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Objective: To assist in the rapid clinical identification of brain tumor types 
while achieving segmentation detection, this study investigates the feasibility 
of applying the deep learning YOLOv5s algorithm model to the segmentation 
of brain tumor magnetic resonance images and optimizes and upgrades it on 
this basis.

Methods: The research institute utilized two public datasets of meningioma and 
glioma magnetic resonance imaging from Kaggle. Dataset 1 contains a total of 
3,223 images, and Dataset 2 contains 216 images. From Dataset 1, we randomly 
selected 3,000 images and used the Labelimg tool to annotate the cancerous 
regions within the images. These images were then divided into training and 
validation sets in a 7:3 ratio. The remaining 223 images, along with Dataset 2, 
were ultimately used as the internal test set and external test set, respectively, to 
evaluate the model’s segmentation effect. A series of optimizations were made 
to the original YOLOv5 algorithm, introducing the Atrous Spatial Pyramid Pooling 
(ASPP), Convolutional Block Attention Module (CBAM), Coordinate Attention 
(CA) for structural improvement, resulting in several optimized versions, namely 
YOLOv5s-ASPP, YOLOv5s-CBAM, YOLOv5s-CA, YOLOv5s-ASPP-CBAM, and 
YOLOv5s-ASPP-CA. The training and validation sets were input into the original 
YOLOv5s model, five optimized models, and the YOLOv8s model for 100 rounds 
of iterative training. The best weight file of the model with the best evaluation 
index in the six trained models was used for the final test of the test set.

Results: After iterative training, the seven models can segment and recognize 
brain tumor magnetic resonance images. Their precision rates on the validation 
set are 92.5, 93.5, 91.2, 91.8, 89.6, 90.8, and 93.1%, respectively. The corresponding 
recall rates are 84, 85.3, 85.4, 84.7, 87.3, 85.4, and 91.9%. The best weight file of 
the model with the best evaluation index among the six trained models was 
tested on the test set, and the improved model significantly enhanced the image 
segmentation ability compared to the original model.

Conclusion: Compared with the original YOLOv5s model, among the five 
improved models, the improved YOLOv5s-ASPP model significantly enhanced 
the segmentation ability of brain tumor magnetic resonance images, which is 
helpful in assisting clinical diagnosis and treatment planning.
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Introduction

Brain tumors pose a significant threat to human health, and their 
high mortality rate makes them one of the focal points of medical 
research (Liu et al., 2020). Epidemiological data indicates that brain 
tumors account for 1.5% of all cancer incidences, yet they cause a 
mortality rate as high as 3% (Fitzmaurice et al., 2019). Diagnostic 
modalities for brain tumors include Computed Tomography (CT) and 
Magnetic Resonance Imaging (MRI), with MRI’s superior soft tissue 
contrast becoming a critical diagnostic tool. In clinical settings, 
physicians rely on accurate differentiation between tumor and normal 
tissues in imaging to ascertain tumor type, which subsequently 
informs decisions on surgical margins, radiation therapy, and 
chemotherapy. This information is also crucial for prognosis 
assessment and for enhancing patient quality of life.

The diagnosis and treatment of brain tumors have encountered 
escalating challenges. Traditional imaging techniques, despite 
advancements in tumor localization and qualitative analysis, are 
limited in their ability to precisely define tumor margins, analyze 
tumor heterogeneity, and monitor dynamic changes accurately. 
Manual segmentation techniques, while intuitive and to some extent 
meeting clinical needs, are time-consuming and labor-intensive, with 
a strong subjective nature, which makes it difficult to adapt to the 
modern medical system’s dual requirements for efficiency and 
accuracy. Therefore, there is still a need to explore highly automated 
and precise tumor segmentation techniques.

The relentless progress in Artificial Intelligence (AI) technology 
has seen AI-assisted diagnosis become an integral part of medical 
imaging and gradually transition into clinical diagnostics. Intelligent 
solutions that integrate deep learning with computer vision can 
markedly increase the level of automation in image analysis, enhancing 
diagnostic efficiency and objectivity. This technological advancement, 
by automating the segmentation of tumor regions, reduces the 
workload on physicians and aids in the precise formulation of 
treatment plans, leading to more timely and effective patient care.

In the field of deep learning for brain tumor segmentation, Zhao 
et  al. (2016) and his team proposed the Pyramid Scene Parsing 
Network (PSPNet). This method utilizes a pyramid pooling module 
to transform the image segmentation challenge into an effective 
integration of features across different scales. This innovation 
significantly enhances the model’s dual capabilities of understanding 
the overall scene and capturing details, achieving comprehensive 
capture of both global and local features. Ronneberger (2017) designed 
an encoder-decoder architecture known as U-Net. This framework 
uses an encoder to deeply extract features from the input image, 
ensuring the acquisition of rich contextual information. Subsequently, 
through the decoder phase, the original resolution of the image is 
restored, and each pixel point is finely classified, achieving high-
precision image segmentation tasks. The model design is simple and 
performs exceptionally well, making it highly suitable for medical 
image segmentation tasks and has become the most widely used 
foundational model in the field. Zhang et  al. (2020) innovatively 
introduced the Attention Gate Residual U-Net model (AGResUNet), 
which, by employing an attention gating mechanism, effectively filters 
and suppresses irrelevant or noisy feature information related to the 
task, while significantly enhancing the expression of features closely 
related to the tumor area. This leads to more accurate identification 
and positioning in tumor segmentation tasks.

In summary, research on tumor segmentation based on 
Convolutional Neural Networks (CNN), U-Net, Mask R-CNN, and 
other methods has yielded many results. Although these methods can 
effectively perform image segmentation, they require a large amount 
of annotated data for training and have the disadvantages of high 
model complexity and significant computational resource 
consumption. Since the tumor image segmentation task in actual 
clinical work is carried out in real-time, it is still necessary to explore 
more efficient and accurate algorithms. In 2016, researchers 
innovatively proposed a one-stage object detection algorithm, naming 
it You  Only Look Once (YOLO) (Redmon et  al., 2016). This 
framework uses a single neural network as its core architecture, 
achieving end-to-end object detection tasks. Compared to traditional 
image segmentation models, this model can directly and accurately 
predict the coordinates and object positions of the input image, 
demonstrating high versatility and transferability (Kothai et al., 2024). 
Among them, You Only Look Once version 5 small (YOLOv5s) is the 
most lightweight version of the algorithms to date. This algorithm can 
significantly reduce the model’s complexity and computational costs 
while maintaining high detection accuracy, and it has been applied to 
many industrial or agricultural scenarios (Zhang et  al., 2024). 
However, this lightweight design comes at the cost of sacrificing 
segmentation accuracy to some extent. Especially when performing 
precise segmentation of small targets or targets in complex 
backgrounds, it shows limitations (Pei et al., 2022). In clinical practice, 
the segmentation of brain tumors demands high precision to minimize 
misdiagnoses and oversights, optimize treatment strategies, and 
enhance patient outcomes. Consequently, to bolster the segmentation 
accuracy of the model, it is imperative to implement enhancements to 
the original YOLOv5 model.

This study focuses on the specific application of YOLOv5 in brain 
tumor image segmentation, improves the original YOLOv5 model, 
and discusses the performance of the improved model in brain tumor 
image analysis, as well as its applicability and limitations in actual 
clinical scenarios.

The main contributions of this study can be  summarized 
as follows:

 1 Improved YOLOv5s Algorithm Model and Multi-scale Feature 
Capture: We  introduce an advanced YOLOv5s algorithm 
model that incorporates Atrous Spatial Pyramid Pooling 
(ASPP) and dual attention mechanisms, namely Convolutional 
Block Attention Module (CBAM) and Coordinate Attention 
(CA). This integration is pivotal for capturing multi-scale 
contextual information and sharpening the model’s focus on 
the critical features within brain tumor regions. By addressing 
the limitations of traditional models in segmenting tumors of 
diverse sizes and morphologies, this structured enhancement 
markedly improves the model’s accuracy and performance in 
segmenting brain tumor MRI images.

 2 Lightweight Design and Performance Balancing: Preserving 
the high detection velocity inherent to YOLOv5s, we  have 
substantially improved segmentation accuracy through 
structural refinements. This optimization achieves a 
commendable equilibrium between the model’s lightweight 
design and its segmentation precision, catering to the demand 
for high-precision segmentation in environments with 
constrained resources.
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 3 Comprehensive Model Evaluation: The model’s performance is 
rigorously evaluated using a suite of metrics, including 
precision, recall, mAP@50, and ablation studies. The findings 
indicate that the refined model substantially surpasses the 
original in terms of brain tumor segmentation capabilities. 
Furthermore, the introduction of the GFLOPs metric quantifies 
the computational expenditure, elucidating the computational 
resources required following the enhancement of segmentation 
capabilities across various improved models.

The remainder of this paper is structured as follows: Section 1 
outlines the model structures and the innovative improvements of this 
study. Section 2 describes the model training methods and evaluation 
metrics. Section 3 discusses the results and facilitates further analysis. 
Finally, Section 4 discusses the experimental results, draws 
conclusions, and outlines future work. The overall technical roadmap 
of this study is shown in Figure 1.

Improved method

Original YOLO model

Figure  2 illustrates the schematic diagram of the YOLOv5s 
network structure. The key features of this prediction model’s 
architecture are as follows: 1. The core feature extraction network of 
YOLOv5s is based on CSPDarknet53 and incorporates the Cross 
Stage Partial (CSP) module, a design that reduces computational 
load and accelerates prediction speed (Zhang et  al., 2024). 2. To 
enhance the detection performance for objects of varying scales, the 

model employs a path aggregation strategy based on PANet, 
optimizing the flow of information in the feature pyramid and 
strengthening the recognition capabilities for multi-scale targets. 3. 
At the initial stage of model construction, a set of anchor boxes with 
various sizes and aspect ratios was predefined to account for the 
diversity of targets in the training data, aiming to achieve more 
precise target box matching and positional regression in subsequent 
predictions. 4. Additionally, YOLOv5s utilizes a combination of 
multi-element loss functions, including classification, bounding box 
localization, and confidence loss. By synergistically optimizing these 
loss functions, the accuracy of object detection is further improved. 
5. In terms of activation functions, the model opts for Leaky ReLU, 
a choice that helps mitigate the vanishing gradient problem in deep 
networks, accelerates model convergence, and enhances training 
efficiency and the model’s generalization performance. These 
structural advantages enable YOLOv5s to provide accurate detection 
results while maintaining high detection speed, making it suitable 
for real-time applications and resource-constrained environments 
(see Figure 2).

Improved YOLO algorithm

Improve and innovate ideas
The original YOLOv5s model, while lightweight, inherently 

compromises segmentation accuracy, necessitating further 
refinements to bolster its precision in this regard. Dong et al. (2024) 
enhanced the YOLOv5 model by integrating the CBAM attention 
mechanism and demonstrated through comparative experiments that 
the enhanced model surpasses the baseline in detection performance.

FIGURE 1

Technical roadmap.
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However, in the realm of deep learning, a plethora of modules 
exists, each with unique functionalities: spatial pyramid structures for 
capturing multi-scale information, pooling mechanisms to refine 
model accuracy, and attention modules such as Convolutional Block 
Attention Module (CBAM), Coordinate Attention (CA), and Squeeze-
and-Excitation Networks (SE) that direct the model’s focus towards 
salient features. The efficacy of these modules on model accuracy 
varies due to their distinct operational mechanisms, underscoring the 
importance of experimentally integrating or combining them to assess 
their impact on performance.

This study aims to improve and supplement the deficiencies in the 
research conducted by Dong and his team. We will focus on two key 
aspects: the incorporation of Atrous Spatial Pyramid Pooling (ASPP) 
and attention mechanisms, namely CBAM and CA. The ASPP’s 
integration aims to enhance the model’s capability to segment tumors 
of diverse sizes and morphologies by effectively capturing multi-scale 
contextual information, thereby improving segmentation accuracy. 
Simultaneously, the inclusion of CBAM and CA will evaluate their 
potential to augment the model’s recognition and segmentation 
accuracy of tumor regions. Given that different attention mechanisms 
may strike varying balances between computational efficiency and 
segmentation accuracy, comparative experimental analysis will enable 
the selection of the most apt attention mechanism for specific 
application scenarios.

Improved model architecture
Figure  3 illustrates the schematic diagram of the improved 

YOLOv5s model structure. In the course of this investigation, the 
backbone module of the original model, specifically the Spatial 

Pyramid Pooling (SPP) structure, was supplanted by the Atrous 
Spatial Pyramid Pooling (ASPP) mechanism, and two attention 
mechanisms were integrated between the Neck module and the Head 
detection module.

To ascertain the efficacy of the amalgamation of Atrous Spatial 
Pyramid Pooling modules and embedded attention mechanisms in 
augmenting the performance of the original model, a series of ablation 
studies were meticulously designed and executed. These studies 
culminated in the structural refinements and the genesis of several 
optimized model variants: YOLOv5s-ASPP, YOLOv5s-CBAM, 
YOLOv5s-CA, YOLOv5s-ASPP-CBAM, and YOLOv5s-
ASPP-CA. The ensuing workflow delineates the operational sequence 
for models that amalgamate Atrous Spatial Pyramid Pooling with 
attention mechanisms:

 1 The input image is subjected to preprocessing protocols, 
inclusive of resizing and normalization, prior to its ingestion 
into the YOLOv5 backbone for feature extraction. Upon the 
extraction of features, the original model’s SPPF module is 
supplanted by an ASPP module. The ASPP module capitalizes 
on dilated convolutions to enhance multi-scale feature 
representation, thereby expanding the receptive field and 
bolstering the model’s capacity to detect targets across 
diverse scales.

 2 Subsequently, the features extracted by the backbone are sent 
to the neck for further processing to achieve feature fusion. An 
attention mechanism is intercalated before each detection 
head, dynamically modulating the weights accorded to 
different regions within the feature map. This enhancement 

FIGURE 2

Schematic diagram of YOLOv5s network structure.
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sharpens the model’s focus on target-related features, 
ameliorates its capacity to select and integrate features, and 
bolsters its ability to handle multi-scale targets while enhancing 
the utilization of contextual information.

 3 Ultimately, the detection head engenders prediction outcomes, 
which are subjected to non-maximum suppression to eliminate 
redundant bounding boxes, culminating in the final target 
segmentation results.

Atrous spatial pyramid pooling
Spatial Pyramid Pooling (SPP) is a pooling technique within 

convolutional neural networks that is used to process inputs of varying 
sizes. By integrating pooling layers of different scales, it allows for the 
pooling of input images of any size, thereby enhancing the network’s 
flexibility and generalization capabilities. Atrous Spatial Pyramid 
Pooling (ASPP) combines the concepts of SPP and Dilated 
Convolution (Chen et  al., 2017). By incorporating Dilated 
Convolution, it expands the receptive field of the convolutional kernel 
without losing resolution. This enables the model to better differentiate 
between tumor and normal tissues, facilitating precise segmentation 
even when boundaries are indistinct or sizes are inconsistent. Figure 4 
provides a schematic diagram of the ASPP structure.

Attention mechanism

Convolutional block attention module
The CBAM attention mechanism is a module designed to 

enhance the performance of CNNs by allowing the algorithm to 
focus on more important features extracted (Woo et  al., 2018). 
CBAM combines two submodules, the Channel Attention Module 
(CAM) and the Spatial Attention Module (SAM), to provide the 
model with a more comprehensive and effective feature extraction 
capability. The channel attention mechanism learns the weights of 
each channel, enabling the model to adaptively adjust the 
importance of channel features and enhance the modeling capability 
for different features. The spatial attention module, on the other 
hand, focuses on the important spatial locations in the feature map. 

By combining these two, it enhances the model’s attention to key 
features in the brain tumor region of the image, thereby improving 
the network performance of the model (Mi et al., 2020; Chen et al., 
2020). Figure  5 illustrates the structure of the CBAM 
attention mechanism.

Coordinate attention for efficient mobile network design 
(CA)

CA is an innovative attention mechanism for mobile networks 
that enhances the performance of lightweight networks by embedding 
positional information into channel attention (Hou et al., 2021). It 
takes into account not only channel information but also direction-
related positional information. By integrating convolution with 
attention, it captures spatial correlations, which helps segmentation 
models to more accurately locate and identify brain tumor regions in 
imagery, while being flexible and lightweight enough that the 
additional computational load is negligible (Xie et al., 2022). Figure 6 
is a structural diagram of the CA module.

YOLOv8
Given that YOLOv5 and YOLOv8 are designed by the same team 

and share similar design philosophies, we have decided to include 
YOLOv8 in our experiments for comparative analysis to explore the 
performance differences between the two versions in object 
segmentation tasks. Both employ advanced network structures such 
as the CSPDarknet backbone and anchor-based detection and 
segmentation mechanisms, along with non-maximum suppression 
as a post-processing step, ensuring high efficiency and accuracy.

However, there are differences in their technical implementations: 
YOLOv5 is renowned for its efficiency and accuracy, particularly in 
the detection of small objects, while YOLOv8 builds upon YOLOv5 
with further structural optimizations and performance enhancements, 
introducing innovations such as the SiLU activation function, an 
improved FPN structure, and task-specific loss functions to adapt to 
more complex detection and segmentation tasks and to enhance the 
model’s generalization capabilities (Varghese, 2024). Comparative 
experiments can help us understand the performance differences 

FIGURE 3

Schematic diagram of the improved YOLOv5s module structure. A is ASPP module, replacing SPP structure in the original backbone module with ASPP. 
B is CBAM attention mechanism module. C is the CA attention mechanism module, placing the two attention mechanisms between the end of the 
neck module and the head detection head module.
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between the different versions and provide guidance for model 
selection and optimization in practical applications. The structure of 
the YOLOv8 model is shown in Figure 7.

Materials and methods

Data acquisition

In this study, brain tumor images were selected from two publicly 
available datasets on the Kaggle database. The first dataset comprises 
a total of 3,223 brain tumor MRI images, including 1,581 glioma 
images and 1,642 meningioma images (Nickparvar, 2021). This 
dataset is referred to as Dataset 1 and is utilized for model training 
and for testing model performance with an internal test set. The 
second dataset contains 101 glioma images and 115 meningioma 
images, named as Dataset 2 (Bhuvaji et al., 2020), and is used for 
external testing to evaluate model performance.

All images were pre-annotated by two radiologists with 
intermediate or higher professional titles using Labelimg for the 
segmentation targets in the images. The annotation results were 
reviewed on-site by two radiologists with deputy senior or higher 
professional titles to ensure the accuracy of the experiment. In this 

study, the model training was conducted using a five-fold cross-
validation method. A random selection of 3,000 images from 
Dataset 1 was divided into five equally sized subsets, with each 
subset containing 600 images. These subsets were then split into 
training and validation sets in an 8:2 ratio, with four folds serving 
as the training set and the remaining fold as the validation set. This 
process was repeated five times, resulting in five distinct datasets for 
training. The remaining 223 images were used as an internal test set 
to evaluate the performance of the best model in segmenting 
targets. The annotation status in the training dataset and the 
correlation between different categories of targets are illustrated in 
Figures 8, 9.

Experimental parameters

This experiment was conducted on a computer system equipped 
with a 13th Gen Intel (R) Core (TM) i7-13620H 2.40 GHz Central 
Processing Unit (CPU), NVIDIA GeForce RTX 4060 Laptop 
Graphics Processing Unit (GPU), and 16.0 GB Random Access 
Memory (RAM), using PyTorch to build the YOLOv5s model and 
YOLOv8s models (Python 3.8.7, PyTorch 2.0.0, CUDA 11.8). 
We  trained seven distinct models, namely YOLOv5s, 

FIGURE 4

Schematic diagram of ASPP network structure.

FIGURE 5

CBAM module structure diagram.
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YOLOv5s-ASPP, YOLOv5s-CBAM, YOLOv5s-CA, YOLOv5s-ASPP-
CBAM, YOLOv5s-ASPP-CA, and YOLOv8, on five datasets with 
varying data distributions. All models were optimized using the SGD 
optimizer, with a batch size of 8, an initial learning rate of 1 × 10−2, 
100 training iterations, and an IOU threshold of 0.6.

Experimental evaluation index

Referring to previous studies (Casas et al., 2024), unlike evaluation 
metrics for segmentation models such as U-net, the YOLOv5 
segmentation model uses Precision, Recall, and mAP@50 to measure 
model performance. Precision refers to the proportion of samples 
predicted as True Positive (TP) out of all samples predicted as Lesions. 
It measures how many of the model’s predictions are truly correct. 
High precision indicates that the model has fewer False Positive (FP). 
Recall, on the other hand, refers to the proportion of actual TP that 
are correctly identified by the model. It emphasizes the model’s ability 
to find all true positives. High recall indicates that the model has fewer 
False Negative (FN). In the segmentation model task, P represents the 
proportion of predicted pixels that are correctly classified as the target, 
while R represents the proportion of actual target pixels that are 
correctly predicted as the target. The specific calculation formulas are 
shown in Equations 1, 2.

 
Precision TP

TP FP
=

+  
(1)

 
Recall TP

TP FN
=

+  
(2)

mAP@50 represents the average True Positive Rate (TPR) of the 
model when the precision reaches 50%. mAP@50 measures the 

FIGURE 7

Schematic diagram of YOLOv5s network structure.

FIGURE 6

Structure diagram of CA module.
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proportion of predictions with an Intersection over Union (IoU) 
greater than or equal to 0.5, while the model is localizing the target 
and providing a confidence score.

A high mAP@50 indicates that the model can accurately identify 
targets with minimal positional prediction error. It is an important 
standard for measuring model performance, especially in real-time 
applications that focus on precision and efficiency.

Building on the aforementioned evaluation metrics, to better 
compare the computational capabilities of different models, 
we introduce the metric GFLOPs. GFLOPs is a common measure of 
the computational load of deep learning models. A higher GFLOPs 
value for a model indicates that it requires more computational 
resources and may necessitate more powerful hardware to support 
real-time or near-real-time inference.

The calculation formulas for mAP and AP are shown in 
Equations 3, 4, where p represents precision, r represents recall, and 
N represents the total number of sample categories. In this study, since 

it is a binary classification problem, the mAP value is the actual 
value of AP.

 
( )

1

0
p r dr∫

 
(3)

 
APmAP
N

∑
=

 
(4)

Interpretation of result

After 100 iterations of training, the precision, recall, mAP@50, 
and GFLOPs values of the six models on the validation set are 
shown in Table  1. The results of the model training curves are 

FIGURE 8

Annotation status in the dataset.
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shown in Figures 10, 11. Figure 12 shows the precision curves, recall 
curves, and P-R curves for the YOLOv5s and YOLOv5s-ASPP 
models, with the area under the P-R curve representing mAP@50. 
Analyzing the table, we  can see that the five improved models 
generally show improvements in precision, recall, mAP@50, and 
GFLOPs compared to the original YOLOv5s, with enhanced 
performance. Among them, the YOLOv5s-ASPP model exhibits 
significant improvements in all four evaluation metrics. At the same 
time, YOLOv8 is similar to YOLOv5-ASPP model in the precision, 

recall rate and mAP@50, but the GFLOPs of YOLOv8 is much 
larger than that of YOLOv5s-ASPP, which requires more 
computing resources.

The best-performing YOLOv5 and YOLOv5s-ASPP models 
from the five datasets were subjected to internal and external test 
sets to verify the detection results. The statistical outcomes are 
presented in Tables 2, 3, while the segmentation detection results 
for the internal and external test sets are illustrated in Figures 13, 
14, respectively. The improved YOLOv5s model demonstrated 

FIGURE 9

Target correlation graph in the dataset.

TABLE 1 Comparison of values of evaluation indicators of YOLO model before and after improvement.

Name of model P R mAP@50 GFLOPs

YOLOv5 0.928 0.868 0.917 25.7

YOLOv5s-ASPP 0.937 0.891 0.929 32.3

YOLOv5s-CBAM 0.903 0.884 0.913 26.0

YOLOv5s-CA 0.915 0.869 0.905 25.8

YOLOv5s-ASPP-CBAM 0.921 0.902 0.932 32.6

YOLOv5s-ASPP-CA 0.915 0.89 0.929 32.4

YOLOv8 0.931 0.919 0.945 42.4
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superior segmentation and detection results for brain tumor 
MRI images.

Discussion

In this study, we introduced and validated an innovative variant 
of the YOLOv5s algorithm, which integrates attention mechanisms 
and the Atrous Spatial Pyramid Pooling (ASPP) structure. Our 
findings indicate that the incorporation of ASPP significantly bolsters 

the algorithm’s capacity for brain tumor segmentation. The enhanced 
model achieved a precision of 0.937, a recall of 0.891, and an mAP@50 
score of 0.929. The mAP@50 score of 0.929 for the YOLOv5s-ASPP 
model is indicative of an exceptionally high level of accuracy in 
segmenting brain tumor MRI images, which is paramount for 
augmenting the precision and reliability of clinical diagnoses. This 
outcome highlights the substantial enhancement in segmentation 
capabilities conferred by the ASPP structure, which optimizes feature 
extraction and achieves high accuracy, rendering the YOLOv5s-ASPP 
model a valuable asset in clinical practice.

FIGURE 10

YOLOv5s model training curves.

FIGURE 11

YOLOv5s-ASPP model training curves.
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Brain tumor image segmentation is of significant value in clinical 
practice, as it can markedly enhance the precision of tumor diagnosis, 
aid in the formulation of personalized treatment plans, and is essential 

for monitoring treatment effects and assessing prognosis. Precise 
segmentation not only guides surgical path planning and reduces 
surgical risks but also serves for target delineation in radiotherapy 
planning, enabling a more accurate distinction between normal and 
tumor tissues. Consequently, this improves medical work efficiency 
and enhances patient education and treatment experiences. With 
advancements in technology, particularly in the realms of deep 
learning and artificial intelligence, the accuracy and automation level 
of brain tumor image segmentation are continually improving, 
heralding revolutionary changes in modern medicine.

In the domain of deep learning, various models, including CNNs 
and U-Net, have achieved success in brain tumor segmentation (Ding 
et  al., 2020; Shen et  al., 2023; Zhang et  al., 2023). CNNs 
(Convolutional Neural Networks) excel in image processing and 
analysis but are characterized by high computational complexity, 
susceptibility to overfitting on small datasets, and sensitivity to 
hyperparameters. Furthermore, spatial resolution may 

FIGURE 12

Model curve before and after improvement.

TABLE 2 Comparison of YOLO model performance on the internal test 
set before and after improvement.

Name of model P R mAP@50

YOLOv5 0.8 0.784 0.798

YOLOv5s-ASPP 0.854 0.784 0.826

TABLE 3 Comparison of YOLO model performance on the external test 
set before and after improvement.

Name of model P R mAP@50

YOLOv5 0.809 0.688 0.741

YOLOv5s-ASPP 0.82 0.725 0.773
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be compromised during downsampling, impacting the capture of fine 
details (Sun and Pang, 2018). Conversely, U-Net, with its symmetrical 
architecture and skip connections, results in high memory 
consumption (Jeong et  al., 2021), necessitates substantial 
computational resources, has a complex training process, and is 
prone to gradient propagation issues, posing challenges for practical 
clinical applications.

YOLOv5s has demonstrated significant superiority in the realm 
of real-time image detection. The YOLO model’s ability to directly 
predict the coordinates and positions of objects on the input image 
offers high generalization and transfer capabilities (Li et al., 2019). 
YOLOv5s is designed to balance speed and accuracy, providing 
satisfactory segmentation precision while maintaining high-speed 
detection. This makes YOLOv5s highly suitable for clinical diagnostics 
and treatment planning that demand rapid feedback. Moreover, the 
model’s less demanding computational resource requirements enable 
it to operate not only on CPUs but also to be deployed on devices with 
lower specifications, expanding its applicability across 
various environments.

Compared to its predecessor, the YOLOv5s model excels in real-
time applications due to its swift detection speed and reduced 
computational costs. However, it struggles with segmenting small 
targets and complex backgrounds. This study introduces a structured 
improvement by incorporating the ASPP structure, leveraging its 
multi-scale context capturing capabilities to significantly enhance the 
model’s segmentation accuracy when dealing with tumors of varying 

sizes and morphologies. The refined YOLOv5s-ASPP exhibits notable 
improvements across multiple evaluation metrics, particularly with 
nearly 1–2% gains in precision, recall, and mAP@50, which is crucial 
for reducing misdiagnoses and missed diagnoses in clinical practice. 
Additionally, we explored four other models that integrate attention 
mechanisms. These models effectively enhance their generalization 
and data handling capabilities by amplifying essential image features 
and suppressing irrelevant ones. This improvement increases recall 
rates but slightly decreases precision. In brain tumor image 
segmentation tasks, a high recall rate ensures that tumor areas are not 
overlooked. Even with high precision, a low recall rate might lead to 
the neglect of some tumor parts. However, improving precision is 
equally vital, as it not only significantly boosts the accuracy of 
diagnostic segmentation, reducing the likelihood of misdiagnoses and 
missed diagnoses, but also optimizes treatment planning, ensuring 
effective tumor removal while maximizing the protection of brain 
functional areas and avoiding unnecessary damage.

However, this study still has its limitations. First, the data needs to 
be more diverse and multi-centric. Diverse and multi-centric data can 
enhance the model’s generalization ability and robustness. Therefore, 
further multi-centric studies on a larger scale are still needed. Second, 
the improved YOLOv5s still faces difficulties in accurately segmenting 
and detecting some tumors that are widely distributed, have large 
ranges, and unclear boundaries. Third, the lesion annotations in the 
dataset are all manually labeled, which is subjective and may 
contain errors.

FIGURE 13

Comparison of YOLO model performance on the internal test set before and after improvement.
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YOLOv5 has shown excellent potential in the domain of medical 
image analysis. The model’s end-to-end training approach allows it to 
perform both object detection and segmentation tasks simultaneously, 
which is particularly important for improving the efficiency of medical 
image analysis. This technology will provide more favorable assistance 
to clinical practice.

Additionally, researchers may explore more deep learning 
techniques for use in brain functional imaging. Currently, deep 
learning has numerous applications in brain functional imaging. For 
instance, Zuo et al. proposed a model named BDHT, which utilizes 
generative adversarial networks to analyze multimodal brain 
networks for MCI, estimating effective connectivity and identifying 
potential biomarkers (Zuo et al., 2023, 2024a). The results indicate 
that this model surpasses existing methods in terms of accuracy and 
robustness, offering new insights into the diagnosis and treatment 
of MCI. Other researchers have developed the PALH model, a 
method that combines prior-guided adversarial learning with 
hypergraphs to predict abnormal brain connections in Alzheimer’s 
disease (Zuo et  al., 2024b). This model demonstrates excellent 
performance in the analysis and prediction of AD progression and 
identifies abnormal connections that align with previous 
neuroscientific findings, which is significant for the study and early 
intervention of cognitive diseases. Experts have proposed the BSFL 
model, a brain structure–function representation learning 
framework that integrates DTI and fMRI data, aiming to enhance 
the analysis and prediction effects of MCI (Zuo et al., 2023, 2024a). 
This model outperforms other methods in predicting and analyzing 

MCI and has the potential to reconstruct a unified brain network 
and predict abnormal connections in the MCI process. Zong et al. 
(2024) proposed a paradigm based on diffusion graph contrastive 
learning (DGCL) for end-to-end construction of brain networks, 
enhancing the efficiency and generalization of brain disease analysis. 
DGCL outperforms traditional and deep learning methods in 
disease stage prediction, effectively identifying key brain connections 
and providing explanatory support for neurological diseases. There 
are many more application areas like the ones mentioned above that 
are worth exploring in the future, to assist clinical doctors in making 
more precise diagnoses and treatment plans, thereby improving 
patient prognosis and quality of life.

Conclusion

In this paper, we propose an improved algorithm model based on 
YOLOv5, which undergoes a series of optimizations to the original 
YOLOv5 algorithm. By introducing the Atrous Spatial Pyramid 
Pooling (ASPP) structure, Convolutional block attention module, and 
Coordinate attention for efficient mobile network design, we have 
structurally improved the model and derived the following five 
optimized versions. After training under the same conditions as the 
original model and YOLOv8, we found that among the seven models, 
the improved YOLOv5s-ASPP model significantly enhanced the 
segmentation capability for brain tumor MRI images, aiding in 
diagnosis and treatment planning in clinical work.

FIGURE 14

Segmentation results of YOLO models on the external test set before and after improvement.
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