predictors of autism (Singer, 2003; Ecker et al., 2015). However, there 
is currently a shortage of longitudinal studies, especially those that 
span the lifespan, investigating autism biomarkers.

The dynamic progression of autism biomarkers is indeed essential 
to understanding the disorder comprehensively. For instance, studies 
have identified a strong correlation between mutations in the FMR1 
gene and autism (Hagerman et al., 2018; Richter and Zhao, 2021). 
However, longitudinal research on how such genetic anomalies 
influence autism phenotypes across developmental stages remains 
limited. While we know that mutations in FMR1 lead to the loss or 
dysfunction of its encoded protein, the precise mechanisms by which 

this anomaly affects brain development and behavioral symptoms 
from infancy to adulthood remain unclear (Verkerk et al., 1991).

Similarly, the dynamic interplay between multiple autism-related 
genes (e.g., SHANK3, PTEN) and their joint regulation of brain 
development and behavior over time has yet to be  thoroughly 
investigated (Monteiro and Feng, 2017). Additionally, while glutamate 
level abnormalities have been observed in individuals with autism, 
studies have not examined how these levels change with age. For 
example, elevated glutamate levels detected in early childhood are not 
yet understood—whether they represent a transient developmental 
fluctuation or a persistent neurodevelopmental factor influencing 
adult social and cognitive symptoms remains unknown (Robertson 
and Baron-Cohen, 2017; Horder et al., 2018).

The brain’s plasticity underscores the significance of dynamic 
changes and developmental processes. While exploring brain 
mechanisms at a single time point, such as during childhood, is 
valuable, understanding the trajectory of biomarker evolution under 
this plasticity is crucial. Future research should prioritize studying the 
dynamic progression of biomarkers alongside current cross-sectional 
approaches. Although such longitudinal studies are time-and 
resource-intensive, they hold immense potential for deepening our 
understanding of autism mechanisms and advancing 
effective treatments.

4.4.3 Specificity of autism biomarkers
Current research trends indicate a trend toward studying the 

comorbidity of autism with other psychiatric disorders (Gillberg and 
Billstedt, 2000; Simonoff et al., 2008; Joshi et al., 2013; Lai et al., 2019). 
However, due to the unique nature of autism, we believe that specific 
research on autism biomarkers is important. The specific study of 
autism biomarkers is crucial for more accurate diagnosis of the 
disorder itself.

To understand the core pathological mechanisms of autism, while 
the study of comorbid biomarkers can shed light on their association 
with other disorders, it cannot replace the need to explore autism’s 
intrinsic pathology. Comorbid biomarkers may blur diagnostic 
boundaries, whereas autism-specific biomarkers—such as mutations 
in SHANK3, NRXN1, and CHD8—are directly tied to autism, but 
may also be found in other conditions like intellectual disabilities and 
ADHD (Zoghbi and Bear, 2012; De Rubeis and Buxbaum, 2015). 
Therefore, they cannot be solely used for initial diagnosis. From a 
personalized treatment standpoint, autism-specific biomarkers 
provide targeted therapeutic strategies, enhancing the potential for 
improving core symptoms and quality of life.

Therefore, future research should not only explore the comorbidity 
of autism with other psychiatric disorders but also focus on advancing 
the specific study of autism biomarkers. This will enable more precise 
diagnosis of autism’s core features, uncover its unique pathogenesis, 
and guide personalized treatment strategies. Future research should 
aim to develop more specific and sensitive biomarkers, which may 
require the integration of multiple biological data, such as genomic, 
metabolomic, and imaging data. The combined application of multiple 
biomarkers could enhance diagnostic specificity and sensitivity, 
despite increasing research and application complexity. Additionally, 
large-scale validation studies are needed to ensure the reliability of 
these biomarkers in different populations and clinical settings. The 
application of new technologies such as machine learning and artificial 
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intelligence may help identify more precise diagnostic patterns from 
complex data.

5 Limitations

While selecting the 100 most cited references provides a 
foundation of widely recognized work, we  acknowledge that this 
approach may have limitations.

Firstly, we exclusively relied on the Web of Science database for 
our analysis and did not encompass data from other databases such as 
Scopus, Medline, and Google Scholar. Consequently, some essential 
papers indexed by alternative databases might have been overlooked. 
Secondly, the dynamic nature of citation counts over time implies that 
the composition of the 100 top-cited articles is subject to change. 
Thirdly, citation rates are affected by a multitude of factors, many of 
which extend beyond the scope of this study. While citation analysis 
serves as a valuable metric for recognition, it may not be the optimal 
measure for assessing the quality or significance of scientific research. 
Finally, the tendency of citation analysis to undervalue newly 
published studies due to the inherent advantage of older studies in 
accumulating citations is acknowledged. Therefore, it may 
inadvertently reinforce established ideas and overlook innovative 
studies that have yet to gain citation momentum. Such circularity 
could limit the exploration of emerging perspectives and 
novel hypotheses.

In future studies, we plan to expand the database inclusion and 
implement dynamic tracking to monitor changes over time. We also 
recommend that researchers conduct a thorough review of all relevant 
literature to analyze valuable yet under-cited articles. Despite these 
constraints, as the inaugural citation analysis in autism, we posit that 
our findings will augment the comprehension of trends and classic 
publications in this field.

6 Conclusion

In the present bibliometric study, we identified and analyzed the 
100 top-cited publications on autism biomarkers, examining key 
aspects such as publication years, document types and categories, 
journals, countries, institutes, authors, and keywords. We  also 
conducted an analysis of current research hotspots and future research 
trends. The current research hotspots on autism biomarkers mainly 
focus on genetic markers of autism, childhood biomarkers, oxidative 
stress markers, and mitochondrial dysfunction, and future research 
may continue to deepen from “brain,” comorbidity of autism with 
other psychiatric disorders, and metabolic markers. Based on the 
current research reflection, we believe that studies on application of 

emerging technologies of autism biomarkers, longitudinal study of 
autism biomarkers and specificity of autism biomarkers will make 
greater contributions to autism biomarker research. These 
comprehensive insights into the most impactful studies in the field of 
autism biomarkers aim to assist doctors, researchers, and other 
stakeholders in enhancing their understanding of prevailing trends 
and influential contributions to autism research.
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